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Abstract. A Fredholm integral equation of the second kind in L1([a, b],C) with a
weakly singular kernel is considered. Sufficient conditions are given for the existence
and uniqueness of the solution. We adapt the product integration method proposed
in C0([a, b],C) to apply it in L1([a, b],C), and discretize the equation. To improve the
accuracy of the approximate solution, we use different iterative refinement schemes
which we compare one to each other. Numerical evidence is given with an application
in Astrophysics.
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1 Introduction

We consider a Banach space X. Let T be the integral operator defined by

∀x ∈ X, ∀s ∈ [a, b], Tx(s) :=

∫ b

a

L(s, t)H(s, t)x(t)dt, (1.1)

where (s, t) 7→ H(s, t) is not smooth. For z in the resolvent set of T , re(T ),
and y in X we consider the Fredholm integral problem of the second kind

Find ϕ ∈ X s.t. (T − zI)ϕ = y, (1.2)

where I denotes the identity operator on X.
To approximate the solution of this equation, we define a finite rank ap-

proximation Tn of T , so that the approximate equation (Tn − zI)ϕn = y or
(Tn − zI)ϕn = yn, where yn is an approximation of y, be uniquely solvable
and the sequence of approximate solutions ϕn converges to the exact solution
ϕ when n tends to +∞.
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Among them, different classes of methods rely on a sequence of projections
πn converging pointwise to the identity operator I. For example the Galerkin
operator is defined by Tn = πnTπn, the projection operator by Tn = πnT ,
the Sloan operator by Tn = Tπn and the Kulkarni operator by Tn = Tπn +
πnT − πnTπn (see [5], [10]). These approximations of T are all ν-convergent
to T (see [2]). This property ensures existence and uniqueness of ϕn, and
convergence to ϕ.

In the case of the space X := C0([a, b],C) methods based upon numeri-
cal quadrature have been proposed, such as Nyström, truncated Nyström and
subtraction of the singularity approximations (see [4]).

In C0([a, b],C), we also encounter the so-called product integration method
(see [5]). In this space, the assumptions are as follows:

(H1) L ∈ C0([a, b]× [a, b],C).

(H2) H verifies:

(H2.1) cH := sup
s∈[a,b]

∫ b

a

|H(s, t)|dt is finite,

(H2.2) lim
h→0

ωH(h) = 0, where

ωH(h) := sup
|s−τ |≤|h|, s,τ∈[a,b]

∫ b

a

|H(s, t)−H(τ, t)|dt.

Let ∆n, defined by

a =: tn,0 < tn,1 < · · · < tn,n := b (1.3)

be a uniform grid of [a, b]. If hn := (b− a)/n, then tn,i = a + ihn, for i =
0, 1, . . . , n. For x ∈ C0([a, b],C) and s ∈ [a, b], the linear interpolation scheme
is given by

[L(s, t)x(t)]n :=
1

hn
[(tn,i−t)L(s, tn,i−1)x(tn,i−1)+(t−tn,i−1)L(s, tn,i)x(tn,i)]

for i = 1, . . . , n and t ∈ [tn,i−1, tn,i].
Tn is defined by replacing L(s, t)x(t) with [L(s, t)x(t)]n in (1.1). In this

method Tn is a bounded finite rank linear operator defined in C0([a, b],C) and
hence it is compact.

Under hypotheses (H1) and (H2), for z ∈ re(T ) and for n large enough,
Tn − zI is invertible and its inverse is uniformly bounded, (see [5]).

In this paper we extend the product integration method to the space X :=
L1([a, b],C). It will appear that the properties of the method in C0([a, b],C)
are preserved in L1([a, b],C). In Section 2, we present our method and we prove
the existence and uniqueness of the approximate solution and its convergence
to the exact solution. Section 3 is devoted to the numerical implementation
of our algorithm. The choice of the integer n is limited by the capacity of
the computer. The linear system to be solved is of the order of n. So, it is
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interesting to improve the accuracy of the approximate solution by applying
some iterative refinement schemes. Section 4 is devoted to these schemes. In
Section 5, we test our approximation with an academic example. In Section 6,
we apply our method to a problem belonging to Astrophysics. Our method is
compared with the projection method proposed by Titaud in [1] and [11].

2 The product integration method in L1([a, b],C)

We use the following notations: the norm in L1([a, b],C) is denoted by ‖x‖1 :=∫ b

a

|x(s)|ds. The subordinated operator norm is also denoted by ‖.‖1.

The oscillation of a function x in L1([a, b],C), relatively to a parameter h
is defined by

w1(x, h) := sup
|u|∈[0,|h|]

∫ b

a

|x(v + u)− x(v)|dv, (2.1)

where x is extended by 0 outside [a, b].
The modulus of continuity of a continuous function on [a, b] is defined as

w(x, h) := sup
u,v∈[a,b],|u−v|≤|h|

|x(u)− x(v)|.

The modulus of continuity of a continuous function on [a, b] × [a, b] is defined
as

w2(f, h) := sup
u,v∈[a,b]2,‖u−v‖≤|h|

|f(u)− f(v)|.

If x ∈ L1([a, b],C), then limh−→0 w1(x, h) = 0. If x ∈ C0([a, b],C), then
limh−→0 w(x, h) = 0. If f ∈ C0([a, b]2,C), then limh−→0 w2(f, h) = 0.

