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Abstract. In this paper, we define some integral transforms and obtain suitable
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1 Introduction

Throughout the paper we will consider real and measurable functions which
are defined on the finite interval [a, b]. For p > 1, let L?([a, b]) denote the space
of real functions with the bounded norm

b
191, = ([ L an/r < oc
and L*([a, b]) the space of bounded functions with the norm

[flloe = [Ifll = sup [f(t)] < oo.
a<t<b
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In many integral inequalities, the norms ||.||, and/or ||.|| are applied. For ex-
ample, if h € L!([a,b]) and g € L*([a, b]), then we have

[ somcra] < ai ol

cf [17]. In 1934, Griiss [6] showed that if 4 < g(x) < I and o < h(z) < I
for all x € [a,b] then

ﬁ /abg(t)h( / dt/ #)dt

where Iy, I's,v1,72 are real numbers. The constant 1/4 is the best possible
number in the sense that it cannot be replaced by a smaller number. Another
well-known inequality is due to Ostrowski [18]. In 1938 he proved that if f has
a bounded derivative, then for all « € [a, b] we have

b
’f(x)—bia/ fo)dt] < (z

In 1997, Dragomir and Wang [3] introduced a mixed type of inequalities
(1.1) and (1.2) and named it the Ostrowski-Griiss inequality. In other words,
if f is differentiable with —co < ap < f'(2) < By < 00, Vz € [a, ], then

b — a a —a —

)(FQ 72)7 (11)

—a)? + (b—x)?
2(b—a)

£ Mo - (1.2)

< . (1.3)

—a 2 4

‘ v b—a

Many improvements, extensions and generalizations of these inequalities
have been presented in the literature up to now. We refer to the references
[1,2,4,5,7,8,15,16] at the end of this paper.

In this work, we present a general approach to obtain inequalities of the
type (1.1) to (1.3). We introduce several families of integral transforms and
obtain three types of inequalities, which cover many results available in the
literature.

2 Inequalities for a class of integral transforms

2.1 Definitions

We first define four kinds of integral operators that are directly related to the
results of this paper and give some specific examples for each of them.

2.1.1 The operator Lk(.;x)

Following the papers of Masjed-Jamei and Dragomir [9,10,11,12,13], let us
introduce the integral transform Lk (.;z) as follows. For fixed z € [a,b], if
K (t; ) denotes a kernel with || K| < oo then we define

- /bf(t)K(t x)dt



A Main Class of Integral Inequalities 571

It is clear that if | K| = SUP,<i<b | K (t; )| < oo, then |Li(f;2)| < [|K] | fll
provided that f € Li([a,b]). Also Li(f;x) is bilinear, i.e.

Lays(f;x) = La(f;x)+ Lp(f;m)

and
Lix(f+g;2) = Lr(f;2) + Li(g; ).

Many integral transforms are special cases of the above-mentioned operator.
For example, the Laplace transform

L(f)(s) = /000 e St f(t)dt, s>0,

b
= bia/ F(t)dt
1

Calf)(@) = L / ot a>1, 0<a <1

the mean of f

and the Cesaro mean

x()t
are all special cases of L (f;x).

2.1.2 The operator Fg(.;x)

Suppose that f is a differentiable function. We can introduce the integral

operator
Fi(fi2) = Li / 7

In this case if ||[K|| < oo, then |Fr(f;z)| < |K|1f'|l;, i.e. Fr(;z) is well
defined if f' € L'([a,b]). For example:

o If K(t;x)=1"fora <t <b, then F(f;z)= f(b) — f(a).

o IfK(t;x)=tfora<t<b, then Fx(f;z) =bf(b) —af(a ff
or equivalently

/ F(t)dt = bf(b) — af(a) — Fx(f;2).

This means that F(f;z) can be seen as an error value in the integral
approximation f ft)dt = bf(b) —af(a).

o If K(t;z)=t—wfora<t<b, then
b
Fie(f:2) = b (b) — af(a) — w(f(b) — f(a)) - / f(t)dt

Math. Model. Anal., 21(4):569-584, 2016.
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t—A a<t<uz,

t-B z<t<b then the relation

o If K(tz) :{

J%Umh43—Mﬂm—Lﬁwﬁ+ﬂww—m—ﬂ@m—m
can be seen as an error value in the integral approximation
‘[fwﬁzﬂwwmf@MAH(BMﬂ@-
o If K(t;z) = e % for @, ¢t > 0, then
Fifi) =) +a [~ 10t =aL(f) (o) - 10

2.1.3 The operator Fko(.;x)

Let us take fab K(t;z)dt = k(z) < co and then define

b
K°(ta) = K(ta) — ﬁ/ K(t2) dt = K(t:2) - 7 ! k().

