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Abstract. We consider boundary value problems of the type x′′ = f(t, x, x′), (∗)
x(a) = A, x(b) = B. A solution ξ(t) of the above BVP is said to be of type i
if a solution y(t) of the respective equation of variations y′′ = fx(t, ξ(t), ξ′(t))y +
fx′(t, ξ(t), ξ′(t))y′, y(a) = 0, y′(a) = 1, has exactly i zeros in the interval (a, b) and
y(b) 6= 0. Suppose there exist two solutions x1(t) and x2(t) of the BVP. We study
properties of the set S of all solutions x(t) of the equation (∗) such that x(a) = A,
x′1(a) ≤ x′(a) ≤ x′2(a) provided that solutions extend to the interval [a, b].
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1 Introduction

The classical object in the theory of nonlinear boundary value problems [1],
[4], [3] is the below problem

x′′ = f(t, x, x′), (1.1)

x(a) = A, x(b) = B. (1.2)

The main issues considering the qualitative analysis of this type problems are
the existence of a solution, conditions for the uniqueness, estimates of the num-
ber of solutions, properties of solutions. We believe that the main information
concerning properties of solutions and multiplicity of solutions can be treated
using the notion of the type of a solution. The type of a solution for the problem
(1.1), (1.2) can be introduced as in [7].

If the function f in (1.1) is continuously differentiable and equations of
variations

y′′ = fx(t, ξ(t), ξ′(t))y + fx′(t, ξ(t), ξ′(t))y′ (1.3)
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can be considered, the definition of the type of a solution can be made in a
simplified form.

We say that a solution ξ(t) of the BVP (1.1), (1.2) is of type i, where
i = 0, 1, . . . , if a solution y(t) of the respective equation of variations (1.3)
given with the initial conditions

y(a) = 0, y′(a) = 1

has exactly i zeros in the interval (a, b) and y(b) 6= 0.
For instance, the trivial solution of the BVP x′′ = −x3, x(0) = 0, x(b) = 0

is of type zero for any b > 0 since a solution y(t) of the Cauchy problem y′′ = 0,
y(0) = 0, y′(0) = 1 has no zeros for t > 0.

We assume that there exist two solutions u(t) and v(t) of the BVP (1.1),
(1.2) and that all intermediate solutions (that is, solutions with the initial data
x(a) = A, u′(a) ≤ x′(a) ≤ v′(a)) are extendable to the interval [a, b]. These
intermediate solutions constitute a set S(u, v). We study properties of this set
which relate to location of solutions, their interrelation and the number of
solutions of BVP (1.1), (1.2).

The paper is organized as follows. In Section 2 we give some preliminary
facts on which to base our results. In Section 3 the specific diagram is consid-
ered that makes it easier to formulate the results. In Section 4 sets of solutions
of the equation are treated which are associated with two given solutions of
BVP.

2 Preliminaries

Denote x(t, γ) a solution of the Cauchy problem

x′′ = f(t, x, x′), x(a) = A, x′(a) = γ. (2.1)

Suppose there are two solutions u := x(t, γ∗) and v := x(t, γ∗) of the BVP (1.1),
(1.2), that is, u(b) = v(b) = B. Let, for definiteness, u′(a) = γ∗ < v′(a) = γ∗.
The equality sign is not possible due to the uniqueness of solutions of the initial
value problems.

We consider a set S(u, v) (S in short) of all solutions of the Cauchy problem
(2.1), where γ ∈ [γ∗, γ

∗]. Suppose the following condition is fulfilled.

(C) all elements of S extend to the interval [a, b].

Lemma 1. There exists a constant M > 0 such that |x(t)| < M and |x′(t)| <
M ∀t ∈ [a, b] for any x ∈ S.

Follows from Theorem 15.1 in [5]. This theorem when interpreted for the
case under consideration says that the set S is compact and connected in
C1[a, b]. Therefore both sets x(t) and x′(t) are equibounded.