The aim of this section is to define the approximate operator Tn. The
approximate solution of (1.2) will be, if it exists and is unique, the solution ϕn
of

(Tn − zI)ϕn = y. (2.2)

Tn is constructed so that ϕn−→ϕ. It is well known that a collectively compact
convergence of Tn towards T guarantees the convergence of ϕn towards ϕ.

Let us recall the collectively compact convergence:

Definition 1. Tn and T are bounded linear operators from X into X.

The pointwise convergence, denoted by Tn
p−→T , means that

∀x ∈ X, ‖Tnx− Tx‖ → 0.

The collectively compact convergence is denoted by Tn
cc−→T : if T is compact

Tn
p−→T

and for some positive integer n0 the set

W := ∪n≥n0{Tnx : x ∈ X, ‖x‖ ≤ 1}

is relatively compact in X.
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We begin by proving that T is a compact bounded linear operator from
L1([a, b],C) into itself. Then we propose an approximate operator Tn which is
a collectively compact convergent to T . Endly, we give an error estimation for
the approximate solution in terms of the kernel, the norm of the exact solution,
its oscillation in L1([a, b],C) and the mesh size.

The proof of the compactness in L1([a, b],C) relies on the Kolmogorov-
Riesz-Fréchet theorem which is recalled here below. As usual, if A is a set of
functions, we define

A|Ω := {f |Ω : f ∈ A},
where f |Ω is the restriction of f to the subdomain Ω.

Theorem 1. (Kolmogorov-Riesz-Fréchet Theorem) Let F be a bounded set in
Lp(Rq,C), 1 ≤ p <∞. If

lim
‖h‖→0

‖τhf − f‖p = 0 (2.3)

uniformly in f ∈ F , where τhf := f(.+ h), then the closure of F|Ω is compact
in Lp(Ω,C) for any measurable set Ω ⊂ Rq with finite measure.

Proof. See [7]. As one finds a lot of different versions of this theorem in the
litterature, we propose a proof of it in the Appendix in the case q = 1, p = 1
and Ω = [a, b]. ut

Now, the assumptions are as follows:

(P1) L ∈ C0([a, b]× [a, b],C). Let

cL := sup
(s,t)∈[a,b]2

|L(s, t)|.

(P2) H verifies:

(P2.1) cH := sup
t∈[a,b]

∫ b

a

|H(s, t)|ds is finite.

(P2.2) lim
h→0

wH(h) = 0,

where

wH(h) := sup
t∈[a,b]

∫ b

a

|H̃(s+ h, t)− H̃(s, t)|ds

and

H̃(s, t) :=

{
H(s, t), for s ∈ [a, b],
0, for s /∈ [a, b].

Lemma 1.
lim
h→0+

ε(H,h) = 0,

where

ε(H,h) := sup
t∈[a,b]

∫ b

b−h
|H(s, t)|ds.

Math. Model. Anal., 21(6):774–793, 2016.
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Proof. For h > 0,

0 ≤
∫ b

b−h
|H(s, t)|ds ≤

∫ b

b−h
|H̃(s+ h, t)− H̃(s, t)|ds

≤
∫ b

a

|H̃(s+ h, t)− H̃(s, t)|ds ≤ wH(h).

According to the assumption (P2.2), sup
t∈[a,b]

∫ b

b−h
|H(s, t)|ds → 0 as h → 0+.

This ends the proof. ut

Theorem 2. Under the assumptions (P1) and (P2), the operator T is linear
from L1([a, b],C) into itself and compact in L1([a, b],C).

Proof. For all x ∈ L1([a, b],C),

‖Tx‖1 =

∫ b

a

|
∫ b

a

L(s, t)H(s, t)x(t)dt|ds ≤
∫ b

a

∫ b

a

|L(s, t)||H(s, t)||x(t)|dtds

≤ cL

∫ b

a

|x(t)|
∫ b

a

|H(s, t)|dsdt ≤ cLcH‖x‖1,

so T is defined from L1([a, b],C) into itself.
The proof of the compactness of T relies on the Kolmogorov-Riesz-Fréchet

theorem where p = 1, q = 1 and Ω = [a, b]. We introduce the operator T̃ :

T̃ x(s) :=

{
Tx(s), for s ∈ [a, b],
0, for s /∈ [a, b].

Let A and S be the following subsets of L1(R,C) and L1([a, b],C) respectively:

A := {T̃ x : x ∈ L1([a, b],C), ‖x‖1 ≤ 1},
S := {Tx : x ∈ L1([a, b],C), ‖x‖1 ≤ 1}.

A is a bounded subset of L1(R,C). Indeed

‖T̃ x‖1 = ‖Tx‖1 ≤ cLcH‖x‖1 ≤ cLcH .

Let us prove that lim
h→0
‖τhf − f‖1 = 0 uniformly in f ∈ A. For h > 0,

‖τhT̃ x− T̃ x‖1 =

∫ b

a

|T̃ x(s+ h)− T̃ x(s)|ds

=

∫ b−h

a

|Tx(s+ h)− Tx(s)|ds+

∫ b

b−h
|Tx(s)|ds.