By noting the above definition, another linear operator can be defined as

1) ~ f(a)

b
Fiee(fiz) = [ FOR(ti0)dt = Fe(fi) - k()T

For example:

o If K(t;z) = 1 for a <t < b, then Fgo(f;z) = 0 because we have
Fi(f;x) = f(b) — f(a) and k(z) = b — a.

o If K(t;z) =t for a <t < b, then k(z) = (b*> — a?)/2 and K°(t;z) =
K(t;z) — (a+b)/2. Therefore

b—a
2

b
Fieo(f32) = U@—ﬂ@—/f@@

which can be seen as an error value in the integral approximation

b
/f@wzw—@uw—fwvz

2.1.4 The operator corresponding to higher order derivatives

When f has a second or higher order derivative, we can define the operator

b
F}(g>(f;x):LK(f<j>;x):/ L9 () K (t; ).
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It is clear that Fl((l)(.; x) = Fk(.;x). Moreover, corresponding to the kernel K°
we have

F9)(fia) = /f 0 (t; 2)dt

O (100 (8) — £0) a).

= F(fi0) -
For example:

o If K(t;z) =t2 for a <t < b, then k(x) = (b® — a?)/3 and
FZ (f;2) = b1/ (0) — a*f'(a) — 2(bf (b) — af(a)) +2 / "
o If K(t;x) =t for a <t <b, then k(z) = (b* — a?)/2 and
FQ(f10) = bf' () — af'(a) — (£(b) — f(a)).

2.2 Main results

In the following theorem, we present two-sided bounds for the operator Fi (f; x)
under various conditions on f’. Note that in parts a. and b. of the theorem
we use the norm ||K|| = sup,<,<, | K(t; 7).

Theorem 1. a. Suppose that f'(t) < B(t) for any a <t <b. Then
mi,a S FK(fvx) S Ml,a7
where
b
mia = Lr(B;2) — ||K| </ B(t)dt + f(a) — f(b)> )
and
b
My = L (B;2) + | K| (/ B(t)dt + f(a) — f(b)> :
b. Suppose that a(t) < f'(t) for any a <t <b. Then

miy < Fr(fiz) < My,

where ,
mip = Li(o;z) — || K| (/ a(t)dt + f(b) — f(a)> ;
and
M = Lk (o; ) —|—|K|< (t)dt + f(b) — f(a)).
c. Suppose that a(t) < f'(t) < B(t) for any a <t <b. Then

B(t)
mlcSFK(fvl') <M1cv

Math. Model. Anal., 21(4):569-584, 2016.
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where
m1,c=/ba(t)K(t “"”)7;']((” dt+/ B(t) (t'x);‘K(t;x”dt,
and
b cx) — . b . -
Ml,c=/ a(t)K(t, ) 2IK(t, )Idt+/ B(t)K(t, )+2|K(t, 1

Proof. First we prove part a. Since

b
mdﬁm—Lmey:/<f@—ﬁ@ﬂaumﬁ

SO

b
Fie(fi2) — L(Biz)| < /me—fmnKW@Mt

b
HKH</6@Mﬁ+ﬂ®—f@O,
where || K| = sup,<;<; |K(;2)].

As the proof of part b. is similar, we withdraw it. To prove part c, first we
have

b
Fitfio) - L (05 0) = [0 - 2O ks,

IN

2
whence
Fefio) - e (U520 ) < [l - 2072 (ko

But the condition «(t) < f/(t) < B(t) implies that
aft

)£00) 0 oty

7o) - ;

2

Therefore

s (00,

and it follows that

b -«
< [ POS Ko

FK(f;x)g/ () txdt+/ Blt) — alt) |Ktx)\dt M c.

Similarly, one can obtain

Edﬁ@>%f() /*3 D \K (k) dt = .,
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which proves the theorem. 0O

When the functions a(t) and 5(t) are constant numbers, the following Corol-
lary is derived.

Corollary 1. a. Suppose that f/(t) < By for any a < t < b. Then by recalling
that k(x f K (t;x) dt we have

|Fr (f;2) = Bok(z)| < [ K[| (Bo(b— a) + fa) — f(b))-
b. Suppose that ag < f/(t) for any a <t <b. Then
|F (f;2) — aok(z)] < K| (ao(b —a) + f(b) — f(a)) .

c. Suppose that ag < f/(t) < By for any a <t < b . Then

b
Frlfia) = 205 k) < 22 [ an

Corollary 2. (i) If K > 0 in Theorem 1.c., then
Lk (B;x) < Fr(f;7) < L (o; ).
(i) T |7/(1)] < 0(1) for any a < ¢ < b then |Fic(f:2)] < Ly (0: ).

