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Abstract. The RFR (reverse flow reactor) has been widely studied for abatement
of lean methane emission from coal mining or natural gas piping system. We show
a global-in-time existence of the solution to a nonlinear system of partial differential
equations modeling RFR.
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1 Introduction

The purpose of the present paper is to study a mathematical model concerning
Reverse Flow Reactor (referred to as RFR) used for catalytic oxidation of lean
methane emission. Here, the main concept of RFR is a flow, whose directions
are periodically changing through the packed bed reactor. It has been widely
studied for the abatement of lean methane emissions from coal mining or na-
tural gas piping systems, see [8]. In fact, such emissions contribute to global
warming potential, which is considerably dangerous for the environment, and
therefore, it is indispensable to treat this emission into a harmless compound.
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The use of the reverse flow principle as a transient operation procedure
for catalytic reactors may be hopeful, under a dynamic interaction between
microscaled catalysts and macroscaled reactor to produce more favorable con-
centration and temperature profiles in the catalytic process, see [4]. Hence,
studies on RFR are proposed actively in chemical engineering process, due to
its importance in applications to destruct pollutants, see [6].

Several mathematical models have been proposed to predict the behavior
of the reverse-flow reaction in terms of temperature and concentration. One
of the simplest model is concerned with a single reaction without changing the
number of moles of reactants, see [3, 9, 15], that is,

(εgρgcg + εsρscs)
∂Θ
∂t =

λef
∂2Θ
∂x2 − ρogcgU(t)∂Θ∂x + (−δH)W1(X,Θ), in (0, L)× (0, T ),

εgρg
∂X
∂t = −U(t)ρog

∂X
∂x +W2(X,Θ), in (0, L)× (0, T ),

(1.1)

where Θ = Θ(x, t) and X = X(x, t), 0 ≤ x ≤ L, 0 ≤ t < T , denote the
temperature and the fractional conversion of the catalyst, respectively. It is
thus a model of one-space dimension, with L standing for the bed length. Here,
ε, ρ, and c are physical constants with the subscripts g, s, and o standing for
the states of gas, of solid, and outside the system, respectively. Furthermore,
λef and δH are chemical quantities, and the nonlinearities Wi(X,Θ), i = 1, 2,
are the rates of chemical reaction. See Appendix for more details of these
constants and functions.

The principal flow direction is thus controled by the linear velocity U(t) =
κ(t)u defined by

κ(t) =

{
+1, at t ∈ [2mτ∗, (2m+ 1)τ∗) ,

−1, at t ∈ [(2m+ 1)τ∗, (2m+ 2)τ∗) for m = 0, 1, . . .,
(1.2)

where u is a constant and τ∗ stands for a half of the cycle duration. Then we
provide the initial condition:

Θ|t=0 = Θ0, X|t=0 = X0 on [0, L], (1.3)

for given functions Θ0 = Θ0(x) and X0 = X0(x), and also the boundary
conditions

X =
1− κ(t)

2
X, λef

∂Θ

∂x
=

1 + κ(t)

2
ucgρ

o
g(Θ −Θinp) (1.4)

X =
1 + κ(t)

2
X, λef

∂Θ

∂x
= −1− κ(t)

2
ucgρ

o
g(Θ −Θinp) (1.5)

at {0}× (0, T ) and {L}× (0, T ), respectively, for a given constant Θinp, where
“X = X” or “Θ = Θ” is regarded as an empty condition. When RFR works,
complex and characteristic phenomena are experimentally-observed, see [14,
15,16] and references therein. They are also observed in numerical simulations
with the aid of mathematical models, see [7,10,11,14,15,16,17] and references
therein. According to numerical simulations by Budhi et al., complicated and
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sensitive asymptotic behavior of solutions can be observed, see [2]. For this
reason, it is important to analyze RFR not only by experiments but also by
using mathematical models. The main result of the present paper is to show
the unique existence of the global-in-time solution to (1.1)–(1.5). Furthermore,
we also study more complicated models which may accompany compartment,
see Section 4 for details.