Hence ∫ b

b−h
|Tx(s)|ds =

∫ b

b−h

∣∣∣ ∫ b

a

L(s, t)H(s, t)x(t) dt
∣∣∣ds

≤ cL‖x‖1ε(H,h) ≤ cLε(H,h)
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and∫ b−h

a

|Tx(s+ h)− Tx(s)|ds =

∫ b−h

a

∣∣∣ ∫ b

a

[
L(s+ h, t)H(s+ h, t)

− L(s, t)H(s, t)
]
x(t) dt

∣∣∣ds ≤ ∫ b−h

a

∫ b

a

|L(s+ h, t)||(H(s+ h, t)

−H(s, t)||x(t)|dtds+

∫ b−h

a

∫ b

a

|H(s, t)||L(s+ h, t)− L(s, t)||x(t)|dtds

≤ cL‖x‖1wH(h) + cH‖x‖1w2(L, h) ≤ cLwH(h) + cHw2(L, h).

So

‖τhT̃ x− T̃ x‖1 ≤ ‖x‖1 (cLwH(h) + cHw2(L, h) + cLε(H,h)) . (2.4)

For h < 0, we have similar bounds. Then ‖τhf − f‖1 → 0 as h→ 0 uniformly
in f ∈ A. From the Kolmogorov-Riesz-Fréchet theorem S = A|[a,b] is relatively
compact so T is compact. ut

Let us define the approximate operator Tn. Let ∆n be the partition defined
by (1.3). For x ∈ L1([a, b],C), we define the operator

Qn(x, s, t) :=
1

hn

[
(tn,i − t)L(s, tn,i−1) + (t− tn,i−1)L(s, tn,i)

] 1

hn

∫ tn,i

tn,i−1

x(u)du

for i = 1, . . . , n and t ∈ [tn,i−1, tn,i]. The approximate operator Tn is given by:

∀x ∈ L1([a, b],C),∀s ∈ [a, b], Tnx(s) :=

∫ b

a

Qn(x, s, t)H(s, t)dt, (2.5)

which can be rewritten as

Tnx(s) =

n∑
i=1

cn,iwn,i(s),

where, for i = 1, . . . , n,

cn,i :=
1

hn

∫ tn,i

tn,i−1

x(u) du, wn,i(s) :=

∫ tn,i

tn,i−1

Qn(1, s, t)H(s, t) dt.

To prove that Tn
cc−→T , the following lemmas are needed.

Lemma 2. For i = 1, . . . , n,∫ b

a

|wn,i(s)|ds ≤ hncLcH . (2.6)

For h ∈ R+,∫ b

b−h
|wn,i(s)|ds ≤ hncLε(H,h), (2.7)∫ b−h

a

∣∣wn,i(s+ h)− wn,i(s)
∣∣ds ≤ hncHw2(L, h) + hncLwH(h). (2.8)

Math. Model. Anal., 21(6):774–793, 2016.
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Proof. For t ∈ [tn,i−1, tn,i],

Qn(1, s, t) =
1

hn

[
(tn,i − t)L(s, tn,i−1) + (t− tn,i−1)L(s, tn,i)

]
,

|Qn(1, s, t)| ≤ cL
hn

[
|tn,i − t|+ |t− tn,i−1|

]
= cL.

Hence, by Fubini’s theorem∫ b

a

|wn,i(s)|ds ≤ cL
∫ b

a

∫ tn,i

tn,i−1

|H(s, t)| dtds ≤ cLhncH∫ b

b−h
|wn,i(s)|ds ≤ cL

∫ b

b−h

∫ tn,i

tn,i−1

|H(s, t)| dtds ≤ cLhnε(H,h).

Also∫ b−h

a

∣∣wn,i(s+ h)− wn,i(s)
∣∣ds ≤ ∫ b−h

a

∣∣∣ ∫ tn,i

tn,i−1

Qn(1, s+ h, t)H(s+ h, t)

−Qn(1, s, t)H(s, t)dt
∣∣∣ds ≤ ∫ b−h

a

∫ tn,i

tn,i−1

∣∣∣(Qn(1, s+ h, t)

−Qn(1, s, t))H(s+ h, t)
∣∣ dtds+

∫ b−h

a

∫ tn,i

tn,i−1

∣∣Qn(1, s, t)(H(s+ h, t)

−H(s, t))
∣∣ dtds ≤ hnw2(L, h) sup

t∈[a,b]

∫ b

a

∣∣H(s, t)
∣∣ ds

+ cLhn sup
t∈[a,b]

∫ b−h

a

∣∣H̃(s+h, t)−H̃(s, t)
∣∣ ds ≤ hncHw2(L, h) + hncLwH(h).

This ends the proof. ut

Lemma 3. For x ∈ L1([a, b],C),

n∑
i=1

∫ tn,i

tn,i−1

|x(u)− cn,i|du ≤ 2w1(x, hn),

where w1(x, hn) is defined by (2.1). For t ∈ [a, b],∣∣Qn(1, s, t)− L(s, t)
∣∣ ≤ w2(L, hn).

Proof. For i = 1, . . . , n,∫ tn,i

tn,i−1

|x(u)− cn,i|du ≤
1

hn

∫ tn,i

tn,i−1

∫ tn,i

tn,i−1

|x(u)− x(v)|dvdu

=
2

hn

∫ tn,i

tn,i−1

∫ tn,i

v

|x(u)− x(v)|dudv
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=
2

hn

∫ tn,i

tn,i−1

∫ tn,i−v

0

|x(τ + v)− x(v)|dτdv

≤ 2

hn

∫ tn,i

tn,i−1

∫ hn

0

|x(τ+v)−x(v)|dτdv ≤ 2

hn

∫ hn

0

∫ tn,i

tn,i−1

|x(τ+v)−x(v)|dvdτ.