Theorem 1 can be also formulated for the operators Fio(.; ) and FI((k) ().
Corollary 3 formulates a result for Fo(.;z) and Corollary 4 a result for the
case where f has a second derivative.

Corollary 3. Suppose that ag < f/(t) < By for any a <t < b. Then we have

1 _ b
Filfi)~ k@) 0)-1(0) - 52k < B0 [ jreso)
Corollary 4. Suppose that a(t) < f”(t) < 8(t) for any a <t < b. Then

mlcSF (f7 )<M1,ca

FO(f;) / 1)

and my . and M; . are given as in Theorem 1.c.

where

Note that an important advantage of the presented theorem and its corol-
laries is that the bounds m; and M; are formulated in terms of o, 8 and K
and not in terms of f, f’ or some norms of f or f’. In many papers, see
e.g. [1,2,3,4,7,8,11] the bounds are formulated in terms of || f|| or || f’||, which
are usually hard to calculate.

Math. Model. Anal., 21(4):569-584, 2016.
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2.3 Special cases

In this section, we apply the results of the previous section for a number of
special cases. We follow the approach used in [10] and consider the general
kernel

t <t<
u(p), a<isz, o)
v(t), x <t <b,

K(t;x):{

in which u,v are arbitrary integrable functions such that u € C*([a,z]) and
v € CY((x,b]). By using partial integration, it is easy to verify that the following
relation holds for the kernel (2.1):

Fr(fiz) = (u(@) —v(@))f(x) +v(b)f(b) - ula)f(a)

Moreover we have

k(x)/abK(t;x)dt/j u(t)dt+/:v(t)dt.

Hence, by considering the kernel K°(t;2) = K(t;2) —k(x)/(b—a), we find that

x

Fro(f;2) = (U(I)*’U(Jf))f(l’Hv(b)f(b)*U(a)f(a)*/ u' () f(t)dt

a

b o a T b
f/i V' (t) f(t)dt — % (/a u(t)dt+/z v(t) dt).

Corollary 5. Suppose that «(t) < f'(t) < B(t) for any a <t < b. Then
mi,e < Fg(f;x) < M,

and
m} < Fr(f;2) = k(2)(f(b) = f(a))/(b—a) < MY,

where my ., M . are given in Theorem 1.c and

m(l)_/ba(t)KC’(t;w)+IK"(t;l’)ldH/bﬁ(t)Kc’(t;x) |K°(t;w)|dt7

2 2
and
b o (4. o/(4. b o/4. o4,
M= [ DI gy [ K s) LR,

For special choices of u and v in the kernel (2.1), let us consider some known
examples.
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Ezample 1. By taking the kernel (2.1) as

K(t' )7 t—a, a<t<uz,
TN t—b, e <t<b,

we have

a+b

b
Fie(fs) = (b—a)f(x) - / f(dt and K(x) = (b a)(x -

As an alternative to inequality (1.2), Theorem 1.c gives

b
ma < (b—a)f(x) - / F(t)dt < M,

m :/xa(t)(t—a)dt—s—/bﬁ(t)(t—b)dt

M, = /wﬂ(t)(t—a)dt—k/ba(t)(t—b)dt,

which is a result of [12].

where

and

Ezample 2. If we take the kernel (2.1) as

K(t2) = t—A, a<t<ux,
T =B, w<t<b,

then we obtain
b
Fie(fi2) = (B — A)f(z) - / F(O)dt + £(b)(b— B) — f(a)(a — A),

k(z) = /;(t— A)dt+/:(t— B)dt

A+B_ (a—A)?—(b— B)?
2)_ 2 :

=(B—-A)(z -

Now different choices of A, B lead to different interesting results. For instance,
a) If A= B =0 then

2 2
Fie(f:x) = bf(b) — af(a /f foka) = T

Fie- (f;2) = b (b) — af(a /f ()t — "2 (50 - 1),
b)If A=a+60and B=b—4,then B—A=b—a—3§— 6 and
fO)(b—B)— fla)(a—A)=4f(b) +0f(a).