Normalizing physical constants, we thus take the system of parabolic and
hyperbolic equations

ε
∂Θ

∂t
= D

∂2Θ

∂x2
− U(t)

∂Θ

∂x
+ F (X,Θ), Θ ≥ 0,

∂X

∂t
+ U(t)

∂X

∂x
= G(X,Θ), in (0, L)× (0, T ), (1.6)

where ε,D > 0 are constants. The initial condition is imposed as

Θ(x, 0) = Θ0(x), X(x, 0) = X0(x) on [0, L], (1.7)

while the boundary conditions take the form

D
∂Θ

∂x
=

1 + κ(t)

2
u(Θ −Θinp), X =

1− κ(t)

2
X (1.8)

D
∂Θ

∂x
= −1− κ(t)

2
u(Θ −Θinp), X =

1 + κ(t)

2
X (1.9)

on {0} × (0, T ) and {L} × (0, T ), respectively. Concerning the nonlinearities,
we assume

F ∈ C1(R× [0,∞)), G ∈ C1(R× [0,∞)), (1.10)

|F (X,Θ)| ≤M(1 + |X|γ1 +Θγ2), (1.11)

|G(X,Θ)| ≤M(1 + |X|+Θγ3), (1.12)

γ1, γ2, γ3 > 0, γ2 ≤ 1, γ1γ3 ≤ 1, (1.13)

where M > 0 and γi (i = 1, 2, 3) are constants. This assumption of the
nonlinearity is satisfied in most of models, see [3, 9, 15].

The main theorem is stated under the following notations. First, Lip(QT )
denotes the set of Lipschitz continuous functions on QT with respect to (x, t),

where QT = (0, L)× (0, T ). Next, Cl,
l
2 (QT ) is the Hölder space, composed of

continuous functions on QT together with their all the derivatives of the form
∂rt ∂

s
x for 2r + s < l and take the finite norm

‖u‖(l)(QT )
= 〈u〉(l)QT +

[l]∑
j=0

〈u〉(j)QT ,

where l ∈ Z = {0, 1, 2, . . .} and

〈u〉(0)QT = ‖u‖(0)(QT )
= max

QT
|u|, 〈u〉(j)QT =

∑
2r+s=j

‖∂rt ∂sxu‖
(0)
(QT )

,

〈u〉(l)QT = 〈u〉(l)x,QT + 〈u〉(
l
2 )

t,QT
, 〈u〉(l)x,QT =

∑
2r+s=[l]

〈∂rt ∂sxu〉
(l−[l])
x,QT

,
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〈u〉(
l
2 )

t,QT
=

∑
0<l−2r−s<2

〈∂rt ∂sxu〉
( l−2r−s

2 )

t,QT
,

〈u〉(γ)x,QT
= sup

(x,t),(y,t)∈QT , x 6=y, |x−y|≤ρ0

|u(x, t)− u(y, t)|
|x− y|γ

,

〈u〉(γ)t,QT
= sup

(x,t),(x,s)∈QT , t 6=s, |t−s|≤ρ0

|u(x, t)− u(x, s)|
|t− s|γ

,

for 0 < γ < 1. Finally, W 2l,l
q (QT ), l ∈ Z, q ≥ 1, denotes the Banach space

consisting of the elements of the Lebesgue space Lq(QT ) having generalized
derivatives of the form ∂rt ∂

s
x with any r and s satisfying the inequality 2r+s ≤

2l. Its norm is defined by

‖u‖(2l)q,QT
=

2l∑
j=0

|u|(j)q,QT ,

where

|u|(j)q,QT =
∑

2r+s=j

|∂rt ∂sxu|q,QT , |u|q,QT =

(∫ T

0

∫ L

0

|u(x, t)|qdxdt

) 1
q

.

Let Q = Q∞ = (0, L)× (0,+∞) and define Γi, i = 1, 2, 3, by the following:

Γ1 = {(x, t) ∈ Q | t = kτ∗, k = 0, 1, . . .},
Γ2 = {(x, t) ∈ Q | t = x/u+ 2kτ∗, t ∈ [2kτ∗, (2k + 1)τ∗], k = 0, 1, . . .}

∪ {(x, t) | t = x/u+ 2kτ∗ − (L− τ∗), t ∈ [2kτ∗, (2k + 1)τ∗],

k = 0, 1, . . .},
Γ3 = {(x, t) ∈ Q | t = −x/u+ 2kτ∗, t ∈ [(2k − 1)τ∗, (2k)τ∗], k = 1, 2, . . .}