Hence
n∑
i=1

∫ tn,i

tn,i−1

|x(u)− cn,i|du ≤
2

hn

∫ hn

0

∫ b

a

|x(τ + v)− x(v)|dvdτ

≤ 2 sup
τ∈[0,hn]

∫ tn,i

tn,i−1

|x(τ + v)− x(v)|dv = 2w1(x, hn).

For i = 1, . . . , n and t ∈ [tn,i−1, tn,i],∣∣Qn(1, s, t)− L(s, t)
∣∣ ≤ 1

hn

[
(tn,i − t)(

∣∣L(s, tn,i−1)− L(s, t)
∣∣)

+ (t− tn,i−1)(
∣∣L(s, tn,i)− L(s, t))

∣∣]
≤ sup
s∈[a,b]

w(L(s, .), hn)
1

hn

[
(tn,i − t) + (t− tn,i−1)

]
≤ w2(L, hn)

and the proof is complete. ut

Theorem 3. Tn is a compact linear operator from L1([a, b],C) into itself and

Tn
cc−→T.

Proof. Due to (2.6) in Lemma 2, for x ∈ L1([a, b],C), ‖Tnx‖1 ≤ cLcH‖x‖1 so
Tn is a linear bounded operator from L1([a, b],C) into itself. As Tn is a linear

bounded operator of finite rank, it is compact. Let us prove that Tn
p−→T .

Lemma 3 implies that

‖Tnx− Tx‖1 =

∫ b

a

∣∣ n∑
i=1

cn,i

∫ tn,i

tn,i−1

Qn(1, s, t)H(s, t)dt

−
∫ b

a

L(s, t)H(s, t)x(t)dt
∣∣ds

=

∫ b

a

∣∣∣ n∑
i=1

∫ tn,i

tn,i−1

(
cn,iQn(1, s, t)− L(s, t)x(t)

)
H(s, t)dt

∣∣∣ds
=

∫ b

a

∣∣∣ n∑
i=1

∫ tn,i

tn,i−1

((
Qn(1, s, t)− L(s, t)

)
x(t)

+Qn(1, s, t)
(
cn,i − x(t)

))
H(s, t)dt

∣∣∣ds
≤

∫ b

a

n∑
i=1

∫ tn,i

tn,i−1

∣∣Qn(1, s, t)− L(s, t)
∣∣|x(t)||H(s, t)|dtds

+

∫ b

a

n∑
i=1

∫ tn,i

tn,i−1

|Qn(1, s, t)||cn,i − x(t)||H(s, t)|dtds

Math. Model. Anal., 21(6):774–793, 2016.
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≤ cH‖x‖1w2(L, hn) + cHcL

n∑
i=1

∫ tn,i

tn,i−1

|cn,i − x(t)|dt

≤ cH‖x‖1w2(L, hn) + 2cHcLw1(x, hn).

Hence

‖Tnx− Tx‖1 ≤ cH‖x‖1w2(L, hn) + 2cHcLw1(x, hn). (2.9)

So we have Tn
p−→T . To prove the relatively compactness of

Sn := {Tnx : n ≥ 1, x ∈ L1([a, b],C), ‖x‖1 ≤ 1}

we follow the same scheme as in the proof of the compactness of T . We define
the operator

T̃nx(s) :=

{
Tnx(s), for s ∈ [a, b],
0, for s /∈ [a, b],

and An as the following subset of L1(R,C)

An := {T̃nx : x ∈ L1([a, b],C), ‖x‖1 ≤ 1}.

An is a bounded subset of L1(R,C). Indeed,

‖T̃nx‖1 = ‖Tnx‖1 ≤ cLcH‖x‖1 ≤ cLcH .

Let us prove that lim
h→0
‖τhf − f‖1 = 0 uniformly in f ∈ An. For h > 0,

‖τhT̃nx− T̃nx‖1 =

∫ b

a

|T̃nx(s+ h)− T̃nx(s)|ds

=

∫ b−h

a

|Tnx(s+ h)− Tnx(s)|ds+

∫ b

b−h
|Tnx(s)|ds.

Hence, by (2.7) in Lemma 2,∫ b

b−h
|Tnx(s)|ds ≤

n∑
i=1

|cn,i|
∫ b

b−h
|wn,i(s)|ds

≤ 1

hn
‖x‖1hncLε(H,h) ≤ cLε(H,h)

and because of (2.8) in Lemma 2,∫ b−h

a

|Tnx(s+ h)− Tnx(s)| ds ≤
∫ b−h

a

n∑
i=1

∣∣cn,i∣∣∣∣wn,i(s+ h)− wn,i(s)
∣∣ ds

≤
n∑
i=1

∣∣cn,i∣∣(hncHw2(L, h) + hncLwH(h))

≤ ‖x‖1(cHw2(L, h) + cLwH(h)) ≤ cHw2(L, h) + cLwH(h).
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Hence

‖τhT̃nx− T̃nx‖1 ≤ ‖x‖1 (cHw2(L, h) + cLwH(h) + cLε(H,h)) . (2.10)

For h < 0, we have similar bounds. Then ‖τhf − f‖1 → 0 as h→ 0 uniformly
in f ∈ An. From the Kolmogorov-Riesz-Fréchet theorem, An|[a,b] is relatively

compact so Tn
cc−→T. ut

Proposition 1. Let z ∈ re(T ). For n large enough, Tn − zI is invertible and
it exists a positive number cz > 0 such that

‖(Tn − zI)−1‖1 ≤ cz. (2.11)

Proof. It is a consequence of the collectively compact convergence (see [3]).
ut

Theorem 4. For z ∈ re(T ) and under hypotheses (P1) and (P2), for n large
enough, the approximate operator equation (2.2) has a unique solution ϕn
satisfying the following error bound:

‖ϕ− ϕn‖1 ≤ czcH (‖ϕ‖1w2(L, hn) + 2cLw1(ϕ, hn)) .