Math. Model. Anal., 21(4):569-584, 2016.
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Hence, we see that

Fr(fim) = (b—a—3—0)f /f (t)dt + 0f (a) + 6£(b),

a+b
2

Fgo(f;z) = Fr(f;z) —

This means that

[ 0 = 650150~ “E20) @) 050043500+ Fre 510,

(f(b) = f(a)).

where Corollary 6 can be employed to find bounds for the approximate error

Freo(f2).
¢) If we choose A, B as

M) —af@) 0
S0 @ VT - fw M BEAT
then B — A = w and
)b~ B) — f(a)(a— A) = bf(b) — af(a) — F(B)w+ (Fla) — F(B))A = 0.

Hence we find

Fi(fiz) = wf(a /f
d) Finally, if we choose A, B as
A=Xz—-b+c and B=Ax—a)+ec
then B— A = A(b — a) and
f)(b—B) - f(a)(a—A)
=0bf(b) —af(a) = F(O)(A(z —a) +¢) + f(a)(A(z — b) +¢)
= f(0)(b—c+al) — fla)(a—c+bA) = A(f(b) — f(a))z.

3 Application in quadrature rules

In this section, we study in detail a general three point quadrature formula as

b
/ FOdE= M f(@) + (b—a— (n+ A f(Q) 4 Aaf(B), (3.1)

in which Ay, A2 are two free parameters and ¢ € [a, b].
According to previous sections, the error value of the approximation (3.1)
can be written as

Auf(a) + (b —a— (A + A2))f(¢) + A f(b) /f t)dt = Fx(f;¢c),  (3.2)

where, cf. Example 2,

v _Jt=a-X1 a<t<eg
K(t’c)_{thrAz c<t<bh
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Corollary 6. Suppose that a(t) < f'(¢t) < B(t) for any a < ¢ < b. Then the
residue in (3.2) can be bounded as

my < Fg(f;c) < M7,

where

mi‘:/ba(t)K(t c)-|-2|K(tc dt+/ B() tc)—2|K(t;c)\dt’

b
Mf:/ oz(t)K(t c) K(t; o) dt+/ B(t) K(t;x) —|—|K(t C)‘dt.

On the other hand, m} (and M) can be rewritten as

mt = I(i) + I(ii) + II(i) + II(ii),

where

u@:/ﬂmﬂt_“_krzw_“_A”a,

b t—b+ A +t—b
1(@')—/ a(t) L0 ”' el

/5 t—a—XM\ — |t |

Iﬂm):/nmwt_b+A2_“_b+Aﬂm.

2

Now consider the following particular cases.
a) If Ay = Aa =0and ¢ = (a+b)/2 in (3.1), then (3.2) changes to

/f = (b— a)f(c) - Fx(f:0),

such that mj ; < Fg(f;c) < M7, and

c—a (b—a)/2
(i) = / a(z—l—a)z—yz‘dz:/ a(z + a)zdz,
0 0
’ 2+
I(ii) = / alz+0b) 5 dz =0,
c—b

G = A_-Mz+) 2'% 0,
0 2 — |Z| B (b—a)/2
/Cibﬁ(z—kb)i2 dt = _/0 B(b— 2)zdz.

In this way, if a(t) = ag + a1t and B(t) = S + 51t are considered, then we
obtain

I1(id)

1) = 050

agp + aaq b—a
@
2 "6

);

Math. Model. Anal., 21(4):569-584, 2016.
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and
b—a)?
4

_ Bo+ Bib
2

—a

b
+ B 6

I1(ii) = ( ( )

which eventually yields

_ )2 _ _
1= O (o 4 ) 2 Qoo ot D)

).
In a similar way we can find that

(b — a)2 ((al n ﬂl)b —a n —(Oé() + aal) + Bo + B1b
4

M, = .
1,1 6 2 )

The final result is a new bound for the error of midpoint rule as

a+b
2

b
mi, < (b—a)f( )—/f@ﬁSMh

b)If A\ =X =A=(b—a)/2 and ¢ = (a+b)/2 in (3.1), then (3.2) changes to

b—a

b
Fific) = *5 () + fo) - [ fioya, (33)

such that mj o < Fg(f;c) < M7, and

1) = /ca(t)t — (a+b)/2 —|—2|t —(a+ b)/2|dt7
b _(a a

(i) = /a(t)t ( +b)/2+2\t (a2,

. /cﬂ(t)t*(a+b)/272|tf(a+b)/2|dt’
b _(a _ - (a

I1(ii) = /W)f (a+b)/2 2\t (@+b)/2 ,

Therefore

(b—a)/2

_l’_ —

min= [ e+ oZ 5 s+ 0 s,
(a—0b)/2

and in a similar way we can find that

z+ 7|

5 )dz.