Lemma 2. There exists a number δ(M) > 0 such that for any two different
elements x1 and x2 of S the following implication holds:
{x1(t1) = x2(t1), x1(t2) = x2(t2), t1, t2 ∈ [a, b], t1 6= t2} ⇒ |t1 − t2| > δ(M).
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Proof. Let x1 and x2 be different elements of S. Then the difference z(t) =
x2(t)− x1(t) satisfies

z′′(t) = x′′2(t)− x′′1(t) = f(t, x2(t), x′2(t))− f(t, x1(t), x′1(t))

= f(t, x2(t), x′2(t))− f(t, x1(t), x′2(t)) + f(t, x1(t), x′2(t))− f(t, x1(t), x′1(t))

=
f(t, x2(t), x′2(t))− f(t, x1(t), x′2(t))

x2(t)− x1(t)
z(t)

+
f(t, x1(t), x′2(t))− f(t, x1(t), x′1(t))

x′2(t)− x′1(t)
z′(t) = ϕ(t)z + ψ(t)z′,

where

ϕ(t) =


f(t, x2(t), x′2(t))− f(t, x1(t), x′2(t))

x2(t)− x1(t)
, x2(t) 6= x1(t),

fx(t, x1(t), x′2(t)), x2(t) = x1(t);

ψ(t) =


f(t, x1(t), x′2(t))− f(t, x1(t), x′1(t))

x′2(t)− x′1(t)
, x2(t) 6= x1(t),

fx′(t, x1(t), x′1(t)), x2(t) = x1(t);

The functions ϕ(t) and ψ(t) by construction are continuous in the interval [a, b].
The following estimates hold for t ∈ [a, b] :

|ϕ(t)| ≤M1(M) := max{|fx(t, x, y)| : a ≤ t ≤ b, |x| ≤M, |y| ≤M},
|ψ(t)| ≤M2(M) := max{|fy(t, x, y)| : a ≤ t ≤ b, |x| ≤M, |y| ≤M}.

Then by the Vallée Poussin Theorem [6, p. 122] the difference between any
two zeros of any solution of the equation z′′ = ϕ(t)z + ψ(t)z′ is not less than
the constant

δ(M) = (
√

9M2
2 + 24M2

1 − 3M2)/2M1.

Since M1 and M2 depend only on M, the proof is completed. ut

3 Triangle region

Consider the triangle region depicted in Figure 1.

V

U

W

P

Figure 1. The triangle region: U = (γ∗, γ∗), W = (γ∗, γ∗), V = (γ∗, γ∗), P = (γ1, γ2).

Math. Model. Anal., 21(5):659–667, 2016.
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This region is associated with the set S and solutions u = x(t, γ∗), v =
x(t, γ∗). There are x′(a) on both axis. The vertices are U = {γ∗, γ∗}, V =
{γ∗, γ∗}, W = {γ∗, γ∗}. Any point P with the coordinates (γ1, γ2) in this re-
gion corresponds to a pair of solutions x(t, γ1) and x(t, γ2). The vertex W corre-
sponds to the pair x(t, γ∗) and x(t, γ∗). Any point on the side UW corresponds
to x(t, γ∗) and x(t, γ), where γ∗ < γ ≤ γ∗. Consequently any point on the seg-
ment WV relates to an ordered couple of solutions x(t, γ), x(t, γ∗). Any point
on the hypotenuse UV is associated with x(t, γ), x(t, γ), where γ∗ ≤ γ ≤ γ∗. We
collect some useful information at any point P of this region included vertices
and the sides. For any i = 1, 2, . . . we define functions Zi(γ1, γ2) which are the
i-th zero (if any) of the difference x(t, γ1)− x(t, γ2) in the interval (a, b].

Of course, Z1 < Z2 < . . .. Especially interesting is the case of Zi(γ1, γ2) = b.
This means that graphs of solutions x(t, γ1) and x(t, γ2) intersect at t = b (they
may intersect at a point (b, ·) other than (b, B) and therefore need not to be
solutions of the BVP) and this point of intersection is i-th, that is, there are
i− 1 cross points of the graphs of both solutions in the interval (a, b).