Proof. According to (2.9) in the proof of Theorem 3,

‖ϕ− ϕn‖ ≤ ‖(Tn − zI)−1‖1‖(T − Tn)ϕ‖1
≤ czcH (‖ϕ‖1w2(L, hn) + 2cLw1(ϕ, hn)) ,

which ends the proof. ut

Remark 1. Often in practice, the kernel H is of convolution type. Let us fix
a = 0 and b = 1. We suppose that there is a function g such that

H(s, t) = g(|s− t|),

where g is a weakly singular function defined on ]0, 1]. This means that g
satisfies the following properties:

lim
s→0+

g(s) = +∞, g ∈ C0(]0, 1],R) ∩ L1([0, 1],R),

g ≥ 0 and g is a decreasing function in ]0, 1].

Proposition 2. When the factor H in the kernel of the operator T is of weakly
singular convolution type, then H verifies all the conditions imposed by the
product integration methods.

Proof.

(H2.1) ∀s ∈ [0, 1], we have∫ 1

0

g(|s− t|)dt =

∫ s

0

g(s− t) dt+

∫ 1

s

g(t− s) dt

=

∫ s

0

g(τ)dτ +

∫ 1−s

0

g(τ)dτ ≤ 2

∫ 1

0

g(τ) dτ < +∞.
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(P2.1) is also valid because the variables s and t play symmetric roles.

(H2.2) Let us prove that, for h > 0,

lim
h→0+

sup
|s−τ |≤h
s,τ∈[0,1]

∫ 1

0

|g(|s− t|)− g(|τ − t|)|dt = 0.

Let ψ be the function defined by t 7→ ψ(t) = |g(|s − t|) − g(|τ − t|)|.
Suppose that τ < s. It is easy to prove that ψ has an axial symmetry
with respect to ξ = s+ τ/2 over the interval [τ, s]. Let G(t) :=

∫ t
0
g(s)ds.

Then∫ 1

0

ψ(t)dt =

∫ τ

0

ψ(t)dt+

∫ ξ

τ

ψ(t)dt+

∫ s

ξ

ψ(t)dt+

∫ 1

s

ψ(t)dt

=

∫ τ

0

g(τ − t)− g(s− t)dt+ 2

∫ ξ

τ

g(t− τ)− g(s− t)dt

+

∫ 1

s

g(t− s)− g(t− τ)dt

= G(τ)−G(s) +G(s− τ) + 2G(
s− τ

2
)− 2G(s− τ)

+ 2G(
s− τ

2
) +G(1− s) +G(s− τ)−G(1− τ)

= 4

∫ s−τ
2

0

g(σ)dσ −
∫ s

τ

g(σ)dσ −
∫ 1−τ

1−s
g(σ)dσ ≤ 4

∫ s−τ
2

0

g(σ)dσ,

hence,

ωH(h) = sup
|s−τ |≤h

∫ 1

0

|g(|s− t|)− g(|τ − t|)|dt ≤ 4

∫ h
2

0

g(σ)dσ,

so
lim

h−→0+
ωH(h) = 0.

(P2.2) Let us prove that, for h > 0,

lim
h→0+

sup
t∈[0,1]

∫ 1

0

|g̃(|s+ h− t|)− g̃(|s− t|)|ds = 0.

For t ∈ [0, 1],∫ 1

0

|g̃(|s+ h− t|)− g̃(|s− t|)|ds =

∫ 1

0

|g̃(|t− h− s|)− g̃(|t− s|)|ds,

≤ ωH(h),

so

lim
h−→0+

wH(h) = lim
h−→0+

∫ 1

0

|g̃(|s+ h− t|)− g̃(|s− t|)|ds = 0,

which ends the proof. ut
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3 Iterative refinement

Recall that z 6= 0 because T is compact and z ∈ re(T ). Consider that the
solution of (1.2) is approximated by Gn(z)y, where Gn(z) is an approximate
inverse of T −zI. The accuracy of Gn(z)y may be improved using the following
iterative refinement schemes:

x
(0)
n := Gn(z)y, x

(k+1)
n := x(0) + (I −Gn(z)(T − zI))x

(k)
n .

In [11], Gn(z) has been one of the following operators:
Scheme A (Atkinson):

Gn(z) := Rn(z) := (Tn − zI)−1,

Scheme B (Brakhage):

Gn(z) :=
1

z
(Rn(z)T − I),

Scheme C (Titaud):

Gn(z) :=
1

z
(TRn(z)− I).

Their convergence properties and error bounds have already been studied
in terms of T , Tn and Rn(z) (see [11] pp 40-41). If ϕ is the solution of (1.2),

Scheme A (Atkinson):

‖x(k)n − ϕ‖1/‖ϕ‖1 ≤ ‖
(
Rn(z)(Tn − T )

)k+1‖1,

Scheme B (Brakhage):

‖x(k)n − ϕ‖1/‖ϕ‖1 ≤ ‖
(1

z
Rn(z)(Tn − T )T

)k+1‖1,

Scheme C (Titaud):

‖x(k)n − ϕ‖1/‖ϕ‖1 ≤ ‖
(1

z
TRn(z)(Tn − T )

)k+1‖1.

