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Abstract. This paper will consider a nonliear system of difference equations which
describes a qualitative study of Bertrand oligopoly games with two boundedly rational
players. With nonlinear demand function of exponential form, the local stability of
equilibria and the global convergence of positive solutions for the dynamical system
are analyzed.
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1 Introduction

Market economy is fundamentally a dynamic system, which can usually be
described mathematically by difference equations. In the dynamic study of
economics, a couple of economic models represented by difference equations are
investigated, such as the classical cobweb model describing the variation of the
supply and demand, the Cournot models of oligopoly, and so on [2], [1], [6], [11].
It is well known that Bertrand duopoly competition game is one of the basic
oligopoly games with two players. In this paper we consider a Bertrand duopoly
game with an industry where two firms produce heterogeneous products. Price
strategic interactions appear because the total demand of the good depends on
the price of the industry according to a given demand function. In the classical
study of Bertrand game, the demand function is usually linear or quadratic.
However the demand function of exponential form can describe the bounded
rationality duopoly game more realistic [11] and at the same time the dynamic
will be more complicated. We assume in this paper the demand function

Q = f(p1, p2) = ae−(p1+p2), (1.1)
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where a is a parameter of maximum demand in the market and pi, i = 1, 2
denotes the price of the good produced by firm i. Assume the cost function

Ci(Q) = ciQ, i = 1, 2, (1.2)

where ci is the marginal cost of the ith firm. Then the profit resulting from
the above Bertrand duopoly game is given by

Πi = piQ− ciQ = a(pi − ci)e−(p1+p2). (1.3)

The classical oligopoly games, and the associated notion of Nash equilib-
rium, are based on quite demanding notion of rationality. However, since the
available information in the oligopoly market is incomplete, the rational players
make their price decisions on a local estimate of the expected marginal profit
∂Πi
∂pi

. Hence, the dynamical equation of the bounded rationality player i has
the form

pi(t+ 1) = pi(t) + νipi(t)
∂Πi

∂pi
, i = 1, 2,

where νi, i = 1, 2 is a positive parameter which represents the relative speed
of the price adjustment by producer i.

Therefore, using (1.1)–(1.3), the discrete dynamical system becomes an it-
erated two-dimensional mapping which has the form{

p1(t+ 1) = p1(t) + aν1e−(p1+p2)p1(t)(1− p1(t)) + aν1c1p1(t)e−(p1+p2),

p2(t+ 1) = p2(t) + aν2e−(p1+p2)p2(t)(1− p2(t)) + aν1c1p2(t)e−(p1+p2).

We can rewrite this system in the new form{
xn+1 = xn + (α1 − β1xn)xne−(xn+yn),

yn+1 = yn + (α2 − β2yn)yne−(xn+yn),

where xn = p1(t), yn = p2(t), αi = aνi(1 + ci), βi = aνi, i = 1, 2.
In this paper we study the boundedness and the global asymptotic behavior

of the positive solutions of the system of difference equation{
xn+1 = xn + (α1 − β1xn)xne−(xn+yn),

yn+1 = yn + (α2 − β2yn)yne−(xn+yn),
(1.4)

where αi, βi ∈ (0,∞) with αi > βi ,i = 1, 2, and the initial values x0, y0 are
positive numbers.

In [5], by using the inverse demand function of exponential form, MF Elet-
treby and H El-Metwally studied a Cournot competition model described by dif-
ference systems of exponential form and they obtained the local stability of the
equilibrium point and the global convergence of positive solutions. In [4], HA
El-Metwally and AA Elsadany investigated the chaotic behavior of a duopoly
Cournot game model of difference systems of exponential form. As for the stud-
ies of the behavior of positive solutions for difference equations of exponential
form, we refer the readers to [3], [8], [9], [10] and the references therein. The
next theorem will be a useful tool later in Section 3.
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Theorem 1. [7] Suppose T = (f, g) be a monotone map on a closed and
bounded rectangular region S ⊂ R2. If T has a unique fixed point E = (x̄, ȳ) in
S, then E is a global attractor of T on S.