Points on the side UW correspond to couples of solutions x(t, γ∗) and x(t, γ)
and the respective values of Zi(γ∗, γ) reflect intersections of graphs of the re-
spective solutions. Similarly for the side WV. Points on the hypotenuse UV are
associated with the couples (x(t, γ), x(t, γ)). The functions Zi(γ, γ) for these
particular couples of solutions are defined as i-th zeros of a solution y(t) of
equation of variations

y′′ = fx(t, x(t, γ), x′(t, γ))y + fx′(t, x(t, γ), x′(t, γ))y′

considered with the initial conditions y(a) = 0, y′(a) = 1. This is justified by the
fact that y(t) is an approximation of the difference x(t, γ1)−x(t, γ) as γ1 → γ,
where x(t, γ1) and x(t, γ) are solutions of equation x′′ = f(t, x, x′) subject
to the initial conditions x(a, γ1) = x(a, γ) = 0, x′(a, γ1) = γ1, x

′(a, γ) = γ
respectively. Then functions Z(·, ·) remain continuous on the entire triangle
UWV.

To illustrate the above introduced functions we provide two pictures with
traces Zi(b) := { section of the graph of Zi(·, ·) by the plane t = b} on the tri-
angle region.

Z2HΓ1,Γ2L

Z1HΓ1,Γ2L
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Figure 2. Z1(1), Z2(1) for BVP x′′ = x3 − (5π/2)2x, x(0) = x(1) = 0, u′(0) = 0,
v′(0) = 43.594 (schematically).

The triangle region for the equation x′′ = x3 − (5π/2)2x, considered in the
interval [0, 1], is depicted in Figure 2. The trivial solution is identified with u
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and v is a solution with the initial conditions v(0) = 0, v′(0) = 43.594. The
Cauchy problems x(0) = 0, x′(0) = γ were considered, where γ ∈ [0, 43.594].
For any couple of solutions x(t; γ1) and x(t; γ2) the first point of intersection of
their graphs is Z1(γ1, γ2), the second cross point provides a value for Z2(γ1, γ2)
and so on. If Z1(γ1, γ2) = 1 for some (γ1, γ2) this means that the respective
solutions x(t; γ1) and x(t; γ2) are equal at t = 1 for the first time after t = 0.
The segment of a curve Z1 in Figure 2 is an evidence of the existence of a
continuum of such solutions. It is to be mentioned that these solutions need
not to satisfy the boundary condition x(1) = 0. However the upper point of the
segment Z1 indicates that there is a solution other than v that like v satisfies
the condition x(1) = 0 and, like v, is a solution of the boundary value problem
x(0) = 0, x(1) = 0 for the above equation. Similarly, the segment Z2 in Fig. 2
points out to (γ1, γ2) corresponding to solutions that intersect exactly at t = 1
for the second time in the interval (0, 1]. The very left point of the segment Z2

corresponds to a solution that, like u(t) ≡ 0, satisfies x(1) = 0 and is a solution
of the boundary value problem x(0) = 0, x(1) = 0. The segments Z1 and
Z2 are obtained by joining of points of intersection of the respective solutions
calculated by Mathematica. Therefore all values are approximate.

Z2HΓ1,Γ2L

Z1HΓ1,Γ2L
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Figure 3. Z1(1), Z2(1) for BVP x′′ = −2x3, x(0) = x(1) = 0, u′(0) = 0, v′(0) = 27.514
(precisely, since solutions are known analytically).