Let us state error estimations for these three refinement schemes for the
approximate operator Tn defined by (2.5) in this paper.

Theorem 5. For Tn defined by (2.5), the following error bounds are satisfied:
Scheme A (Atkinson):

‖x(2`−1)n − ϕ‖1/‖ϕ‖1 ≤ m`
zE(hn)`,

‖x(2`)n − ϕ‖1/‖ϕ‖1 ≤ 2dzcHcLm
`
zE(hn)`,

Scheme B (Brakhage):

‖x(2`−1)n − ϕ‖1/‖ϕ‖1 ≤
(
dz/z

)2`
E(hn)2`,

‖x(2`)n − ϕ‖1/‖ϕ‖1 ≤
(
dz/z

)2`+1

E(hn)2`+1,
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Scheme C (Titaud):

‖x(2`−1)n − ϕ‖1/‖ϕ‖1 ≤
(
dz/z

)2`
(2c2Hc

2
L)E(hn)2`−1,

‖x(2`)n − ϕ‖1/‖ϕ‖1 ≤
(
dzz
)2`+1

(2c2Hc
2
L)E(hn)2`,

where

E(hn) := 3c2HcLw2(L, hn) + 2cHc
2
LwH(hn) + 2cHc

2
Lε(H,hn),

mz := 2d2z + 2cHcLd
3
z, dz := max(cz, ‖R(z)‖).

Proof. Using (2.9),

‖(T − Tn)Tx‖ ≤ cH‖Tx‖w2(L, hn) + 2cHcLw1(Tx, hn)

≤ cHw2(L, hn)‖T‖‖x‖+ 2cHcLw1(Tx, hn).

As
w1(Tx, hn) = sup

|u|∈[0,hn]
‖τuT̃ x− T̃ x‖1

and due to (2.4),

‖(T − Tn)Tx‖ ≤ cHw2(L, hn)‖T‖‖x‖+ 2cHcL‖x‖1(cLwH(hn)

+ cHw2(L, hn) + cLε(H,hn))

≤ ‖x‖1
(
3c2HcLw2(L, hn) + 2cHc

2
LwH(hn) + 2cHc

2
Lε(H,hn)

)
≤ ‖x‖1E(hn).

Using (2.9),

‖(T − Tn)Tnx‖ ≤ cH‖Tnx‖w2(L, hn) + 2cHcLw1(Tnx, hn).

As
‖Tnx‖1 ≤ cLcH‖x‖1, w1(Tnx, hn) = sup

|u|∈[0,hn]
‖τuT̃nx− T̃nx‖1

and because of (2.10),

‖(T − Tn)Tnx‖ ≤ c2HcLw2(L, hn)‖x‖1
+ 2cHcL‖x‖1 (cLwH(hn) + cHw2(L, hn) + cLε(H,hn))

≤ ‖x‖1
(
3c2HcLw2(L, hn) + 2cHc

2
LwH(hn) + 2cHc

2
Lε(H,hn)

)
≤ ‖x‖1E(hn).

• Scheme A. As

(Tn − T )Rn(z)T = (Tn − T )Rn(z)(T − Tn)TR(z) + (Tn − T )TR(z)

and according to (2.11),

‖
(
Rn(z)(Tn − T )

)2‖ = ‖Rn(z)(Tn − T )Rn(z)Tn +Rn(z)(Tn − T )Rn(z)T‖
= ‖ Rn(z)(Tn − T )TnRn(z) +Rn(z)(Tn − T )Rn(z)T‖
≤ c2z‖(Tn − T )Tn‖+ cz‖(Tn − T )Rn(z)(T − Tn)TR(z) + (Tn − T )TR(z)‖.
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We have

‖
(
Rn(z)(Tn − T )

)2‖ ≤ d2z‖(Tn − T )Tn‖+ 2cHcLd
3
z‖(T − Tn)T‖

+ d2z‖(Tn − T )T‖ ≤ (2d2z + 2cHcLd
3
z)E(hn) ≤ mzE(hn).

Then

‖
(
Rn(z)(Tn − T )

)2`‖1 ≤ m`
zE(hn)`,

so

‖x(2`−1)n − ϕ‖1
‖ϕ‖1

≤ m`
zE(hn)`,

‖x(2`)n − ϕ‖1
‖ϕ‖1

≤ 2dzcHcLm
`
zE(hn)`.

• Scheme B. As

‖
(1

z
Rn(z)(Tn − T )T

)2`‖1 ≤ (dz
z

)2`
E(hn)2`,

then

‖x(2`−1)n − ϕ‖1
‖ϕ‖1

≤
(dz
z

)2`
E(hn)2`,

‖x(2`)n − ϕ‖1
‖ϕ‖1

≤
(dz
z

)2`+1

E(hn)2`+1.

• Scheme C. As(1

z
TRn(z)(Tn − T )

)k+1
=
(1

z

)k+1

TRn(z)
(
(Tn − T )TRn(z)

)k
(Tn − T ),

‖
(1

z
TRn(z)(Tn − T )

)k+1

‖1 ≤
(dz
z

)k+1

(2c2Hc
2
L)‖(Tn − T )T‖k1

≤
(dz
z

)k+1

(2c2Hc
2
L)E(hn)k,

so

‖x(2`−1)n − ϕ‖1/‖ϕ‖1 ≤
(dz
z

)2`
(2c2Hc

2
L)E(hn)2`−1,

‖x(2`)n − ϕ‖1/‖ϕ‖1 ≤
(dz
z

)2`+1

(2c2Hc
2
L)E(hn)2`.