∪ {(x, t) ∈ Q | t = −x/u+ 2kτ∗ + (L− τ∗), t ∈ [(2k − 1)τ∗, (2k)τ∗],

k = 1, 2, . . .},

for uτ∗ ≤ L, and

Γ1 = {(x, t) ∈ Q | t = kτ∗, k = 0, 1, . . .},
Γ2 = {(x, t) ∈ Q | t = x/u+ 2kτ∗, t ∈ [2kτ∗, (2k + 1)τ∗], k = 0, 1, . . .},
Γ3 = {(x, t) | t = −x/u+ L+ (2k + 1)τ∗, t ∈ [(2k − 1)τ∗, (2k)τ∗],

k = 1, 2, . . .},

for uτ∗ > L. Then we put Γ = Γ1 ∪ Γ2 ∪ Γ3, and also

Γ ′2,0 =

{
{(x, t) | t = x/u− (L− τ∗), t ∈ [0, τ∗]}, if uτ∗ ≤ L,
∅, if uτ∗ > L.

Finally, we define Pτ∗ by

Pτ∗ = {(x, t) | x = 0, L, t = mτ∗, m = 0, 1, . . .}.

Math. Model. Anal., 21(4):550–568, 2016.
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Theorem 1. Given Θ0 ∈ Cα[0, L] and X0 ∈ C1(0, L] ∩ L∞(0, L) satisfying
α ∈ (0, 1), Θ0 ≥ 0, and given F and G satisfying (1.10)–(1.13), there exists a
unique solution (Θ,X) to (1.6)–(1.9) such that

Θ ∈ C2,1(Q \ Γ ) ∩W 2,1
q,loc(Q \ Pτ∗), (1.14)

X ∈ C1,1((Q \ Γ ) ∪ Γ ′2,0) ∩ C(Q \ (Γ2 ∪ Γ3)), (1.15)

Θ(·, t)→ Θ0 locally uniformly in (0, L], (1.16)

lim
t↓(2m−1)τ∗

Θ(·, t) = lim
t↑(2m−1)τ∗

Θ(·, t) (1.17)

locally uniformly in{
[0, L) \ {(uτ∗, (2m− 1)τ∗)}, if uτ∗ ≤ L,
[0, L), if uτ∗ > L

and
lim

t↓2mτ∗
Θ(·, t) = lim

t↑2mτ∗
Θ(·, t) (1.18)

locally uniformly in{
(0, L] \ {(L− uτ∗, 2mτ∗)}, if uτ∗ ≤ L,
(0, L], if uτ∗ > L,

for any q > 1 and for every m = 1, 2, . . ..

This paper is organized as follow. We prepare several auxiliary lemmas in
Section 2, and prove Theorem 1 in Section 3. More complicated models of RFR
are studied in Section 4. In Appendix, various variables arising in the systems
in Sections 1 and 4 are explained. Henceforth, Ci (i = 1, 2, . . .) denote positive
constants whose subscripts are renewed in each section.

2 Preliminaries

The first aim of this section is to show the local-in-time existence and unique-
ness for the parabolic-hyperbolic system

εΘt = DΘxx − uΘx + F (X,Θ), Θ ≥ 0, in QT ,

Xt + uXx = G(X,Θ), in QT ,

DΘx − uΘ = −uΘinp, X = 0, on {0} × (0, T ),

Θx = 0, on {L} × (0, T ),

Θ|t=0 = Θ0, X|t=0 = X0, on [0, L].

(2.1)

For the purpose, we recall the classical results for the linear parabolic equation
ut = Lxtu+ f(x, t), in QT ,

ux(ξ, t) + β(ξ, t)u = g(ξ, t), in {0, L} × (0, T ),

u|t=0 = u0, in (0, L),

(2.2)
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where Lxt denotes the operator defined by

Ltx = a(x, t)
∂2

∂x2
+ b(x, t)

∂

∂x
+ c(x, t)

and the coefficients and inhomogeneous data satisfy

f, a, b, c ∈ Cα([0, L]× [0, T )), g(0, ·), g(L, ·), β(0, ·), β(L, ·) ∈ C[0, T ), (2.3)

for some α ∈ (0, 1).

Lemma 1 [ [5]]. Assume that (2.3) holds and that u0 ∈ C[0, L] satisfies
u|t=0 = u0 on [0, L]. Then, there exists a unique solution to (2.2) satisfy-
ing

lim
t↓0

u(·, t) = u0 uniformly on [0, L].

Lemma 2 [ [5]]. Assume that (2.3) holds and that u0 ∈ C(0, L). Then, there
exists a unique solution to (2.2) satisfying

lim
t↓0

u(·, t) = u0 locally uniformly in (0, L).

