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E-mail: vsabinin@yahoo.com

Received February 18, 2019; revised October 20, 2019; accepted November 1, 2019

Abstract. A new variant of Incomplete Factorization Implicit (IFI) iterative tech-
nique for 2D elliptic finite-difference (FD) equations is suggested which is differed
by applying the matrix tridiagonal algorithm. Its iteration parameter is shown be
linked with the one for Alternating Direction Implicit method. An effective set of
values for the parameter is suggested. A procedure for enhancing the set of iteration
parameters for IFI is proposed. The technique is applied to a 5-point FD scheme,
and to a 9-point FD scheme. It is suggested applying the solver for 5-point scheme to
solving boundary-value problems for the 9-point scheme, too. The results of numer-
ical experiment with Dirichlet and Neumann boundary-value problems for Poisson
equation in a rectangle, and in a quasi-circle are presented. Mixed boundary-value
problems in square are considered, too. The effectiveness of IFI is high, and weakly
depends on the type of boundary conditions.
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1 Introduction

The Incomplete Factorization iterative method (IF) for solving 2D and 3D
elliptic finite-difference (FD) equations was suggested by Buleev [2]. In the
method, schemes of factorization can be of Explicit (IFE) or Implicit (IFI)
type, see [6]. The IFI scheme used here was proposed by Ginkin [5], and
enhanced by Buleev [3].

Sabinin [8,10] observed a similarity of iteration parameters for IFI and ones
for Alternating Direction Implicit (ADI) method, and he proposed a cyclic set
of parameters which permitted the effective solving boundary-value problems

�
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by IFI. He expanded this technique to 3D problems [9,11], and solved by it some
mixed boundary-value problems of groundwater hydrodynamics with predomi-
nating of Neumann boundary conditions (e.g. [13]). Also, IFI was applied to a
convective-dispersion equation [12], and to a problem of groundwater salt-heat
transport [14]. Another modification of the iteration parameters was suggested
in [7] and applied to some steady-state problems of underground water-oil flows.

Traditionally, IFE solvers are developed a lot (e.g. [1]) although IFI gives a
better rate of convergence, as can be seen from the works [10], and [7].

In present paper, new variant of IFI technique is suggested which is differ-
ent by applying the matrix algorithm of Thomas for enhancing stability. This
is applied to as 5-point, as to high-order 9-point FD schemes of type ”cross”
for 2D elliptic problems. Also, it is suggested for IFI the cyclic set of itera-
tion parameters, and the ”hammer” sequence of parameters inside the cycle.
Results of a numerical experiment are presented which demonstrate high effec-
tiveness of IFI with such cyclic sets in boundary-value problems by Dirichlet,
by Neumann, and in mixed ones for Poisson equation in rectangle, and in curvi-
linear (quasi-circular) areas. The results give a low difference between number
of iterations in the Neumann problems, and in the Dirichlet problems, and a
high effectiveness of IFI in solution of mixed boundary-values problems with
predominating presence of Neumann boundary conditions.

The problem of obtaining the optimal set of iteration parameters for IFI
is not yet analytically solved. Here, a numerical procedure for enhancing the
ADI-type parameters is suggested.

The 9-point IFI solver is proposed to the high-order 9-point FD scheme of
”cross” type. As this algorithm is complicated and bulky then it is suggested
to use the 5-point IFI solver to solve the 9-point FD problems. The results of
numerical experiment prove effectiveness of this idea.

2 Incomplete factorization implicit technique 2D

The 5-point FD scheme for 2D equations of type

div (Kgrad ϕ) + f = 0 , (2.1)

where K = K(x, y, ϕ), and f = f(x, y, ϕ), gives for boundary-value problems
a system of algebraic equations of the form Aϕ = f , where square matrix A is
defined in grid nodes as

Aϕij ≡ −aijϕi−1,j − bijϕi,j−1 − cijϕi+1,j − dijϕi,j+1 + eijϕij = fij , (2.2)

where i = 0, ..., I; j = 0, ..., J ; a0j = cIj = bi0 = diJ = 0; a, b, c, d ≥ 0; eij ≥
aij + bij + cij + dij .