This concludes the proof. ut

Remark 2. The upperbound of Scheme B appears to be the optimal one among
the three error bounds. It improves slightly upon the one of Scheme C and is
twice better than the one of Scheme A.

4 Numerical Implementations

The approximate equation is Tnϕn − zϕn = y, i.e.

∀s ∈ [a, b],

n∑
i=1

wn,j(s)
1

hn

∫ tn,j

tn,j−1

ϕn(u)du− zϕn(s) = y(s).

Math. Model. Anal., 21(6):774–793, 2016.
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By calculating the average over [tn,i−1, tn,i], i = 1, . . . , n, of each member of
the equation, we obtain a linear system of the form (A− zI)x = d, where

A(i, j) :=
1

hn

∫ tn,i

tn,i−1

wn,j(s)ds, i, j = 1, . . . , n,

d(i) :=
1

hn

∫ tn,i

tn,i−1

y(s)ds, i = 1, . . . , n, (4.1)

x(i) :=
1

hn

∫ tn,i

tn,i−1

ϕn(s)ds, i = 1, . . . , n.

After solving the linear system, the approximate solution can be written as

ϕn(s) =
1

z

( n∑
i=1

wn,j(s)x(i)− y(s)
)
.

To measure the quality of the approximation we calculate the relative residual

r(ϕn) := ‖(T − zI)ϕn − y‖1/‖y‖1.

In practice the evaluation of T is often not possible, so we replace it with Tm
where m � n and we caculate the average over [tm,i−1, tm,i], i = 1, . . . ,m, of
(T − zI)ϕn − y and of y. We obtain two vectors of size m, and we calculate
the vector norm in (Cm, ‖ · ‖1).

5 Numerical Illustration

As an academic example we have taken

−
∫ 1

0

ln(|s− t|)ϕ(t)dt− ϕ(s) = y(s),

with unique solution ϕ(s) = s2. The estimations of the relative residual with
m = 100 for two methods: the projection method proposed by Titaud in [11]
and the L1([a, b],C) product integration method are shown in Table 1. We
observe that the L1([a, b],C) product integration method is faster than the
projection method.

Table 1. Relative residuals.

n Projection method Product integration method

10 0.0968 0.0246
20 0.0499 0.0087
50 0.0211 0.0018

Figure 1 shows the profile of the matrix A defined by (4.1). It is a full
matrix.

In Figure 2 we chose n = 100, m = 1000 for a relative residual tolerance of
10−12. We note that Scheme B is the fastest one to reach the tolerance.

The theoretical Remark 2 of Section 3 is confirmed by this numerical ex-
periment.
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Figure 1. Matrix A of the academic illustration.

Figure 2. Residual convergence with the three refinement schemes of the academic
illustration.

6 An Application in Astrophysics

The radiative transfer problem is a system of differential equations coupled
with a Fredholm integral equation of the second kind. It describes the energy
conserved by a beam radiation traveling, such that a beam of radiation can
lose or gain energy through absorbing, scattering and emitting medium. Let τ∗
be the optical width of the medium, (see [8]). An example of this equation is

$(s)

2

∫ τ∗

0

E1(|s− t|)ϕ(t)dt− ϕ(s) = y(s),

where E1 is the first integral exponential function:

∀ν ≥ 1, Eν(s) :=

∫ 1

0

e−s/µ

µ2−ν dµ

and the function $ describes the albedo. In our numerical example $(s) =
0.7 exp(−s) and

y(s) =

{
−0.3, for s ∈ [0, 50[,

0, for s ∈ [50, 100].

Math. Model. Anal., 21(6):774–793, 2016.
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The singularity of that example is different from the Cauchy singularity treated
by Beltram with the product integration method in [6].

Figure 3. Matrix A of the Astrophysics application.

Figure 3 shows the profile of the matrix A defined by (4.1). It is a sparse matrix.

The relative residual associated to the approximate solution ϕn obtained
by the projection method and the product integration method proposed in this
paper are shown in Table 2. We observe that the product integration method
converges faster than the projection method.

Table 2. Relative residuals.

n Projection method Product integration method

10 0.0267 0.0172
20 0.0252 0.0145
50 0.0151 0.0075

For large values of n the computation of ϕn is prohibitively costly so that
we will use the refinement schemes introduced in Section s:3 to compute the
final approximate solution.
In Figure 4 we chose n = 100, m = 1000 for a relative residual tolerance of
10−12. We note that Scheme C is the fastest one to reach the tolerance. This
confirms the results obtained in [9].

Remark 3. In this application, Scheme C is apparently faster than Scheme B.
This could be explained by the difference between the profiles of the corre-
sponding auxiliary matrices A (see Figure 1 and Figure 3).
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Figure 4. Residual convergence with the three refinement schemes in the Astrophysics
application.
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Appendix

Proof of the Kolmogorov-Riesz-Fréchet theorem. Without loss of gen-
erality we prove the theorem for the case p = 1, q = 1 and Ω = [a, b]. To
simplify the notation, ‖.‖1 denotes the norm in L1(Ω,C) and also the norm in
L1(R,C). ‖.‖∞ denotes the norm in C0(Ω,C) and also the norm in C0(R,C).