2 Equilibria Points of (1.4)

Observe that the equilibria points of system (1.4) are given by the equations{
x̄ = x̄+ (α1 − β1x̄)x̄e−(x̄+ȳ),

ȳ = ȳ + (α2 − β2ȳ)ȳe−(x̄+ȳ),
⇒

{
(α1 − β1x̄)x̄e−(x̄+ȳ) = 0,

(α2 − β2ȳ)ȳe−(x̄+ȳ) = 0.

Obviously, system (1.4) has equilibria points E0 = (0, 0), E1 = (0, α2

β2
), E2 =

(α1

β1
, 0) and E3 = (α1

β1
, α2

β2
).

In the following, we deal with the local stability of the above four equilib-
rium points of (1.4). Now set F (xn, yn) = xn + (α1 − β1xn)xne−(xn+yn),
G(xn, yn) = yn + (α2 − β2yn)yne−(xn+yn), where F (x, y) and G(x, y) are con-
tinuous functions. Then we obtain

∂F (x, y)

∂x
= 1 + [(α1 − β1x)− β1x− (α1 − β1x)x]e−(x+y),

∂F (x, y)

∂y
= −(α1 − β1x)xe−(x+y),

∂G(x, y)

∂x
= −(α2 − β2y)ye−(x+y),

∂G(x, y)

∂y
= 1 + [(α2 − β2y)− β2y − (α2 − β2y)y]e−(x+y).

Proposition 1. The equilibrium point E0 of system (1.4) is unstable.

Proof. We compute the Jacobian matrix of system (1.4) about the equilibrium
point E0 = (0, 0) and have

J(E0) =

(
1 + α1 0

0 1 + α2

)
.

Therefore the eigenvalues of J(E0) are given by λ1 = 1 + α1 and λ2 = 1 + α2.
Then |λi| > 1, i = 1, 2. So the equilibrium point E0 of system (1.4) is unstable.
The proof is completed. ut

Proposition 2. The equilibria points E1 and E2 of system (1.4) are saddle
points.

Proof. The Jacobian matrix of system (1.4) about the equilibrium point E1 =
(0, α2/β2) has the form

J(E1) =

(
1 + α1e−α2/β2 0

0 1− α2e−α2/β2

)
.

Therefore the eigenvalues of J(E1) are given by λ1 = 1 + α1e−α2/β2 and λ2 =
1− α2e−α2/β2 . Then

|λ1| > 1, |λ2| < 1.

Math. Model. Anal., 21(6):741–751, 2016.
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Thus it follows that the equilibrium point E1 of system (1.1) is a saddle point.
Similarly, one can easily prove that the equilibrium point E2 of system (1.4) is
also a saddle point. This completes the proof. ut

Proposition 3. The Nash equilibrium point E3 of system (1.4) is asymptoti-

cally stable if either 0 < αie
−(

α1
β1

+
α2
β2

) < 1 or 1 < αie
−(

α1
β1

+
α2
β2

) < 2, i = 1, 2.

Proof. The Jacobian matrix of system (1.4) about the equilibrium point E3 =
(α1/β1, α2/β2) is

J(E1) =

(
1− α1e−(

α1
β1

+
α2
β2

) 0

0 1− α2e−(
α1
β1

+
α2
β2

)

)
.

Therefore the eigenvalues of J(E3) are given by

λ1 = 1− α1e−(
α1
β1

+
α2
β2

), λ2 = 1− α2e−(
α1
β1

+
α2
β2

).

It is well known that the equilibrium point E3 of system (1.4) is locally asymp-
totically stable if for i = 1, 2, |λi| < 1 are satisfied, which is true when

0 < αie
−(

α1
β1

+
α2
β2

) < 1 or 1 < αie
−(

α1
β1

+
α2
β2

) < 2, i = 1, 2. The proof is com-
pleted. ut

3 Global Stability Analysis of (1.4)

In this section we first concern with the boundedness properties of the positive
solutions for system (1.4). Under appropriate conditions, we give some bounded
results related to system (1.4).