In Figure 3 the equation x′′ = −2x3 is considered in the interval [0, 1].
The two base solutions u and v are respectively the trivial one and the so-
lution of the Cauchy problem v(0) = 0, v′(0) = 27.514. Since a solution
of the Cauchy problem x(0) = 0, x′(0) = γ is known analytically, that is,
x(t; γ) =

√
γ sl(
√
γt), where sl t is the lemniscate sine function (computable by

Mathematica) both curves Z1(1) and Z2(1) can be constructed and visualized as
Z1(1) = {(γ1, γ2) ∈ (0, 27.514)× (0, 27.514), γ1 > γ2 : the difference x(t, γ1)−
−x(t, γ2) has the first zero at t = 1}. The curve Z2 is constructed similarly
(“the first zero” should be replaced by “the second zero”).

We state a number of simple assertions below which can be proved merely
by observing Figure 1.

Proposition 1. If Zi(γ∗, γ) = b for some i ∈ N and γ ∈ (γ∗, γ
∗] then x(t, γ) is

a solution of the BVP (1.1), (1.2) and x(t, γ) has i − 1 points of intersection
with x(t, γ∗) in the interval (a, b).

Math. Model. Anal., 21(5):659–667, 2016.
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Proof. Since x(b, γ) = x(b, γ∗) and x(b, γ∗) = B it follows that x(b, γ) = B
also and therefore x(t, γ) is a solution of the BVP (1.1), (1.2). The second
assertion follows from the definition of function Zi. ut

Remark 1. Since the solutions x(t, γ∗) and x(t, γ∗) satisfy x(b, γ∗) = x(b, γ∗) =
B it follows that Zi(γ∗, γ

∗) = b for some i ∈ N.

Proposition 2. If Zi(γ, γ
∗) = b for some i ∈ N and γ ∈ [γ∗, γ

∗) then x(t, γ) is
a solution of the BVP (1.1), (1.2) and x(t, γ) has i − 1 points of intersection
with x(t, γ∗) in the interval (a, b).

This assertion is symmetric to the previous one.

Proposition 3. If there exists a solution x(t, γ) of the BVP (1.1), (1.2) with
γ ∈ (γ∗, γ

∗) then Zi(γ, γ
∗) = b and Zj(γ, γ∗) = b for some i, j ∈ N.

Proof. Since x(b, γ) = B = x(b, γ∗) = x(b, γ∗), the graphs of all three solutions
intersect at (b, B). The assertion follows from definition of Zi. ut

Corollary 1. If Zi(γ1, γ2) = b for some i ∈ N and some point (γ1, γ2) in the
interior of the triangle region then both solutions x(t, γ1) and x(t, γ2) either
solve the problem or do not solve the BVP.

Proof. Follows from definition of Zi(γ1, γ2). ut

Proposition 4. Suppose solutions x(t, γ∗) and x(t, γ∗) are of types n and m
respectively and |n−m| ≥ 2. Then there exist at least |n−m−1| more solutions
of the BVP.

This assertion was proved in [2].

Remark 2. There are examples of equations such that there is a solution of type
1 and a solution of type 0 but there are not more solutions of the problem. The
problem x′′ = ϕ(x), x(0) = x(1) = 0, where

ϕ(x) =

{
−x3, x > 0,
0, x ≤ 0

has only the trivial solution (of zero type) and a solution without zeros in (0, 1)
(of type 1).

Remark 3. There are examples of problems that have a continuum of solutions
between two given solutions. Consider the problem x′′ = ψ(x), x(0) = x(π) =
0, where

ψ(x) =

 1, x > 1,
−x, −1 ≤ x ≤ 1,
−1, x < −1,

This problem has two solutions u = − sin t and v = sin t and a continuum
of solutions x(t) = α sin t, where α ∈ (−1, 1). There are no solutions of the
problem with x′(0) > 1 or x′(0) < −1.
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It was proved in the paper by L. Erbe that if for any solution x(t, γ) of
equation (1.1) the respective equation of variations (1.3) is disconjugate then
there is no more than a unique solution of the BVP.

Corollary 2. In the set S(u, v) there is a solution with the equation of variations
(1.3) such that it is not disconjugate in the interval (a, b).

We believe that the below statement is valid and formulate it as a hypoth-
esis.