Note that the difference between Lemmas 1 and 2 is only whether the
condition u|t=0 = u0 on [0, L] is satisfied or not.

Now we state the result of the local-in-time existence and uniqueness.

Proposition 1. Given 0 ≤ Θ0 ∈ C[0, L] and X0 ∈ C1(0, L] ∩ C[0, L], and
given F and G satisfying (1.10), there exists T > 0, depending only on F ,
G, ‖X0‖L∞(0,L), ‖Θ0‖L∞(0,L), Θinp, ε, D and u, such that (2.1) has a unique
solution (Θ,X) satisfying

Θ ∈ C2,1(QT ) ∩ C1,0(QT \ {t = 0}) ∩ C(QT \ {(0, 0)}), (2.4)

X ∈ C1,1(QT \ {(x, t) | t = ux, t ∈ [0, T ]}), (2.5)

Θ(·, t)→ Θ0 locally uniformly in (0, L] as t ↓ 0. (2.6)

Proof. For simplicity, we assume that ε = D = u = 1. The proof for other
cases is similar to that for the case ε = D = u = 1.

First, we shall prove the local-in-time existence. Fix 0 < T � 1 which is
determined later on. Given Θ̃ ∈ Lip(QT ), we can solve

Xt +Xx = G(X, Θ̃), in (0, L)× (0, T ),

X = 0, on {0} × (0, T ),

X|t=0 = X0, on [0, L],

(2.7)

Math. Model. Anal., 21(4):550–568, 2016.
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provided that T is so small. Note that T is determined only by G, ‖X0‖L∞(0,L)

and ‖Θ̃‖∞. In fact, (2.7) is equivalent to the integral equation

X(x, t) =

{
X0

(
z(x, t; 0)

)
+
∫ t
0
P̃
(
z(x, t; s), s

)
ds, for (x, t) ∈ QT ∩ {t ≤ x},∫ x

0
P̃
(
y, w(x, t; y)

)
dy, for (x, t) ∈ QT ∩ {t > x},

(2.8)
where P̃ (x, t) = G

(
X(x, t), Θ̃(x, t)

)
and z(x, t; s) (resp. w(x, t; y)) denotes the

characteristic line which begins at (x− t, 0) (resp. (0, t− x)) and ends at (x, t)
(resp. (x, t)), see [1]. Note that

dz(x, t; s)

ds
= 1, for every s ∈ [0, t],

dw(x, t; y)

dy
= 1, for every y ∈ [0, x],

X = X(x, t) ∈ C1(QT \ {t = x}) ∩ L∞(QT ).

A direct calculation shows

‖X‖∞ ≤ ‖X0‖L∞(0,L) + T ·AG
(
‖X‖∞, ‖Θ̃‖∞

)
, (2.9)

where
AG(K,K ′) = max

ξ∈[−K,K], η∈[−K′,K′]
|G(ξ, η)|.

For the unique solution X = X(x, t) to (2.7), we consider
Θt = Θxx −Θx + F (X, Θ̃), in (0, L)× (0, T ),

Θx −Θ = −Θinp, on {0} × (0, T ),

Θx = 0, on {L} × (0, T ),

Θ|t=0 = Θ0, on [0, L].

(2.10)

The standard theory for linear parabolic equations guarantees that the problem
(2.10) has a unique solution Θ = Θ(x, t) satisfying Θ ∈W 2,1

q (QT ) for q ∈ (3,∞)
and Θ ∈ C2,1(QT \ {t = x}), see [12,13]. Set

Θ = Θ(x, t) = max
{
‖Θ0‖L∞(0,L), Θinp

}
+ t‖F (X, Θ̃)‖∞,

Θ = Θ(x, t) = −t‖F (X, Θ̃)‖∞, Θ∗ = Θ −Θ, Θ∗ = Θ −Θ.

Then, it holds that
(Θ∗)t ≥ (Θ∗)xx − (Θ∗)x, in (0, L)× (0, T ),

(Θ∗)x −Θ∗ ≤ 0, on {0} × (0, T ),

(Θ∗)x = 0, on {L} × (0, T ),

Θ∗(x, 0) ≥ 0, for x ∈ [0, L]

and that 
(Θ∗)t ≤ (Θ∗)xx − (Θ∗)x, in (0, L)× (0, T ),

(Θ∗)x −Θ∗ ≥ 0, on {0} × (0, T ),

(Θ∗)x = 0, on {L} × (0, T ),

Θ∗(x, 0),≤ 0 for x ∈ [0, L],
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which implies
Θ ≤ Θ ≤ Θ in [0, L]× [0, T ).