Let the Dirichlet condition (ϕij = const) be at least in one grid node with
index i = i0 (and j = j0 ), provided 0 ≤ i0 ≤ I. The iterative process for
solving (2.2) can be written as follows (s is the number of iteration):

LU(ϕs+1
ij − ϕ

s
ij) = −Asϕsij + fsij , s = 0, 1, ... (2.3)
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In general case 0 ≤ i0 ≤ I , matrices L and U are defined as follows:

Lvij ≡ vij − αi±1,jvi±1,j for i 6= i0 , (2.4)

where index i− 1 is for i < i0, and index i+ 1 is for i > i0,

Lvij ≡ vij for i = i0; (2.5)

Uuij ≡ γijuij − βijui,j−1 − δijui,j+1 − ξijui±1,j for i 6= i0, (2.6)

(index i+ 1 is for i < i0, and index i− 1 is for i > i0), and

Uuij ≡ (As − F s)uij for i = i0. (2.7)

Equations for definition of unknown coefficients in matrices L and U are
derived from the matrix equality LU = As − F s + B, where matrix F is
diagonal, with elements Fij = (∂f/∂ϕ)ij ≤ 0, and matrix B is formed from
two interpolation equations ϕi±1,j±1 +ωϕij = ϕi,j±1 +ωϕi±1,j , where ω is the
iteration parameter:

Buij ≡ αi±1,jβi±1,j [ui±1,j−1 − ui,j−1 + ω(uij − ui±1,j)]

+αi±1,jδi±1,j [ui±1,j+1 − ui,j+1 + ω(uij − ui±1,j)] , (2.8)

where index i− 1 is for i < i0, index i+ 1 is for i > i0.
As the result of these definitions, in the case of 0 < i0 < I, one can ob-

tain the recurrent formulas of opposite-currents algorithm for calculating the
coefficients:

αi−1,j = asij/[γ − ω(β + δ)]i−1,j , αi+1,j = csij/[γ − ω(β + δ)]i+1,j , (2.9)

βij = bsij + αi±1,jβi±1,j , δij = dsij + αi±1,jδi±1,j , (2.10)

(index i− 1 is for i < i0, and index i+ 1 is for i > i0),

γij = esij − F sij − asij + αi−1,j(γ − cs)i−1,j for i < i0,

γij = esij − F sij − csij + αi+1,j(γ − as)i+1,j for i > i0,

ξij = csij for i < i0, ξij = asij for i > i0. (2.11)

In the special case i0 = 0 (or i0 = I), formulas for i < i0 (or i > i0) are
excluded from the algorithm.

The calculation of coefficients is made in following order. For all j = 0, ..., J ,
in the sequence of i = 0, 1, ..., i0−1, I, I−1, ..., i0+1, the coefficients of L and U
are calculated by (2.9)–(2.11), and the following equation is also solved (derived
from (2.3)):

Lvij = −Asϕsij + fsij .

After that, one should solve equation Uuij = vij , and calculate ϕs+1
ij =

ϕsij + uij , as this follows.
In the case of 0 < i0 < I, the system of three equations Uuij = vij for lines

i = i0 − 1, i0, i0 + 1 is solved by Thomas matrix algorithm, and after that, the
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remaining equations Uuij = vij are successively solved for values of i in the
sequence of i = i0+2, i0+3, ..., I, i0−2, i0−3, ..., 0 by Thomas scalar algorithm.

For the case of i0 = 0, the system of two equations Uuij = vij for i =
i0, i0 + 1 is solved by the matrix algorithm of Thomas, and then the equations
Uuij = vij are solved by the scalar Thomas algorithm for the rest values of i
in the sequence of i = i0 + 2, i0 + 3, ..., I.

For the case of i0 = I, the system of two equations Uuij = vij for i =
i0 − 1, i0 is solved by the matrix algorithm of Thomas, and then the equations
Uuij = vij are solved by the scalar algorithm of Thomas for the rest values of
i in the sequence of i = i0 − 2, i0 − 3, ..., 0.

