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Abstract. Aim of the present study is to compare the synchronization of the clas-
sical Kuramoto system and the reaction - diffusion space time Landau - Ginzburg
model, in order to describe the alternation of REM (rapid eye movement) and NREM
(non-rapid eye movement) sleep across the night. These types of sleep are considered
as produced by the cyclic oscillation of two neuronal populations that, alternatively,
promote and inhibit the REM sleep. Even if experimental data will be necessary, a
possible interpretation of the results has been proposed.
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1 Background

Over the course of a sleep period, healthy humans experience a cyclical alter-
nation of REM (rapid eye movement) and NREM (non-rapid eye movement)
sleep. Each type of sleep has unique characteristics. NREM sleep is divided
into four separate stages that follow progressively as sleep cycles advance, the
last two being the stages of deep sleep.

REM sleep occurs in cycles of about 90 - 120 minutes across the night,
and it accounts for up to 20 — 25% of total sleep time, although the propor-
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tion changes with age [18], and in pathological conditions such as Parkinson’s
disease [24]. This type of sleep dominates the latter half of the sleep cycle, es-
pecially the hours before waking, and the REM component of each sleep cycle
typically increases as the night goes on. As the name suggests, it is associated
with rapid, and apparently random, side-to-side movements of the closed eyes.
REM has two components; the phasic component is a sympathetically driven
state characterized by rapid eye movements, muscle twitches, and respiratory
variability, while the tonic one is a parasympathetically driven state with no
eye movements [11].

Although sleep is a restful time, it involves a complex activation of brain
circuits as showed, since 1950s, through experiments using electroencephalog-
raphy [19]. In late 1970’s, Hobson and McCarley [13] explained REM/NREM
alternation as a result of the antagonistic role played by two neuronal popula-
tions: FTG and LC neurons [17]. The locus coeruleus (LC) population, located
in the posterior area of the rostral pons in the lateral floor of the fourth ventri-
cle, is composed of mostly medium-size neurons, that produce norepinephrine.
The activity of LC neurons is high during the NREM sleep and the wake. On
the contrary, the gigantocellular tegmental field (FTG) population, a group of
nerve cells in the pons, shows a concentration of discharges during the REM
sleep. On the basis of these observations, McCarley and Hobson proposed a
reciprocal interaction model for sleep cycle oscillation modulated by LC and
FGT activity [13], [17]. The mathematical formulation of the model is based
on a Lotka - Volterra system, in which the FGT cells as analogous to the prey
population and the LC neurons represent the predator population. Recent ad-
vances in the neural anatomy and physiology involved in the regulation of the
sleep have encouraged more detailed mathematical models.

Commonly, the neurons that stop, or significantly decrease, their firing
rate during the REM sleep are called REM-off neurons, while neurons that
significantly increase their activity during REM sleep are known as REM-on
neurons [9]. In the first part of the present study, we have modeled the alter-
nation of REM and NREM sleep starting from the classical Kuramoto model.
The idea is to consider the two REM-on and REM-off neuronal populations,
respectively promoting and inhibiting the REM sleep, as oscillators. Then, we
have compared the synchronization of the classical Kuramoto system and the
reaction - diffusion space time Landau - Ginzburg model. This comparison is
the most innovative aspect of the paper.

2 Methods

We consider the interacting neurons as biological oscillators. Many types of
physical, chemical and biological oscillators share an astonishing feature: they
can be described by a single phase variable 6 [2]. In the context of tonic
spiking, the phase is usually taken to be the time since the last spike train, i.e.
the time-series electrical signals recorded from individual neurons in the brain,
essentially the action potentials generated by neurons [14].

Math. Model. Anal., 21(6):794-810, 2016.
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2.1 Basic model

We base our analysis on the physical model of Kuramoto [1], that provides a
system that can model synchronisation and desynchronisation in groups of cou-
pled oscillators. The Kuramoto model considers a system of globally coupled
oscillators modeled by the equation:

do; .
T =w; + Zsm —¢i), ¢;€10,2n], i=1,...,N, (2.1)

where ¢; = ¢;(¢) is the phase of oscillator i, w; is the natural frequency of
oscillator ¢, N is the total number of oscillators in the system and K is a
constant referred to as the coupling constant.