Hence we obtain

‖Θ‖∞ ≤ max
{
‖Θ0‖L∞(0,L), Θinp

}
+ T ·AF

(
‖X̃‖∞, ‖Θ̃‖∞

)
, (2.11)

where
AF (K,K ′) = max

ξ∈[−K,K], η∈[−K′,K′]
|F (ξ, η)|.

Now we introduce the set

ST = {Θ ∈ L∞(QT ) | ‖Θ‖∞ ≤ K0}

and the mapping
Φ(Θ̃) = Θ for Θ̃ ∈ ST ,

where
K0 = 1 + max

{
‖Θ0‖L∞(0,L), Θinp

}
and Θ = Θ(x, t) is a unique solution to (2.10) via (2.7). From the inequalities
(2.9) and (2.11), we see that Φ maps ST to itself if 0 < T � 1 . Note that
T depends only on F , G, ‖X0‖L∞(0,L), ‖Θ0‖L∞(0,L) and Θinp (for the other
cases, besides on ε, D and u).

We now claim that Φ is a contraction map on ST if 0 < T � 1 is small
enough. Given Θ̃1, Θ̃2 ∈ ST , the function Θ̂ = Θ1 − Θ2 = Φ(Θ̃1) − Φ(Θ̃2)
satisfies

Θ̂t = Θ̂xx − Θ̂x +
(
F (X̃1, Θ̃1)− F (X̃2, Θ̃2)

)
, in (0, L)× (0, T ),

Θ̂x − Θ̂ = 0, on {0} × (0, T ),

Θ̂x = 0, on {L} × (0, T ),

Θ̂(x, 0) = 0, on [0, L],

(2.12)

where X̃i (i = 1, 2) is a unique solution to (2.7) for Θ̃ = Θ̃i. Set

L0 = 1 + ‖X0‖L∞(0,L).

Since G = G(ξ, η) satisfies (1.10) and since Θ̃i ∈ ST , the inequality (2.9)

implies that ‖X̃i‖∞ ≤ L0 if T is small enough. Comparing Θ̂ = Θ̂(x, t) with
the function

±t ·A′F (L0,K0) ·
(
‖X̃1 − X̃2‖∞ + ‖Θ̃1 − Θ̃2‖∞

)
admits the estimate

‖Θ̂‖∞ ≤ T ·A′F (L0,K0) ·
(
‖X̃1 − X̃2‖∞ + ‖Θ̃1 − Θ̃2‖∞

)
, (2.13)

where
A′F (K,K ′) = max

ξ∈[−K,K], η∈[−K′,K′]
|∇F (ξ, η)|.

Math. Model. Anal., 21(4):550–568, 2016.
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We have, on the other hand,

X̃1(x, t)− X̃2(x, t) =



t∫
0

P̃1(z(x, t; s), s)− P̃2(z(x, t; s), s)ds,

for (x, t) ∈ QT ∩ {t ≤ x},
x∫
0

P̃1(y, w(x, t; y))− P̃2(y, w(x, t; y))dy,

for (x, t) ∈ QT ∩ {t > x},

by (2.8), where

P̃i(x, t) = G(X̃i(x, t), Θ̃i(x, t)), for i = 1, 2.

Then it holds that

‖X̃1 − X̃2‖∞ ≤ T ·A′G(L0,K0) ·
(
‖X̃1 − X̃2‖∞ + ‖Θ̃1 − Θ̃2‖∞

)
,

so that
‖X̃1 − X̃2‖∞ ≤ 2T ·A′G(L0,K0) · ‖Θ̃1 − Θ̃2‖∞, (2.14)

if T is small enough, where

A′G(K,K ′) = max
ξ∈[−K,K], η∈[−K′,K′]

|∇G(ξ, η)|.

Consequently, inequalities (2.13) and (2.14) yield

‖Θ̂‖∞ ≤
1

2
‖Θ̃1 − Θ̃2‖∞, (2.15)

for some 0 < T � 1 depending only on F,G, ‖X0‖L∞(0,L), ‖Θ0‖L∞(0,L) and
Θinp (for the other cases, besides on ε, D and u), which implies that Φ is a
contraction map on ST .