Theorem 2. Assume that βie
−αi+βiβi < 1. Then every solution {(xn, yn)}∞n=0

of system (1.4) with x0 > 0 and y0 > 0, satisfies that xn > 0 and yn > 0 for
all n > 0.

Proof. Let Hi(x, y), i = 1, 2 be continuous functions defined by

Hi(x, y) = 1 + (αi − βix)e−(x+y), i = 1, 2.

Then system (1.4) can be rewritten in the form

xn+1 = xnH1(xn, yn), yn+1 = ynH2(xn, yn).

Now assume that {(xn, yn)}∞n=0 is a solution of system (1.4) with positive initial
values. Then it suffices to show that Hi(x, y), i = 1, 2 are positive for all x0 > 0
and y0 > 0. Observe that

∂Hi(x, y)

∂x
= (−βi−αi+βix)e−(x+y),

∂Hi(x, y)

∂y
= −(αi−βix)e−(x+y), i = 1, 2.

Therefore Hi have no positive critical points. Let a and b be arbitrary positive
numbers and consider the domain

D = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}.
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Then for i = 1, 2, we see that

Hi(0, y) = 1 + αie
−y, Hi(a, y) = 1 + (αi − aβi)e−(a+y), 0 ≤ y ≤ b,

Hi(x, 0) = 1 + (αi − βix)e−x, Hi(x, b) = 1 + (αi − βix)e−(x+b), 0 ≤ x ≤ a.

Using elementary differential calculus, we obtain that the absolute minimum of

Hi is 1− βie−
αi+βi
βi . Therefore Hi(x, y) ≥ 1− βie−

αi+βi
βi > 0 for all (x, y) ∈ D.

Since a and b are arbitrary positive numbers, we can conclude that Hi(x, y) > 0
for i = 1, 2 and for all (x, y) ∈ (0,∞)2. ut

Theorem 3. Let {(xn, yn)}∞n=0 be a solution of system (1.4) with (xn0 , yn0) ∈
(0, α1

β1
] × (0, α2

β2
] for some n0 ≥ 0. If for i = 1, 2, αi < 1, then {(xn, yn)} ∈

(0, α1

β1
]× (0, α2

β2
] for all n ≥ n0.

Proof. Let n0 ≥ 0 be such that xn0
∈ (0, α1

β1
]. It follows from system (1.4)

that

xn0+1 ≤ xn0
+ (α1 − β1xn0

)xn0
.

Set h(x) = x+ (α1 − β1x)x. We obtain that

h′(x) = 1 + α1 − 2β1x, h′′(x) = −2β1 < 0.

Hence h′(x) is decreasing on (0, α1

β1
]. Then h′(α1

β1
) = 1−α1 > 0. Therefore h(x)

is increasing on (0, α1

β1
]. Consequently, h(x) ≤ h(α1

β1
) = α1

β1
. So xn ≤ α1

β1
for all

n ≥ n0. Similar method can be applied for yn. This completes the proof. ut

Theorem 4. Assume that αi < 1. Then every solution {(xn, yn)}∞n=0 of system
(1.4) satisfies

xn ≤ (1− α1)n−n0xn0 +
α1

β1
[1− (1− α1)n−n0 ],

yn ≤ (1− α1)n−n0yn0
+
α1

β1
[1− (1− α1)n−n0 ]

for any n0 satisfying xn0 ∈ (0, α1

β1
], yn0

∈ (0, α2

β2
].

Proof. Let n ≥ 0 be such that xn ∈ (0, α1

β1
], yn ∈ (0, α2

β2
]. It follows from

system (1.4) that

xn+1 ≤ xn + (α1 − β1xn)xn ≤ xn + (α1 − β1xn)
α1

β1
= (1− α1)xn +

α2
1

β1
.