Proposition 5. Suppose that for all solutions x(t, γ) ∈ S(u, v) the respective
equations of variations (1.3) have the property: any y(t) is such that there are
i zeros in the interval (a, b) and y(b) 6= 0. Then there are no solutions of BVP
in the set S(u, v) except u and v.

Remark 4. There are examples of problems that have solutions of the same
type. Consider the problem x′′ = −12x+ x3, x(0) = x(π) = 0. It has solutions
for x′(0) ' ±6.3. These solutions are of type 2 as shows the graph of the
respective equations of variations depicted in Figure 4.

Π

2

Π

Figure 4. The solution of the problem x′′ = −12x+ x3, x(0) = x(π) = 0 together with
the solution y(t) (dashed) of the respective equation of variations.

4 Interrelations of two solutions of BVP

We claim that interrelation of two solutions of BVP is not arbitrary.
Proposition 4 says that if types of u and v are different (respectively n and

m with |n−m| ≥ 2) then there exist additional solutions. Remark 2 provides
the example of no more solutions of BVP if |n−m| = 1.

The case of two solutions u and v with equal indices is specific. Such solu-
tions cannot intersect arbitrarily. We believe that the number of intersections
of graphs of both solutions in that case is approximately the same as their
common type.

At the moment we are able to prove the following assertion.

Proposition 6. Let a set S(u, v) be given as above. Suppose both solutions
u and v are of type i. Let also the following hold: either Zi(γ∗, β) < b <
Zi+1(γ∗, β) ∀β ∈ (γ∗, γ

∗) or Zi(α, γ
∗) < b < Zi+1(α, γ∗) ∀α ∈ (γ∗, γ

∗).

Math. Model. Anal., 21(5):659–667, 2016.
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Then the difference u(t)− v(t) has at least i− 1 and at most i zeros in the
interval (a, b).

Proof. Consider the first case Zi(γ∗, β) < b < Zi+1(γ∗, β) ∀β ∈ (γ∗, γ
∗). This

means that the difference u(t)− x(t, γ) has exactly i zeros in the interval (a, b)
and u(b)−x(b, γ) 6= 0 for any γ ∈ (γ∗, γ

∗). Recall the triangle region depicted in
Fig. 1. Changing γ from γ∗ to γ∗ means going from vertex V to W. Therefore at
W one has either Zi(γ∗, γ

∗) ≤ b < Zi+1(γ∗, β) or Zi(γ∗, γ
∗) < b ≤ Zi+1(γ∗, β).

This means that either the difference u(t)− v(t) has at least i− 1 and at most
i zeros in the interval (a, b). ut

Remark 5. It was proved in [7] that quasilinear problem of the form

(l2x)(t) = ϕ(t, x, x′), x(a) = A, x(b) = B (4.1)

always has solutions of the type which corresponds to the oscillatory type of
the linear part (l2x)(t) := x′′ + p(t)x′ + q(t)x. If there are multiple (more than
one) solutions of the problem (4.1) then xmax(t) and xmin(t) are of this type.
Recall that xmax(t) (resp.: xmin(t)) is a solution of the problem (4.1) that has
maximal (resp.: minimal) value of x′(a).

Therefore the following corollary of Proposition 6 is valid.

Corollary 3. Suppose xmin and xmax are solutions of a quasilinear problem
(4.1) as described above and the type of the linear part is i.

Then the difference xmax(t)−xmin(t) has at least i− 1 and at most i zeros
in the interval (a, b).

Conclusions

In case of multiple solutions of the BVP (1.1), (1.2) it is reasonable to consider
types of solutions expressed in terms of oscillatory behaviour of the respective
equations of variations.

If these solutions are of different types then there exist additional solutions
of the BVP (1.1), (1.2). Namely, if the Dirichlet problem has solutions xn and
xm of different types ( n 6= m) and |m − n| ≥ 2, then there exist at least
|m− n| − 1 more others solutions of this BVP.

The relative positions of different solutions of BVP depend on the structure
of sets defined by Zi = b.
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