The derivation of the Kuramoto system in [15] is based on the complex
Landau - Ginzburg equation (see equation (2.4.15) in [15])

O = AU + DAY — W |V |2, (2.2)

where A is a diagonal matrix with pure imaginary coefficients®, b, ¢ are com-
plex coefficients while the term ¥|¥|? is a self - interacting term. If the imag-
inary parts of b and ¢ become very large, then the equation is very close to
Schrodinger self- interacting system. As it was pointed out (p. 20, [15]) a
chemical turbulence of a diffusion-induced type is possible only for regions in-
termediate between the two extreme cases, when Imb and Imc are very small
or very large. If we have a system of N oscillators, then it is natural to assume
¥ = (¢1,--- ,¥n), such that ¢; are complex valued functions. If the oscillators
have fixed amplitude then we can define a specific manifold, for example

M=8"x---xS' where S'={z¢€C;|z| =1},
—_————
N times

such that the evolution flow associated to the problem (2.2) leaves M invariant.
The additional restriction

it x)| =1, Vj=1,--- ,N,Vte R,z € R"

requires corresponding interpretation of the Laplace operator in the Landau
- Ginzburg equation as Laplace - Beltrami operator generated by the fibre
structure of the manifold M. Such type of models are studied intensively and
a typical treatment can be found in [20]; so we have to replace? At by

N

K N o o K _
Arpj — IN (Z Ve — %‘W%‘) = Ay — N Z (Tmepjepp) vy, (2:3)
k=1

k=1

Choosing the scale b,c ~ 0, Kb = p with real u we get the equation

N
Oy = iwjh; — Z% ; (Imepj1hy) 5

I we assume that iw; are the diagonal elements of this matrix with w; € R

2 to be more precise one can see Theorem 2.2 in the above cited book of Kuramoto, where
modified Schréodinger map equation is defined by the aid of the operator in (2.3)
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and it is easy to see that the flow leaves M invariant. Moreover, the ansatz
Py = re'® () where r is constant leads to the classical Kuramoto system

N
M .
8259]‘ =w; + N ( E sm(9j — Hk)> .

k=1

The complex-valued sum of all phases
1 n
ret = — Z e'®i (Kuramoto synchronization index) (2.4)
n
=1

describes the degree of synchronization in the network. The assumption r is
a constant is not true, when p is complex -valued. The in-phase synchro-
nized state corresponds to r ~ 1, ¢ being the population phase (the average
phase). In contrast, the incoherent state, §; having different values randomly
distributed on the unit circle, corresponds to r ~ 0, and we suppose the average
phase to vanish.

Even in the real case, when pu € R, the synchronization degree can be
evaluated by the aid of the quantity

D)= 16;(t)~ (D).

1<j#k<N

If all frequencies w; are equal, then the synchronization depends on the initial
value D(0) and it is possible to check the exponential decay of the measure D(t)
of the synchronization as t — co. The Kuramoto model assumes the following;:

e All oscillators in the system are globally coupled, i.e. each oscillator
interacts with equal strength with all of other oscillators in the system.

e Individually, the oscillators are identical, except for possibly different
natural frequencies w;.

We start with the study of two coupled oscillators: we refer to two neu-
rons, one REM-on with phase 6, the other REM-off with phase ¢. According
to equation (2.1), if N = 2, their interaction can be described through the
following phase model:

{fﬁf = w; + Asin(d — ¢), (2.5)

% = wy + Asin(¢ — 0),
where wi,wy are the constants of frequency deviation from the free-running
oscillation and A is linked to the constant K/2.

The highly nonsinusoidal nature of neuronal discharge activity suggests that

a nonlinear interaction between REM-on and REM-off neurons is expected. So,
we also study the general case

2.6
1 _ g0 ), (26)

Math. Model. Anal., 21(6):794-810, 2016.
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where ¢ is a nonlinear function such that there is A € R for which g(u) ~ Au
in a small neighborhood of © = 0, i.e. ¢ is approximately linear in a small
neighborhood of the origin.

As shown in Appendix 5.2, the classical theory of Lyapunov [12] is not
sufficient to analyze the solutions of the systems (2.5) and (2.6).