Since α1 < 1, we have

xn+2 ≤ (1− α1)xn+1 +
α2

1

β1
= (1− α1)2xn + (1− α1)

α2
1

β1
+
α2

1

β1
.

Math. Model. Anal., 21(6):741–751, 2016.
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By induction, for fixed n0 satisfying xn0
∈ (0, α1/β1], yn0

∈ (0, α2/β2], we
obtain

xn ≤ (1−α1)n−n0xn0+
α2

1

β1
[(1−α1)n−n0−1+(1−α1)n−n0−2+ · · ·+(1−α1)+1]

= (1− α1)n−n0xn0
+
α2

1

β1

1− (1− α1)n−n0

α1

= (1− α1)n−n0xn0 +
α1

β1
[1− (1− α1)n−n0 ].

Similarly, we could prove

yn ≤ (1− α1)n−n0yn0 +
α1

β1
[1− (1− α1)n−n0 ]

for any n0 satisfying xn0 ∈ (0, α1

β1
], yn0 ∈ (0, α2

β2
]. ut

The following corollary is coming immediately from Theorem 4.

Corollary 1. Assume αi < 1, i = 1, 2. Then for any initial point (xn0 , yn0) ∈
(0, α1/β1]× (0, α2/β2], every positive solution {(xn, yn)}∞n=0 of system (1.4) is
bounded. Moreover,

lim sup
n→∞

xn ≤ α1/β1, lim sup
n→∞

yn ≤ α2/β2.

Next, in the following theorem, we investigate the global attractivity of the
equilibrium point (x̄, ȳ) of system (1.4).

Theorem 5. Assume that αi < 1. Then the unique positive equilibrium point
(x̄, ȳ) of system (1.4) is a global attractor of all positive solutions of system
(1.4).

Proof. Let {(xn, yn)}∞n=0 be a solution of system (1.4). In the first case, if
x0 ≤ x̄ < α1

β1
,

x1 = x0 + (α1 − β1x0)x0e−(x0+y0) > x0.

Then the sequence {xn}∞n=0 is increasing and since it was shown that it is
bounded above by α1

β1
, then it converges to the unique positive equilibrium

point x̄. The second case is x0 ≥ x̄, we will show that there exists a positive
integer N such that xN ≤ x̄. Notice that in this case

x1 = x0 + (α1 − β1x0)x0e−(x0+y0) < x0.

Repeating this step confirms that {xn} is a decreasing sequence. Thus either
there exists N ∈ N such that xN < x̄ or xn is a bounded decreasing sequence
which has a limit d1 > x̄. In whichever cases, we can assume similarly that yn
has a limit d2. Set f(x, y) = (β1x − α1)xe−(x+y). By the continuity of f and
convergence of (xn, yn), we have there exists n1 ∈ N such that for any n ≥ n1,

f(xn, yn) ≥ δ, where δ = f(d1,d2)
2 > 0. Therefore, for any n ≥ n1,

xn+1 = xn+(α1−β1xn)xne−(xn+yn) = xn−(β1xn−α1)xne−(xn+yn)xn < xn−δ.
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So there exists a positive integer N such that xN < x̄.
Similarly, it can be shown that the sequence {yn}∞n=0 converges to the

unique positive equilibrium point ȳ. Thus {(xn, yn)}∞n=0 converges to (x̄, ȳ).
ut

Example 1. Set α1 = 0.6, α2 = 0.5,, β1 = 0.3, β2 = 0.1, Figure 1 shows the
stability of equilibrium of (1.4).

Figure 1. The stability of equilibrium of (1.4) while αi > βi

As a special case at last, when α1 = α2 = α, β1 = β2 = β, we contemplate
the following system{

xn+1 = xn + (α− βxn)xne−(xn+yn),

yn+1 = yn + (α− βyn)yne−(xn+yn),
(3.1)

we can have

Theorem 6. Assume that α < 1. If β > α2+4β2

4 , then the unique positive equi-
librium point (x̄, ȳ) of system (1.4) is a global attractor of all positive solutions
of system (3.1).