In the previous works (e.g. [7, 10]), I used another form of equation (2.7)
which did not require the use of the matrix algorithm of Thomas, but was less
effective.

It is obvious that one can apply the matrix algorithm of Thomas not only
to three lines, as above, but to more lines, for example to five lines (i = i0 −
2, i0 − 1, i0, i0 + 1, i0 + 2). Naturally, in this case, definitions (2.5) and (2.7)
should be valid for lines i = i0 − 1, i0, i0 + 1, and definitions (2.4) and (2.6)
should be valid for lines i < i0 − 1, and i > i0 + 1. This 5-lines modification
will be used here for solving the finite-difference problem in quasi-circle.

3 On the iteration parameter ω

The transition matrix T for transition to the next iteration (ϕs+1 = T sϕs) can
be expressed as

T = (A− F +B)−1B . (3.1)

Let us consider for simplicity a case of Poisson equation in a square-mesh FD
grid, without dependence of function f on ϕ, and provided i0 = I for certainty.
Then, one can define eigenvalues of T by substitution of exp(ϊπ(mI i+

n
J j)) into

(2.2) and (2.8), where ϊ =
√
−1, and estimate the absolute value θ of them.

The result can be presented as

θ ≤ | λn −Ω
λn −Ω +R(µ+ λn/µ)

| .

Here, Ω = (1 − ω)/2, λn = sin2(πn2J ) , µ =
√
λm is the absolute value of

[1 − exp(ϊπmI )]/2, where λm = sin2(πm2I ), and finally R = b
2αi−1βi−1

. Using

definitions (2.9) and (2.10), one can derive the continued fraction 2R + 1 =
ρ − 1

ρ−... , where ρ = 4Ω + 2, from which one can obtain the asymptotic value

of R = Ω +
√
Ω +Ω2.

The eigenvalues λm of second FD derivative respect to i are independent
on the eigenvalues λn, therefore, let us evaluate them empirically by expression
µ = (1 +

√
2)Ω/R, which gives 0 ≤ µ ≤ 1 if 0 ≤ Ω ≤ 1.

Then, as the result, one can obtain

θ ≤ 1√
2

|λn −Ω|
λn +Ω + 2Rλn/(2 +

√
2)
<
|λn −Ω|
λn +Ω

. (3.2)
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The right-hand side of (3.2) is the same which is used in the ADI method
for obtaining optimal set of iteration parameters in the case of commuting
operators [15]. Consequently, one can suppose that optimal parameters for IFI
are linked with those for ADI, and use ADI-parameters for definition of Ω in
IFI. As advantage, here in IFI is no requirement of commutation of operators,
as it is in ADI. This lets to IFI be more effective in mixed boundary-value
problems.

Following [15], the set of ADI parameters by Jordan [16] gives for IFI the
cyclical set of increasing values ω (S is the period of cycle):

ωs = 1− 2Ωs , s = 0, ..., S − 1 ; ωs = ωs−S , s ≥ S , (3.3)

where Ωs =
√
ηq(2σ−1)/4(1 + q1+σ + q1−σ)/(1 + qσ + q2−σ) , 2s+ 1 ≥ S ; Ωs =

η/ΩS−1−s , 2s + 1 < S ; η = sin2( π
2bcJ

), where q = η2(1 + η2/2)/16, σ =
(2s+ 1)/(2S), index c is the number of cycle.

The period of cycle can be estimated by empirical formula: S = [2ln(J)].
A solution of problem changes its spectrum after each applying the cycle.

Here, this is taken into consideration by empirical parameter bc. For instance,
in the experiment below, the set of values bc={1, 1/2, 2, 1/4, 4, 1/8, 8, ...} was
used.

As αi−1 and θ are less when ω is less, then the sequence of values ωs
inside the cycle should be from minimum to maximum, in general. However,
empirically, the best sequence proved be following the ”hammer” principle:
ω0, ωS−1, ωk, ωk+1, ω1, ωS−2, ωk−1, ωk+2, ω2, ..., where k is the integer part of
S/2.