Furthermore, since we look for the qualitative behavior of the solutions, by
summing the equations of the two systems, we get

e +
7( at ¢) = w1 + wa,

which implies the conservation law
0+ ¢ = (w1 +wa)t+ k.

We consider the difference of the phases u = 6 — ¢ and we obtain, from the
system (2.5):
U= w; —wy + 2Asinu. (2.7)

The condition w; = ws is necessary, but not sufficient for the synchronization
of the model. If we assume w; = wsy and the initial conditions are given by
0(0) = 6y + 1 and ¢(0) = ¢p + €2 (where €; and ep are positive constants
that represent small perturbations of the initial data), and 6y ~ ¢, then
U(O) ~ €1 — €3.

Similarly, by replacing w in (2.6), we obtain:

o= 2g(u) = 24u + O(u?) (2.8)

with initial conditions u(0) = €; — €2. Condition (2.8) just means that @ —2Au
is approximately quadratic in a neighborhood of the origin.

The qualitative behavior of the synchronization measure depends on the
sign of the constant A. In Figure 1 we present numerical results for the case
A=-1,01=w # wy = 0. The case A = —1, 0.1 = w1 # wy = 0 is
represented in Figure 2, where the synchronization effect is manifested on a
different scale.

0.050
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0.040

/ 1 2 3 4
05 10 15 20

Figure 1. Synchronization loss in the case Figure 2. Synchronization loss in the case

A =-1,0.1 =w; # w2 = 0. Graphics of the A = —1,0.1 = w; # wa = 0. Graphics of the

measure D(t) of the synchronization. Initial measure D(t) of the synchronization. Initial
data 6(0) = 0.01, ¢(0) = 0.02. data 6(0) = 0.03, ¢(0) = 0.02.

The effect of changing the sign of A is given in Figure 3.
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Figure 3. Similar synchronization loss in the case A =1, 0.1 = w1 # w2 = 0. Graphics of
the measure D(t) of the synchronization. Initial data 6(0) = 0.03, ¢(0) = 0.02.
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Figure 4. Synchronization is sensitive Figure 5. Synchronization is sensitive
with respect to the choice of the sign of A. with respect to the choice of the sign of A.
Synchronization decays for A = —1, We have synchronization loss for A =1,
w1 = wz. Graphics of the measure D(t) of w1 = wa. Graphics of the measure D(t) of
the synchronization. Initial data 6(0) = 0.03, the synchronization. Initial data 6(0) = 0.03,
¢(0) = 0.02. ¢(0) = 0.02.

Other cases for the choice of the initial data parameters and A are repre-
sented in Figures 4 and 5.

We consider 6 and ¢ as the average phases of the two populations or clusters
of neurons. More precisely, we can suppose that all REM-on and REM-off
oscillators are globally coupled each other. So, according to Kuramoto (2.4),
we can associate to the REM-on population the average phase 6 and to the
REM-off population the average phase ¢. It is reasonable to consider the case
of a large number N of neuron clusters, but the numerical simulations and the
arguments based on rigorous a priori estimates show that the total qualitative
picture for N =2 and N > 3 is quite similar. However, our main goal shall be
the comparison between the synchronization of the classical Kuramoto ODE
system and the reaction - diffusion space time Landau - Ginzburg model that
is determined in the next subsection.

2.2 Diffusive model
Turning back to Landau - Ginzburg equation (2.2), we use the idea suggested

in [15] and choose an appropriate scale for models manifesting a chemical tur-
bulence of a diffusion-induced type. We choose b = 1 for simplicity and assume

Math. Model. Anal., 21(6):794-810, 2016.
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the self - interacting effect are neglected; so with ¢ ~ 0 we have the system

N

K _
Oy = iw;¥ + Aty — i > (T ) ;. (2.9)

k=1

Using now the ansatz
Yi(t,x) =r; (t,z)ewi(t’z),

we get a system of the form

Vr; K
0 = w;f; + AD; ++2- V0, + > ririsin(0; — Ox),
J k=1

6trj = A’I”j — |V9j|2’l“j.