(b—a)/2 2 — |Z|
Mip= [ etz TG 1 b+
(a—b)/2

The above results give new bounds for the trapezoidal rule (3.3) as follows

b—a
2

E3
my 5 <

b
U@+ﬂw—/f@ﬁ§Mﬁ
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For instance, if a(t) = ap and B(t) = 5o then

— )2 2
mig = b Sa) (g — Bo) and My, = ® 8@) (Bo — o),
leading to the well known inequality
b— b b—a)?
2@+ 10) - [ i) < L6 - o)

)If0< A =X=A<(b—a)/2and ¢ = (a+b)/2 in (3.1), then (3.2) changes
to a generalized Simpson rule, cf. [9,14,19] as

a—+

b b
A(F@)+ S8 + 0= a =2 (50 ~ [ fe)dt = Futfio),

such that mj 3 < Fg(f;c) < M7 3 and

(b—a)/2—X 2+ |Z| (b—a)/2—X
(1) = / a(z+a+/\)sz: / alz+a+ Nzdz,
—\ 0
A A
I(i7) = / a(z—|—b—)\)i|z‘dz = / alz+b— \)zdz,
(a—b)/2—A 2 0
(b—a)/2—X — |Z| 0
11(i) = / Blz+a+A) dz:/ Bz +a+ Nzdz,
—\ —A
A P |Z‘ 0
I1(i7) = / 6(z+b—/\)7dz:/ Bz +b— \)zdz.
(a—b)/2—A 2 (a—b)/2—A

For instance, if a(t) = ap and (t) = By then we have

—a)/2 — \)2 9
I(Z) = OZOW’ I(Z’L) :OZO%,
(i) = —ﬁo); and  II(ii) = _5()%7

which yields

mho = (a0 — )7 + LE - Lo
(b—a)®> (b—a)X

8_2)'

M 5 = (Bo — ao)(\* +

In this case, we can conclude that

b
A(fa) + £0) + (b—a =20/ (52) - [ piojas

< (Bo — ag)(N* + G ;a)Z & ;a))\)-

Math. Model. Anal., 21(4):569-584, 2016.
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For A = (b —a)/6 we find back a result of [14] in the form

- [ s

and for A = (b — a)/4, the following sharper bound [9] is derived

b—a
6

(F(a) + F(B) + 41 < 2 (6 — ao)(b — ay”,

b—a
4

- [ s

3.1 Numerical experiments

(fa) + F(b) + 2/ < 1i6<ﬁ0 —ao)b—a)% (3.4)

In this section, we present some numerical evidence that illustrates our given
error bounds. For example, as we pointed out, if in the three point quadrature
(3.1) we take Ay = Ay = (b—a)/4, c = (a+b)/2 and ag < f/(t) < By for any

t € [a,b], then according to (3.4), the quadrature rule

/a " 50

b—a

dt =
4

has a minimum error bound equal to

Eo = (b—a)*(Bo — ag)/16.

Clearly Ej shows whenever the values (b — a)2 and By — o are simultaneously

(f<a> Y

a+b

S+ 10)).

small, the quadrature (3.5) is more accurate as Table 1 illustrates it.

T

Table 1. Numerical results for [#3/2¢~* dt by using the quadrature (3.5).

0

Exact value

quadrature (3.5)

|Error|

bound Ejy

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.9

0.000083603050612
0.000875499898740
0.003350778159436
0.008494639897631
0.017186588186474
0.030153102984455
0.047951752295790
0.070972179129481
0.099446467041305

0.000098121349521
0.001018429762975
0.003863958075520
0.009712342132216
0.019486941820256
0.033911410892320
0.053501364793226
0.078574829297206
0.109272148157979

0.000014518298909
0.000142929864234
0.000513179916083
0.001217702234585
0.002300353633783
0.003758307907865
0.005549612497436
0.007602650167725
0.009825681116674

0.000042920207297
0.000421069652405
0.001506394582400
0.003561160019326
0.006701280351256
0.010904011616469
0.016032067221619
0.021862927150639
0.028117956150800

(3.5)

In this table, we have considered a special case of the incomplete gamma
function as I'(x;7/2) = [ t°/2etdt for different values of 2 = 0.1(0.1) 0.9. By
noting the value Fj, the aforesaid table shows whenever x is smaller the bound
E) is also smaller and we have therefore a better result for the quadrature (3.5).
In this direction note that if f(t) = t>/2e~*, then we respectively have

f1(t) = t3/2et (=t +5/2) >0, Vte[0,0.9]

and
1
() = Zt1/2e—t (4% — 20t + 15) > 0, Vt € [0,0.9].
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