4 Iterative procedure for estimating optimal iteration
parameters

One can estimate the optimal set of iteration parameters in following iterative
procedure by using the least-squares method. Choosing a representative set of
eigenvalues λn, and λm, one can write a functional of error from (3.1) as:

F =
∑
m,n

S−1∏
s=0

λm(λn −Ωs)2

λm(λn −Ωs)2 + 2R(λm + λn)(λn −Ωs) + [R(λm + λn)]2
. (4.1)

For obtaining minimum of the functional, one should set the first derivatives
from F respect to Ωs equal to zero. Resulting non-linear system of equations is
transformed to the linear system for using in the iterative process (k = 0, 1, ...
is the index of iteration):

S−1∑
r=0

∂2F

∂Ωkr ∂Ω
k
s

(Ωk+1
r −Ωkr ) = − ∂F

∂Ωks
, s = 0, ..., S − 1 . (4.2)

The iterative process (4.2) begins from initial values Ω0
s = Ωs calculated by

equations (3.3).

Math. Model. Anal., 25(1):37–52, 2020.
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For example, values ω calculated by formulas (3.3), and by method (4.1)–
(4.2) for S = 10 are compared in Table 1. These values do not differ signifi-
cantly.

This iterative procedure spends much time for obtaining the values of pa-
rameters and therefore is not recommended for practical using.

Table 1. Optimal sets of iteration parameters for J=200, and S=10.

Eq.(3.3) -0.7280 0.99097 0.2673 0.9970 0.7503 0.9990 0.9173 0.9997 0.9727 0.99986
Eq.(4.2) -0.7278 0.99098 0.2679 0.9970 0.7445 0.9990 0.9173 0.9997 0.9726 0.99986

5 IFI technique for 9-point finite-difference scheme

The FD scheme (2.2) is constructed by applying a 3-point stencil in 1D to FD
approximation of equation (2.1) respect to each coordinate. If applying the
high-order 5-point stencil in 1D (see e.g. [4]) to this, one obtains the 9-point
FD scheme ”cross” which gives a system of algebraic equations of the form
Aϕ = f for 2D elliptic boundary-value problems, where the square matrix A is
defined in the grid nodes as

Aϕij ≡ −aijϕi−1,j − bijϕi,j−1 − cijϕi+1,j − dijϕi,j+1 + eijϕij

+gijϕi−2,j + hijϕi,j−2 +mijϕi+2,j + nijϕi,j+2 = fij , (5.1)

where i = 0, ..., I; j = 0, ..., J ; a0j = bi0 = cIj = diJ = g0j = hi0 = mIj =
niJ = 0; g1j = hi1 = mI−1,j = ni,J−1 = 0; a, b, c, d, g, h,m, n ≥ 0; eij ≥
aij + bij + cij + dij − gij − hij −mij − nij .

Let the Dirichlet condition (ϕij = const) be at least in one grid node with
index i = i0, and 0 ≤ i0 ≤ I. The iterative process for solving (5.1) can be
written as follows (s is the number of iteration):

LU(ϕs+1
ij − ϕ

s
ij) = −Asϕsij + fsij , s = 0, 1, . . . .

In the general case 0 ≤ i0 ≤ I, matrices L and U can be defined by some
several ways. Here, we present the most simple and symmetric variant:

Lvij ≡ vij − αi±1,jvi±1,j + εi±1,jvi±2,j ,

where indexes i− 1 and i− 2 are for i < i0, and indexes i+ 1 and i+ 2 are for
i > i0;

Lvij ≡ vij for i = i0;

Uuij ≡ γijuij − βijui,j−1 − δijui,j+1 + ηijui,j−2 + ζijui,j+2

− ξijui±1,j + ψijui±2,j ,

indexes i+1 and i+2 are for i < i0, and indexes i− 1 and i− 2 are for i > i0;

Uuij ≡ (As − F s)uij for i = i0.
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Equations for definition of the unknown coefficients in L and U are derived,
as above, from the matrix equality LU = As − F s + B, where matrix F is
diagonal, with elements Fij = (∂f/∂ϕ)ij ≤ 0, and matrix B is formed from
eight interpolation equations ϕi±k,j±l+ωϕij = ϕi,j±l+ωϕi±k,j , where ω is the
iteration parameter, and k, l = 1, 2.