Assuming ¥ is in-phase synchronized state®, we can simplify the above
system to the following one

N
K .
005 = w;0; + A0; + N kil sin(6; — O). (2.10)

Our goal shall be the study of the synchronization measure

D)= Y 105t ) —6ult. )3

1<k#j<N

for the evolution flow associated to the system (2.10). This model seems to be
a reasonable attempt to model the discharge activity of REM-on and REM-off
neuron clusters localized in bounded domains.

Again we simplify the model (2.10) assuming N = 2; so we have only two
oscillating phases 8 = 0(t, z) and ¢ = ¢(t, x), where the variable x localizes the
position of the cluster spike, x is periodic and z € (0, 27).

We use the principle of Kuramoto synchronization for the two clusters of
REM-on and REM-off neurons and we take 6 as the average phase of the cluster
REM-on and ¢ as the average phase of the cluster REM-off. For simplicity we
limit our study to the case of 6 as the average phase of the whole REM-on
population and ¢ as the average phase of the whole REM-off population.

By studying localized interactions in network models [25], more precisely
networks of electronically coupled cells, we can arrive, recalling (2.15), to mod-
els involving diffusive effect, represented by a second order derivative. We de-
duce that the interaction between two different groups of neurons is described
by the following system:

% _ 9" = w+ Asin(d — ), (2.11)
% — ¢ = w+ Asin(¢ — 0), |

3 recall that this means rj~1



Mathematical Phase Model of Neural Populations Interaction 801

where A is an appropriate constant. We generalize (2.11) to the system:

{fﬁ—m=w+gw—@,

2.12
28 _ 41—y g(0— @), (2.12)

where ¢ is a particular nonlinear function and 6 and ¢ the average phases of
REM-on and REM-off populations, respectively.

In particular we focus attention on this general case and we assume that g(u) =
Au + h(u), where A € R and h is a small perturbation. More precisely:

heCH(SY), |n(w)| <cilul?, |W(u)| < calul, for ue S (2.13)
So, we rewrite the system (2.12) as:
{ 90 08 =W+ A0 - ¢)+ (0 - 9),
o — o8 =w = A0 —9) —h(0 - 9).
If we set 0(t) = wt + 0(t), ¢(t) = wt + ¢(t), we obtain:
{ W 24— AG-4)=hl-9)
52 —SE+ A0 —¢) =—h(6—¢).
By summing the two equations of the system, we get

20+9) 0+0) _
o " o =0 (2.14)

and, by subtracting:

06-9) 9°(6-9)

o o 2A(0 — ¢) = 2h(0 — ).

By rescalling v = 0 — ¢ the equation becomes

ou_
ot 0z2
We add the initial conditions:

— 2Au = 2h(u). (2.15)

0(0,z) = 0y(x), ¢(0,2) = ¢o(x), ze S

In the next section we analyze the stability of the solution of the system (2.15)
and of the equation

00+¢) 0+0) _
ot or2 7

This simplified scalar equation manifests the main properties of the multi par-

ticle model for the case of small initial synchronization dispersion®.

4 see the precise statement in Lemma 1 below

Math. Model. Anal., 21(6):794-810, 2016.
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3 Results

3.1 Basic model

Let us rewrite the system (2.6)

%:wl"’_g(e_(b)a
%:w2*9(9*¢)

with initial conditions 6(0) = 6y, ¢(0) = ¢¢, where g is a non linear, continuous
function such that there exists a constant A < 0, satisfying g(u) ~ Au in a
small neighborhood of the origin.

The solutions of this system of ordinary differential equations can be de-
composed in three different parts: a constant vector, a linear in time mode
and a dispersive part, i.e. modes decaying (exponentially) in time [12]. More
precisely, the solutions of (3.1) are:

0o + 9o
2

(3.1)

0o + 9o
2

O(t) = wyt + Fot), o) = wat + —u(t),

where v(t) decays exponentially, i.e. there is M > 0 such that |v(t)| < MeA
f (2.7

for every positive . We conclude that, since A < 0, the solution u(t) of (2.7)
and (2.8) is asymptotically stable.

If, on the contrary, A > 0, even starting with small initial data, we obtain
asymptotically a constant difference between the solutions 6 and ¢ of (2.6).
More precisely, we suppose that ¢ is a C' real function with B a constant such

that
9(0) = g(B) =0,
g > 01in (0, B), (3.2)
Jd0)=A>0, ¢(B)<0.