As L1(Ω,C) is a complete space, we just need to prove that F|Ω is precom-
pact i.e.: For any ε > 0 there exist functions f1, f2, . . . , fN ∈ L1(Ω,C) such
that

F|Ω ⊂ ∪Ni=1B1(fi, ε),

where B1(fi, ε) denotes the open ball in L1(Ω,C) centered in fi and of radius
ε. The proof consists in constructing the functions fi. The main idea of the
proof is to apply a convolution regularization process to deal with continuous
functions and to be able to apply the Arzela-Ascoli theorem.

Step 1: Regularization process
Let us consider the regularizing sequence defined by

ρn(x) := nρ(nx),

where

ρ(x) :=

{
k exp(− 1

1− x2
), for |x| ≤ 1,

0, otherwise,

and k is a constant such that ‖ρ‖1 = 1. For all n ∈ N, ρn is infinitely differen-
tiable. If ∗ denotes the convolution product, and if f ∈ L1(R,C), ρn ∗ f is a
regularization of f in the sense that it is smooth: ρn ∗ f is infinitely differen-
tiable. We know that ρn ∗ f ∈ L1(R,C) and also ρn ∗ f −→ f in L1(R,C). We
prove a stronger result under assumption (2.3):

ρn ∗ f −→ f

uniformly in f ∈ F in L1(R,C).

|ρn ∗ f(x)− f(x)| ≤
∫ 1/n

−1/n
|f(x− y)− f(x)|ρn(y)dy,

so that for all f ∈ F ,∫
R
|ρn ∗ f(x)− f(x)|dx ≤

∫
R

∫ 1/n

−1/n
|f(x− y)− f(x)|ρn(y)dxdy

=

∫ 1/n

−1/n
ρn(y)

(∫
R
|f(x− y)− f(x)|dx

)
dy

≤
∫ 1/n

−1/n
ρn(y)dy sup

|y|≤ 1
n

‖τyf − f‖1 = sup
|y|≤ 1

n

‖τyf − f‖1.
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Hence for all f ∈ F ,

‖ρn ∗ f − f‖1 ≤ sup
|y|≤1/n

‖τyf − f‖1.

According to assumption (2.3), for all ε > 0, ∃N0 ∈ N :

n ≥ N0 ⇒ ‖ρn ∗ f − f‖1 ≤ ε, for all f ∈ F .

Step 2: Application of Arzela-Ascoli theorem to Hn := {ρn ∗ f : f ∈ F}|Ω
Here n is fixed. Due to the regularization properties, Hn is a subset of

C0(Ω,C). Let us prove that Hn is bounded in C0(Ω,C) equiped with the
infinity norm ‖.‖∞. As F is bounded in L1(R,C),

‖ρn ∗ f‖∞ ≤ ‖ρn‖∞‖f‖1 ≤M‖ρn‖∞,

where M := supf∈F ‖f‖1. Let us prove that Hn is equicontinuous.
Let x1, x2 ∈ ω.

|ρn ∗ f(x1)− ρn ∗ f(x2)| =
∣∣∣ ∫ (ρn(x1 − y)− ρ(x2 − y)

)
f(y)dy

∣∣∣
≤
∫
|ρn(x1 − y)− ρ(x2 − y)||f(y)|dy

≤ ‖∇ρn‖∞|x1 − x2| ‖f‖1 ≤M‖∇ρn‖∞|x1 − x2|,

where ∇ρn is the gradient of ρn. According to Arzela-Ascoli theorem, Hn is
relatively compact in C0(Ω,C) so it is precompact.

Step 3: Construction of the functions fi

As Hn is precompact, for ε > 0 there exist functions fi ∈ C0(Ω,C), i =
1, . . . , N, such that Hn ⊂ ∪Ni=1B∞(fi, ε), where B∞(fi, ε) denotes the ball in
C0(Ω,C) centered in fi and of radius ε, i.e:

∀ρn ∗ f ∈ Hn, ∃fi ∈ C0(Ω,C) : ‖ρn ∗ f − fi‖∞ < ε.

Step 4: Conclusion

Let us show that F|Ω is precompact. Let ε > 0 and f ∈ F|Ω . According
to the step 1, ∃N0 ∈ N :

n ≥ N0 ⇒ ‖ρn ∗ f − f‖1 ≤ ε, for all f ∈ F .

Let us fix n ≥ N0. According to the step 3, there exists i ∈ {1, . . . , N}, such
that ‖ρn ∗ f − fi‖∞ < ε. We have

‖f − fi‖1 ≤ ‖ρn ∗ f − f‖1 + ‖ρn ∗ f − fi‖1,

‖ρn ∗ f − fi‖1 =

(∫ b

a

∣∣ρn ∗ f(x)− fi(x)
∣∣dx)

≤ (b− a)‖ρn ∗ f − fi‖∞ < (b− a)ε.

Hence

‖f − fi‖1 ≤ (1 + b− a)ε.

So F|Ω ⊂ ∪Ni=1B1(fi, (1 + b− a)ε) and F|Ω is relatively compact.

Math. Model. Anal., 21(6):774–793, 2016.


	Introduction
	The product integration method in L1([a,b],C)
	Iterative refinement
	Numerical Implementations
	Numerical Illustration
	An Application in Astrophysics
	References