As the result, one can obtain the recurrent formulas:

εi−1,j = gsij/[γ − ω(β + δ − η − ζ)]i−2,j for i < i0, (5.2)

εi+1,j = ms
ij/[γ − ω(β + δ − η − ζ)]i+2,j for i > i0;

αi−1,j = (asij − εi−1,jξi−2,j)/[γ − ω(β + δ − η − ζ)]i−1,j for i < i0,

αi+1,j = (csij − εi+1,jξi+2,j)/[γ − ω(β + δ − η − ζ)]i+1,j for i > i0;

βij = bsij+αi±1,jβi±1,j−εi±1,jβi±2,j , δij = dsij+αi±1,jδi±1,j−εi±1,jδi±2,j ,

ηij = hsij+αi±1,jηi±1,j−εi±1,jηi±2,j , ζij = nsij+αi±1,jζi±1,j−εi±1,jζi±2,j ,

indexes i−1 and i−2 are for i < i0, and indexes i+1 and i+ 2 are for i > i0;

γij = esij − F sij−asij+gsij+αi−1,j(γ − ξ)i−1,j−εi−1,j(γ−ξ +ms)i−2,j (i < i0),

γij = esij−F sij−csij+ms
ij + αi+1,j(γ − ξ)i+1,j−εi+1,j(γ−ξ + gs)i+2,j (i > i0);

ξij = csij−αi−1,jm
s
i−1,j for i < i0, ξij = asij−αi+1,jg

s
i+1,j for i > i0;

ψij = ms
ij for i < i0, ψij = gsij for i > i0. (5.3)

The calculations by algorithm are made in the following order. For all
j = 0, ..., J , in sequence of i = I, I − 1, ..., i0 + 2, i0 + 1, 0, 1, 2, ..., i0 − 2, i0 − 1,
the coefficients of L and U are calculated by (5.2)–(5.3), and the following
equation is solved, too:

Lvij = −Asϕsij + fsij . (5.4)

Then, the system of five equations Uuij = vij for i = i0 − 2, i0 − 1, i0, i0 +
1, i0 + 2 with index j = 0, ..., J is solved by the matrix five-diagonal Thomas
algorithm along j to obtain ui0−2,j , ui0−1,j , ui0,j , ui0+1,j , and ui0+2,j .

Naturally, the system consists of five equations only if 1 < i0 < I − 1. For
i0 = 1 or i0 = I − 1, it becomes the system of four equations, and for i0 = 0 or
i0 = I, it is of three equations.

Then, for all remaining lines i in the sequence of i = i0− 3, i0− 4, ..., 0, i0 +
3, i0 + 4, ..., I, the equation Uuij = vij is solved by the scalar five diagonal
Thomas algorithm along j = 0, ..., J . Finally, ϕs+1

ij = ϕsij + uij is calculated.
Iteration parameters should be corrected for the new scheme. This can be

made by using in (3.3) the other definition η = sin2( π
2bcJ

)(1− 1
4 cos( π2J ))2.

6 Using 5-point IFI solver for 9-point FD scheme

Equation (5.4), and coupled to it Uuij = vij can be also solved with definitions
(2.4)–(2.11) for L and U which use the FD scheme (2.2) instead of (5.1). It is
possible if eigenvalues of operators B, and A which defined by (2.8), and (2.2)
are close to those defined by (5.1). In such case, the transition operator (3.1)

Math. Model. Anal., 25(1):37–52, 2020.
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is distorted insignificant, and the using (3.3) for iteration parameters gives a
convergence of iterative process. As shown in the experiment (see Section 9),
this is so for Poisson equation.

7 Poisson equation in a rectangle area

In the numerical experiment below, it is made a one test of IFI techniques for
the solution of Neumann-type boundary value problem for Poisson equation in
a square.