Then the solutions § and ¢ of (3.1) are global and satisfy

Tim (6(1) — 6(1)) = B.

3.2 Diffusive model
The manifold
M=8"x---xS' where S'={z€C;|z| =1},
————
N times

obviously is not invariant under the action of the Landau - Ginzburg evolu-
tion flow associated with (2.9). However we can find an analogue of invariant
manifold for this infinite dimensional dynamical system. We shall suppose for
simplicity that A is the self - adjoint realization of the Laplace operator on
L?(0,27) with periodicity condition

£(0) = f(2m), f'(0) = f'(2m).
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Lemma 1. If the initial data

¥ (0,2) = f(x) (3-3)

belong to the Sobolev space H(0,27),5 =1,---, N, then one can find a unique
solution
W(t,x) € C((—o0,00); H((0,27); RY))

to (2.9) with initial data (3.3). If the initial data satisfy

||¢](Oa ')HL2(0,27T) =1,

then for any t > 0 we have

||¢] (t7 ) HL2(0,27T) <1

This result shows that the domain

BxBx---xB, B={fecH"0,2r);|fllr202r <1}
N—————

Ntimes

is invariant under the action of the evolution flow (2.9). Therefore, we can
introduce the synchronization measure

D)= > Ist) = et )3

1<k#j<N

for the evolution flow associated to the system (2.10).

This observation suggests that the general Landau - Ginzburg diffusion
model (2.9) manifests stronger synchronization compared with the classical
Kuramoto model. This prediction is verified by corresponding numerical sim-
ulations for the approximated Kuramoto diffusion model (2.10).

Now we observe that the solution of the equation (2.14),

00+9) 0+9) _
ot ox2

has bounded L and L? norms. Indeed, the solution of the equation is given
by
0+ ¢ =e(0o + o),

where A = 92 is the Laplace operator on (0, 27) with periodic boundary data,
and e?? is the Schrodinger semigroup generated by A. The function 0+ ¢ is
bounded as a consequence of the maximum principle ( [22] and [23]).

The existence of a global solution is a consequence of the fact that e?? is a
contraction in any Lebesgue space LP(0,27). In the case of A < 0, we obtain a
priori bound for the system

%(t,x) — Au(t,x) — 2Au(t,x) = 2h(u(t,x)), (t,z) € [0,00[xS1,
u(0,2) = ug(z), =€ S?!

Math. Model. Anal., 21(6):794-810, 2016.
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under the assumption (2.13). We reduce the construction of the solution to the
determination of a fixed point for the integral equation

u(t,z) = e~ Ctu(0,2) + 2 /t e~ h(u(r, z))dr, (3.4)
0

where G is the differential operator —A — 2A that generates the semigroup
{e=&* t > 0}. The idea to prove the existence of a fixed point for (3.4) is
based on the application of the exponential decay of the semigroup e~¢* in
the case of A < 0 [16]. As a consequence the solution u(t,z) of (3.4) decays
exponentially with respect to ¢t and we can deduce the same result of the basic
model.

In the case of A > 0, we show that, starting with small initial data, the
dispersive mode is transformed into a form that tends exponentially to a fixed
positive constant. More precisely, we consider g with the assumption (3.2);
then the solution of the system

{ “(t,x) — Au(t,z) = g(u), (t,z) € [0,T] x S,

¢
u(0,2) = up(x), =S
with 0 < ug(z) < B for every x in St satisfies

Q:‘Qv

0 <u(t,z) < B, VY(t,z)€[0,T] xS

The equation of the system above has the stationary solutions v = 0 and u = B
and:

1. The solution u = 0 is unstable;
2. The solution u = B is asymptotically stable.

We have found again, for the case A > 0, the same result of the basic model.
The key element is the stronger dissipation effect generated by the dissipa-
tion term in (2.10), i.e. with the term Af;

N
K .
Ol = w;b; + Ab; + N kil sin(6; — O). (3.5)

Indeed, we choose N = 2 for simplicity in (3.5); so we have the system

O = A0+ 0.5K sin(0 — ¢), (3.6)
816 = Ad + 0.5K sin(6 — )

and then we take special Fourier initial data
0(0,2) = (14 k)2 cos(kz), ¢(0,2) =2(1 + )2 cos(lx).  (3.7)