Proof. Rewrite (3.1) as

xn+1 = F (xn, yn), yn+1 = G(xn, yn),

where F (x, y) = x+ (α− βx)xe−(x+y) and G(x, y) = y+ (α− βy)ye−(x+y) are
continuous functions. Now consider{

m1 = F (m1,M2), M1 = F (M1,m2),

m2 = G(M1,m2), M2 = G(m1,M2).

That is,{
m1 = m1+(α−βm1)m1e−(m1+M2), M1 = M1 + (α− βM1)M1e−(M1+m2),

m2 = m2+(α−βm2)m2e−(M1+m2), M2 = M2 + (α− βM2)M2e−(m1+M2).

Obviously, m1 = M1 = m2 = M2 satisfy all the above equations. Solving these
equations directly can obtain m1 = M1 = m2 = M2 = α/β. So (3.1) has a
unique fixed point (x̄, ȳ) = (α/β, α/β).

Math. Model. Anal., 21(6):741–751, 2016.
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On the other hand, we can see

∂F

∂x
= 1 + [α− (α+ 2β)x+ βx2]e−(x+y) ≥ 1− α2 + 4β2

4β
.

Therefore, ∂F∂x > 0 if β > α2+4β2

4 . We can do the same way to get that ∂G
∂x > 0.

Thus, by Theorem 1, it follows that the unique positive equilibrium point (x̄, ȳ)
is a global attractor of all positive solutions of system (3.1). ut

4 Remark

In this last section, just from the mathematics point of view, we give a remark
to discuss the case αi ≤ βi, i = 1, 2. We will see the unique positive equilibrium
point (x̄, ȳ) of system (1.4) is a global attractor of all positive solutions of system
(1.4).

Proposition 4. Let {(xn, yn)}∞n=0 be a solution of system (1.4) with (xn0
, yn0

)
∈ (0, α1

β1
]× (0, α2

β2
] for some n0 ≥ 0. If for i = 1, 2, one of the followings is hold:

(i) αi ≤ βi, βie
−αiβi < 1; (ii) αi < 1 , then {(xn, yn)} ∈ (0, α1

β1
]× (0, α2

β2
] for

all n ≥ n0.

Proof. For condition (i), we can prove as follows. Let n0 ≥ 0 be such that
xn0
∈ (0, α1

β1
]. Since αi ≤ βi in (i), it follows from system (1.4) that

xn0+1 ≤ xn0 + (α1 − β1xn0)e−
α1
β1 .

Set g(x) = x+ (α1 − β1x)e−α1/β1 . Then g′(x) = 1− β1e−
α1
β1 . If (i) is hold, we

have g′(x) > 0, and then g(x) is increasing on (0, α1

β1
]. Consequently, g(x) ≤

g(α1

β1
) = α1

β1
. Similar method can be applied for yn.

As for condition (ii), we have the following proof. Let n0 ≥ 0 be such that
xn0
∈ (0, α1

β1
]. It follows from system (1.4) that

xn0+1 ≤ xn0
+ (α1 − β1xn0

)xn0
.

Set h(x) = x+ (α1 − β1x)x. Then

h′(x) = 1 + α1 − 2β1x, h′′(x) = −2β1 < 0.

So h′(x) is decreasing on (0, α1

β1
]. While h′(α1

β1
) = 1− α1 > 0 since (ii) is hold.