Let ϕ = x2z2, then as the result, normal derivatives at the boundaries are
∂ϕ
∂x = 2xz2 and ∂ϕ

∂z = 2x2z, and the Poisson equation is

∂2ϕ

∂x2
+
∂2ϕ

∂z2
= 2(x2 + z2) . (7.1)

The 5-point FD scheme (2.2) and the 9-point FD scheme (5.1) are precise
schemes for (7.1), that is ϕij ≡ ϕ, or the FD solution is equal to the preset
solution in all points of FD area including the boundary.

Let the grid size I = J . At one boundary node, the FD value is fixed:
ϕi0,j0 = ϕ. As an initial distribution (s = 0) in all other nodes, a step-wise
function is used as the mostly inconvenient one: ϕ0

ij = ϕ+ 1 for i+ j < I, and

ϕ0
ij = ϕ− 1 for i+ j ≥ I. The fastest convergence is observed when i0 = [I/2].

Another test is made for the solution of Dirichlet boundary value problem
for Poisson equation in the square. Here, the FD values are fixed at all boundary
nodes. In this case, the 5-point and 9-point FD schemes are precise also for

a cubic solution: ϕ = x3z3, provided the Poisson equation is ∂2ϕ
∂x2 + ∂2ϕ

∂z2 =
6xz(x2 + z2).

8 Poisson equation in a quasi-circular area

As an example of application of IFI iterative technique to non-rectangular
areas, the Neumann-type boundary value problem for Poisson equation (7.1)
is considered for an area which is a step-wise approximation to a circle, with
∂ϕ
∂x = 2xz2 at every vertical segment of the boundary, and ∂ϕ

∂z = 2x2z at every
horizontal segment of the boundary. The segment of step-wise boundary is the
grid piece which is nearest to the circle in both i and j directions. At the one
boundary node shared with the circumscribed square, the boundary value ϕij
is fixed.

9 Experiment. Comparison of solvers

The quality of iteration process is observed here on two values: the discrep-
ancy of function d = max

ij
|ϕsij − ϕ|, and the specific residual of equation

r = max
ij
|Aϕsij − fij |/max

ij
|Aϕ0

ij − fij |.
In Figures 1– 3, curves of quality, that are graphics of the residual function

− ln(r) in dependence on s/ ln(J), are presented for the Dirichlet boundary-
value problem for Poisson equation in square. An ideal graphic seems to be a
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straight line. Figure 1 corresponds to the variant of the 5-point solver and the
5-point FD scheme (2.2). Figure 2 corresponds to the variant of the 9-point
solver and the 9-point FD scheme (5.1).

Figure 1. 5-solver, 5-scheme, Dirichlet. Figure 2. 9-solver, 9-scheme, Dirichlet.

Table 2. Number of iterations on J . Dirichlet problem. In IFI, the 5-point solver, 5-point
scheme is applied.

J 50 200 500 2000

IFI, ε = 10−10 25 37 44 54
IFI, ε = 10−6 15 21 23 29
ADI, ε = 10−6 13 17 20 24

A− T, ε = 10−6 29 58 91 182

In Table 2, the number of IFI iterations is presented for variant of Figure 1,
and different error levels ε (i.e. until it becomes r ≤ ε), in comparison with the
theoretical number of iterations taken from [15] for ADI and A-T (Alternate-
Triangular) methods. In Table 3, the number of IFI iterations is shown for two
error levels, and the 9-point solver for Dirichlet problem, variant of Figure 2.

Table 3. Number of iterations on J . Dirichlet problem, the 9-point solver, 9-point scheme.

J 50 200 500 2000

ε = 10−10 27 39 44 56
ε = 10−6 15 21 24 31

Figure 3 corresponds to the variant of the 5-point solver and the 9-point FD
scheme. In Figure 4, graphics of the discrepancy function − ln(d) in dependence
on s/ ln(J) are shown for the case of Figure 3.

The quality of solvers in Neumann boundary-value problems for Poisson
equation in square generally depends on position of i0. Results for the best
value i0 = I/2 are presented in Figures 5–8. Dependence on i0 is considered

Math. Model. Anal., 25(1):37–52, 2020.
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Figure 3. 5-solver, 9-scheme, Dirichlet.
Figure 4. 5-solver, 9-scheme, Dirichlet,

d-function.

in Section 11. Figures 5–7 show graphics of function − ln(r) in dependence
on s/ ln(J), and Figure 8 shows graphics of function − ln(d) in dependence on
s/ ln(J).