If £ = ¢ = 0, then the solution to the corresponding Cauchy problem (3.6) -
(3.7) is a solution to the Kuramoto ODE system. If k, ¢ > 1, then

160, 2) 1122 (0.2m) = C1(k), 60, 2)l[72(0,20) = C2()
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with
1/2 ot /1/2 X
k = — ]_ =
AW =grme ~t Q0=

Then Figure 6 shows the 3D graphic of the density
D(t,x) = |0(t,z) — ¢(t, )|?

of the synchronization dispersion
27
D(t) = D(t,z)dx.
0

The stronger decay of the solution is clearly manifested.

Figure 6. Graphics of the density D(¢,z) of the synchronization dispersion D(t). We
have synchronization combined with very strong dissipation for A = —1.

The synchronization dispersion D(t) is represented on Figure 7, where two
cases are compared: the red line represents 10*'«Dy_o ¢—o(t) (i.e. the case of so-
lution to Kuramoto system), while the blue one represents the case Dy=5 ¢=¢(t).
It is clear that in the high frequency case the synchronization dispersion is much
stronger than for the case of pure Kuramoto system.

In the discussion below, we give a biological interpretation of the solutions
for the basic and the diffusive models.

4 Discussion

In the present study, we have described the interaction between two neuronal
groups, the REM-on and REM-off populations, through a phase model, focus-
ing the attention about their synchronization. We have assumed 6 and ¢ as
the average phases of the two populations, according to Kuramoto theory, and
we have related the synchronization and the desynchronization (synchroniza-
tion loss) to the alternation of REM and NREM sleep. Across a night sleep,
REM and NREM episodes oscillate, and the activity of REM-on and REM-off

Math. Model. Anal., 21(6):794-810, 2016.
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1.0

08

0.4

0.2+

0.1 02 0.3 0.4

Figure 7. The synchronization dispersion D(¢t) for the diffusion - Kuramoto problem
(3.6) with initial data (3.7). The red line represents D(t) multiplied by the factor 10!,
when k = 0,¢ = 0, while the blue one represents D(t) in the case k = 5,¢ = 6.

populations is not synchronized. In other words, when the most of REM-on
neurons are synchronized, the average phase of the population REM-on pro-
duces relevant effects and the average phase of REM-off population is minimal;
in this case REM sleep dominates, according to the observation that REM-off
neurons cease firing during REM episodes [21]. A symmetrical situation occurs
in order to generate the NREM sleep.

Our numerical simulations for A = —1 and A = 41, represented in Figures 1
- 5, show that the qualitative behavior of the synchronization measure depends
on the sign of the constant A. When A > 0, a desynchronized activity of the two
populations has been observed, and we can consider B as the maximal phase
difference between the two populations, reached when one group predominates
on the other. We have a REM episode when we start from ug = 69— ¢o > 0 (i.e.
REM-on group is more synchronized than REM-off), because § — ¢ — B and
0 >> ¢; so we can assume asymptotically § ~ B and ¢ ~ 0. On the contrary, if
we start from ug = ¢g — 0y > 0 , a NREM episode occurs. A positive difference
between 6y and ¢g, already in initial conditions (even if small), could suggest
a discontinuity, so our model suffices to explain the cyclic oscillation of REM
and NREM episodes during the night, but not the sleep onset. The explication
of an initial distance between 6 and ¢y probably involves some aspects of
the human sleep, not considered in our model. For example, in the last three
decades, the two-process model, proposed by Borbely and Daan [3], [6] posits
that a homeostatic Process S interacts with a process controlled by the circadian
pacemaker (Process C), in the regulation of the wakefulness/sleep cycle. Also a
role of neuropeptides has been conjectured among the mechanisms that underlie
the initiation, maintenance, and exit of sleep and wake states [§].

In the present study, we have supposed that REM-on and REM-off oscil-
lators are globally coupled. According to Kuramoto theory, we have linked to
the REM-on population the average phase # and to the REM-off population
the average phase ¢. When we have considered a number of neuronal popu-
lations greater than two, unexpectedly numerical simulations showed that the
total qualitative picture for N = 2 and N > 3 is quite similar. Neverthe-
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less, the assumption that the two oscillators are globally coupled is biologically
strong, if one considers the complexity of interaction between brain circuits and
structures necessary to generate REM sleep. REM episodes result from com-
plicate links of GABAergic, cholinergic, and aminergic neurons which control
the activity of glutamatergic reticular formation neurons [4], [5], [7].