Therefore, h′(x) > 0 on (0, α1

β1
], that is, h(x) is increasing on (0, α1

β1
]. Hence

h(x) ≤ h(α1/β1) = α1/β1. Similar method can be applied for yn. ut

Proposition 5. Assume for i = 1, 2, αie
−αiβi < 1. Then every solution

{(xn, yn)}∞n=0 of system (1.4) satisfies

xn ≤ (1− α1e−
α1
β1 )n−n0xn0

+
α1

β1
[1− (1− α1e−

α1
β1 )n−n0 ],

yn ≤ (1− α2e−
α2
β2 )n−n0yn0

+
α2

β2
[1− (1− α2e−

α2
β2 )n−n0 ],

for any n0 satisfying xn0 ∈ (0, α1/β1], yn0 ∈ (0, α2/β2].
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Proof. Let n ≥ 0 be such that xn ∈ (0, α1

β1
]. It follows from system (1.4) that

xn+1 ≤ xn + (α1 − β1xn)xne−xn .

Since α1/β1 ≤ 1, we have

xn+1 ≤ xn + (α1 − β1xn)
α1

β1
e−

α1
β1 = (1− α1e−

α1
β1 )xn +

α2
1

β1
e−

α1
β1 .

And if αie
−αi/βi < 1, then

xn+2 ≤ (1− α1e−
α1
β1 )2xn +

α2
1

β1
e−

α1
β1 (1− α1e−

α1
β1 ) +

α2
1

β1
e−

α1
β1 .

By induction, for fixed n0 satisfying xn0
∈ (0, α1/β1], we obtain

xn ≤ (1− α1e−
α1
β1 )n−n0xn0 +

α2
1

β1
e−

α1
β1

[
(1− α1e−

α1
β1 )n−n0−1

+ (1− α1e−
α1
β1 )n−n0−2 + · · ·+ (1− α1e−

α1
β1 ) + 1

]
= (1− α1e−

α1
β1 )n−n0xn0

+
α2

1

β1
e−

α1
β1

1− (1− α1e−
α1
β1 )n−n0

α1e−
α1
β1

= (1− α1e−
α1
β1 )n−n0xn0 +

α1

β1
[1− (1− α1e−

α1
β1 )n−n0 ].

Similarly, we could prove

yn ≤ (1− α2e−
α2
β2 )n−n0yn0

+
α2

β2
[1− (1− α2e−

α2
β2 )n−n0 ]

for any n0 satisfying xn0 ∈ (0, α1/β1], yn0 ∈ (0, α2/β2]. ut

The following corollary is coming immediately from Proposition 5.

Corollary 2. Assume αie
−αiβi < 1, i = 1, 2. Then for any initial point (xn0 , yn0)

∈ (0, α1/β1]× (0, α2/β2], every positive solution {(xn, yn)}∞n=0 of system (1.4)
is bounded. Moreover,

lim sup
n→∞

xn ≤ α1/β1, lim sup
n→∞

yn ≤ α2/β2.

Next, in the following theorem, we investigate the global attractivity of the
equilibrium point (x̄, ȳ) of system (1.4).

Theorem 7. Assume that αi ≤ βi, αie−
αi
βi < 1. Then the unique positive equi-

librium point (x̄, ȳ) of system (1.4) is a global attractor of all positive solutions
of system (3.1).

Proof. Let {(xn, yn)}∞n=0 be a solution of system (1.4) and let xn ≤ x̄ < α1

β1

(the case whenever xn ≥ x̄ is similar and so it will be omitted). Thus

α1

β1
≥ xn+1 = xn + (α1 − β1xn)xne−(xn+yn) ≥ xn.

Math. Model. Anal., 21(6):741–751, 2016.
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Then the sequence {xn}∞n=0 is increasing and since it was shown that it is
bounded above, then it converges to the unique positive equilibrium point x̄.
Similarly, it is easy to show that the sequence {yn}∞n=0 is increasing and since
it was shown that it is bounded above, then it converges to the unique positive
equilibrium point ȳ. Thus {(xn, yn)}∞n=0 converges to (x̄, ȳ). ut

Figure 2. The stability of equilibrium of (1.4) while αi ≤ βi

Example 2. Set α1 = 1.5, α2 = 0.8,, β1 = 2, β2 = 1, Figure 2 shows the stability
of equilibrium of (1.4).
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