Figure 5. 5-solver, 5-scheme, Neumann. Figure 6. 9-solver, 9-scheme, Neumann.

Figure 5 corresponds to the variant of the 5-point solver and the 5-point
FD scheme (2.2). Figure 6 corresponds to the variant of the 9-point solver and
the 9-point FD scheme (5.1).

In Table 4, the number of iterations is shown for different error levels,
variant of Figure 5. In Table 5, the number of iterations is shown for different
error levels, variant of Figure 6.

Table 4. Number of iterations on J . Neumann problem, the 5-point solver, 5-point scheme.

J 50 200 500 2000

ε = 10−10 27 39 44 55
ε = 10−6 15 21 23 29

Figure 7 corresponds to the variant of the 5-point solver and the 9-point
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Figure 7. 5-solver, 9-scheme, Neumann.
Figure 8. 5-solver, 9-scheme, Neumann,

d-function.

Table 5. Number of iterations on J . Neumann problem, the 9-point solver, 9-point scheme.

J 50 200 500 2000

ε = 10−10 28 40 46 57
ε = 10−6 16 21 25 31

FD scheme. In Figure 8, graphics of function − ln(d) in dependence on s/ ln(J)
are shown for the case of Figure 7.

Table 6. Number of iterations on J . Neumann problem, the 5-point solver, 9-point scheme.

J 50 200 500 2000

ε = 10−10 27 39 44 55
ε = 10−6 15 21 24 29

In Table 6, the number of iterations is shown for different error levels,
variant of Figure 7. The comparison of Tables 5 and 6 shows that the 5-
point solver behaves better than the 9-point one. The comparison of Tables 2
and 4 shows that the 5-point solver practically doesn’t depend on the type of
boundary-value problem.

From comparison of Figures 1–3, 5–7 and Tables 2–6, one can conclude that
the quality of iteration processes, and number of iterations do not significantly
differ on Dirichlet and Neumann boundary-value problems, and on the 5-point
and 9-point IFI solvers in the case of rectangle area. It should be also noted
that convergence by the discrepancy function is slower than by the residual
one, especially for large J .

Math. Model. Anal., 25(1):37–52, 2020.
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10 Experiment. Quasi-circle area

In Figure 9, the quasi-circle area for J = 500, and equidistant isolines of cal-
culated solution ϕij are shown.

Figure 9. Equidistant lines of equal head for the quasi-circular area.

In Figures 10–11, graphics of quality functions − ln(r), and − ln(d) on
s/ ln(J) are shown for the 5-point solver and the 5-point FD scheme in the Neu-
mann boundary value problem for Poisson equation in quasi-circle, i0 = I/2,
j0 = 0. It was used the 5-lines modification of 5-point solver because the more
simple 3-lines algorithm was considerably slower. The parameter bc was set in
π/2 times more than bc for the square.

In Table 7, the number of iterations is shown for different error levels, variant
of Figure 10. Data of Table 7 and Figure 10 show small slowing the iterative
process in comparing with Table 4 and Figure 5 for the case of rectangle area.

Figure 10. 5-solver, 5-scheme, Neumann
for circle.

Figure 11. 5-solver, 5-scheme,
Neumann, circle, d-function.
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Table 7. Number of iterations for Neumann problem in quasi-circle.

J 50 200 500 2000

ε = 10−10 27 40 47 57
ε = 10−6 16 22 25 31

11 Experiment. Mixed boundary-value problem

Close results of the Dirichlet and Neumann problems let us suppose that solu-
tion of the mixed boundary-value problems (especially which are close to the
Dirichlet or Neumann problems) by IFI must be also economical. However, the
high efficiency is obtained only at high predominance of Dirichlet or Neumann
areas in the all boundary. This can be explained by that the spectra of FD
mixed problems have not the homogeneity of the pure Dirichlet or Neumann
problems.