Our second model was a reasonable attempt to describe the discharge activ-
ity of REM-on and REM-off neuron populations localized in bounded domains.
In this sense, this model is more realistic. Presumably, there are several differ-
ent groups of neurons that are selectively "on” and ”off” in REM sleep, so 6
and ¢ have to be interpreted as the mean of two selected ”on”and ”off” clusters.
In fact, our numerical simulations (Figure 6) showed a greater synchronization
degree than the pure Kuramoto system, suggesting a more evident interaction
if we consider only two homogeneous cluster of neurons. Experimental work is
necessary to deepen the result that, in high frequency case, the synchroniza-
tion loss is much stronger than for the classical Kuramoto model (Figure 7).
One hypothesis could be that the second mathematical model better captures
the presence of different frequencies in REM and NREM sleep, as recorded by
electroencephalography [10].

5 Conclusion

The two mathematical models suffice to describe the alternation of REM and
NREM sleep during the night. In particular, the second model is an innovative
attempt to represent the synchronization and desynchronization, bounding the
domain of two selected "REM-on” and "REM-off” neuronal groups. Consider-
ing that the reaction - diffusion space time Landau - Ginzburg model seems to
be more precise in modelling the synchronization, it could be useful to analyze
the hypersynchronization of neurons observed in epilepsy. Experimental data
will be necessary to test the proposed models.
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Appendix

5.1 Lyapunov analysis

We consider again the system (2.6):
?Ti =w+ 9(0 - (Z))a
T =w—g(6—9).

We decompose any solution (6, ¢) as 8(t) = 6,(¢)+6,-(t) and ¢(t) = ¢s(t)+o. (),
where (6, ¢5) solves the linear system

do
{ i .
d
.
and (0., ¢,) solves the system
ddgtr =g(0r — ¢r), (5.1)
G =90 — ¢r).

In order to get informations of the qualitative behavior of the solution of the
system (5.1), we linearize the equation, obtaining

{%ﬁzma—mx

d:iétr = _A(ar - ¢r)y

R ik

Math. Model. Anal., 21(6):794-810, 2016.

i.e.
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The eigenvalues of this matrix are 0 and 24, so we have directions of possible
stability (instability) of the orbits, when A = 0. This analysis is insufficient
because, when a Lyapunov exponent is zero, is not clear the solution behavior.

5.2 Differential equation and semigroup property

A semigroup is a family of linear operators (T'(t));>0 with the following prop-
erties:
T(0)=1, THT(s)=T({t+s), t,s>0. (5.2)

For example, the solution of the linear system

{ Lu(t) = Au(t), ueR™ telty,T],
’U,(to) = Uog,

tA

where A is a real n x n matrix, is the function u(t) = e’*uy with the matrix

exponential ' =377 " A" /nl.
More generally, if S : X — X is a bounded linear operator on a Banach
space X and u : [tg, T] — X, the equation

() = Su(t), t € [to, T],
u(to) = wo

has the solution u(t) = 5" = >°>7 ¢"S"/nl, where S" = So...0S (n times).
The partial differential equation

Bult,z) = FE(t,2), telto,T), @€ lab,
u(to, ) = uo(x), x € [a,b], (5.3)
u(t,a) = u(t,b) =0, t€ [to,T)

can be also represented by

u(t,:z:) = (QStu)(I)v te [t07T]7

St is a suitably defined semigroup [16]. This is what we did in Sec-

where e
tion 4.2.

It is known that, if £(X) is the set of the bounded operators defined on the
Banach space X, then

5| cx) < Me®t,

where w is the supremum of the real parts of the elements of the spectrum of
S (e. g. eigenvalues).

The semigroup property (5.2) is the abstract representation of the unique-
ness of the solution of Cauchy problems: namely if u(¢,to,ug) is the solution
of (5.3), then [22]

U(t,to,’&o) :u(t, T,U(’T,to,'l.to)), V1 € [to,t].
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