The similar spectral situation is seemed to be in Neumann problems when
the parameter i0 takes a non-symmetrical position: i0 6= I/2. It is really so,
the number of iterations depends on i0. I tried to decrease the dependence
by a choice of sequence for bc in formula (3.3). In Figure 12, the number of
iterations is presented for reaching r < 10−10, and r < 10−6 as the function
of position (i0/I) in percents. It was set bc = {4, 8, 1/4, 1/2, 1, 1, ...}. The
solution was obtained by the 5-point solver at the 5-point FD scheme.

One can notice from comparison with Section 9 that achieving a relative
constancy of results on i0 entails increasing number of iterations at small values
of J .

Figure 12. Number of iterations on position of i0 in the Neumann boundary-value
problem.

Let us consider now the mixed boundary-value problem for Poisson equa-
tion in the square, as above, at three sides of which have been set Neumann
conditions, and at the fourth one (j = J) has been set the Dirichlet condition
at i0 < i < i00, and the Neumann condition at the rest. Let’s i0 = I/2, and
the parameter i00 changes its value from i0 till I. We will solve the 5-point FD
scheme by the 5-point solver. It is set bc = {1, 3/4, 1, 0.3, 1/2, 1/4, 1/4, ...}.

Math. Model. Anal., 25(1):37–52, 2020.
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In Figure 13, one can see the number of iterations as the function of the
Dirichlet boundary (i00/I) in percents. The curves are far from constants,
especially for large values of J . However, the increasing number of iterations
in area of the nearest to i0 values of i00 (up to 10%) is not large. The left
side of graphics corresponds to the case of Neumann boundary-value problem
(i00 = i0).

Figure 13. Number of iterations on the size of Dirichlet area in the mixed
boundary-value problem.

12 Discussion and conclusions

The suggested IFI technique is powerful for reducing computational expense
due to small number of iterations, and weak dependence on type of boundary
conditions. It is clearly seen from Figures 1–8, and Tables 2–3.

The 5-point IFI solver effectively solves also 9-points FD equations of type
(5.1).

The IFI technique is suitable also for non-rectangle areas. However, it can
be slower than in the rectangular areas, what can require increasing number of
lines used in the matrix algorithm of Thomas.

IFI techniques are at least as fast as the best-known iterative methods
(ADI, A-T), and can be useful for solution of different mixed boundary-value
problems. The mixed problems with the predominant presence of Neumann
boundary conditions are characterized by slow convergence of many iterative
methods of solution. IFI slows down its convergence non-significantly.

Unfortunately, the proposed method for calculating the iteration parameter
ω is not universal, and requires a presence of empirical parameters bc. This lim-
its the effectiveness of applying IFI to complex problems, and requires further
work to improve the IFI technique.

The interesting problem is how many lines for matrix Thomas algorithm
is optimal: 3, 5, 7 or more. The increase in number of lines improves the
convergence but increases computational time. This could be a topic for further
IFI research.

The formulas of IFI algorithm in Section 2, and 5 are written for quasi-linear
FD equations. Linearization of matrix A is done by Picard’s method, and of
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the right part f – by Newton’s method. It is the easiest, stable, and most
natural way. It was successfully applied to the groundwater problems [8,9,11].
Application of Newton’s method to matrix A is unstable.

As in quasi-linear equations, IFI is successfully applied to problems with
significantly varying coefficients, and to complicated ones. One can see exam-
ples in [7,8,9,11,12,13,14]. In such problems, behavior of IFI depends on how
lucky setting empirical parameters bc.

The suggested IFI technique can be expanded to 3D problems by a way of
works [9] and [11]. As the factorization here is made by three coordinates then
there are two ways to introduce the lines for matrix Thomas algorithm: 1) in
the third stage of factorization, or 2) in the second and third stages. In the
first case, an area of the lines for matrix Thomas algorithm is a plane; in the
second case, it is a volume. The 3D algorithms could be a topic for further IFI
research, too.

Comment to references

Articles [2, 3, 5, 8, 9, 10, 11, 12, 14] are published in Russian. Scarce articles of
the author [8, 9, 10,11,12,13] can be found at the web-address
https://yadi.sk/d/plXWGEUGJRIkWQ.
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