At this stage, we perform the iteration scheme by setting Θ(0) = Θ0 and
Θ(j+1) = Φ(Θ(j)) (j = 0, 1, . . .). Note that the iteration scheme works well
in this setting. Then we find that the limit function Θ = limj→∞Θ(j) is a
solution to 

Θt = Θxx −Θx + F (X,Θ), in (0, L)× (0, T ),

Θx −Θ = −Θinp, on {0} × (0, T ),

Θx = 0, on {L} × (0, T ),

Θ|t=0 = Θ0, on [0, L]

and that Θ = Θ(x, t) satisfies (2.4) and (2.6) by the parabolic regularities
(see [12, 13]) and Lemmas 1–2, where X = limj→∞X(j) and X(j) is a unique

solution to (2.7) for Θ̃ = Θ(j). Note that this X = X(x, t) is well-defined and
a solution to (2.7) for Θ̃ = Θ satisfying (2.5) by (2.8) and (2.14). Hence, the
local-in-time existence is proven.

Next, we shall prove the non-negativities of Θ = Θ(x, t) constructed above.
Let (X,Θ) be the solution constructed above. We introduce the function

Θ(µ) = Θ(µ)(x, t) = e−µtΘ(x, t), µ > 0 (2.16)
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and obtain

Θ
(µ)
t = Θ(µ)

xx −Θ(µ)
x − (µ− c)Θ(µ), in (0, L)× (0, T ), (2.17)

where c = c(x, t) is a bounded function. For µ� 1, it holds that µ− c ≥ 0 in
(0, L) × (0, T ). Assume that µ � 1 and minQT Θ

(µ) < 0. Then, minQT Θ
(µ)

is attained at some point on the parabolic boundary by the maximum princi-
ple and the non-negativity of the initial data Θ0. However, minQT Θ

(µ) < 0
fails because of the boundary condition of (2.1) and Hopf’s lemma, and hence
minQT Θ

(µ) ≥ 0, namely minQT Θ ≥ 0.
Finally, we shall prove the uniqueness. Let (Xi, Θi) (i = 1, 2) be a solution

to (2.1) satisfying (2.4)–(2.6), and put Θ̃ = Θ1 − Θ2, X̃ = X1 −X2. Then, it
holds that

Θ̃t = Θ̃xx − Θ̃x +
(
F (X1, Θ1)− F (X2, Θ2)

)
, in (0, L)× (0, T ),

X̃t + X̃x = G(X1, Θ1)−G(X2, Θ2), in (0, L)× (0, T ),

Θ̃x − Θ̃ = 0, X̃ = 0, on {0} × (0, T ),

Θ̃x = 0, on {0} × (0, T ),

Θ̃(x, 0) = X̃(x, 0) = 0, for x ∈ [0, L].

(2.18)

Multiplying the first equation of (2.18) by Θ̃ gives

1

2

d

dt

∫ L

0

Θ̃2dx = [Θ̃Θ̃x]x=Lx=0 −
1

2
[Θ̃2]x=Lx=0 −

∫ L

0

Θ̃2
xdx

+

∫ L

0

Θ̃
(
F (X1, Θ1)− F (X2, Θ2)

)
dx

≤ C
(
F, ‖X1‖∞, ‖X2‖∞, ‖Θ1‖∞, ‖Θ2‖∞

) ∫ L

0

Θ̃
(
| X̃ | + | Θ̃ |

)
dx

≤ C
(
F, ‖X1‖∞, ‖X2‖∞, ‖Θ1‖∞, ‖Θ2‖∞

) ∫ L

0

(1

2
X̃2 +

3

2
Θ̃2
)
dx.

Similarly, multiplying the second equation of (2.18) by the X̃ gives

1

2

d

dt

∫ L

0

X̃2dx = −1

2
[X̃2]x=Lx=0 +

∫ L

0

X̃
(
G(X1, Θ1)−G(X2, Θ2)

)
dx

≤ C
(
G, ‖X1‖∞, ‖X2‖∞, ‖Θ1‖∞, ‖Θ2‖∞

) ∫ L

0

X̃
(
| X̃ | + | Θ̃ |

)
dx

≤ C
(
G, ‖X1‖∞, ‖X2‖∞, ‖Θ1‖∞, ‖Θ2‖∞

) ∫ L

0

(3

2
X̃2 +

1

2
Θ̃2
)
dx.

Consequently we obtain

d

dt

∫ L

0

(X̃2+Θ̃2)dx≤C
(
F,G, ‖X1‖∞, ‖X2‖∞, ‖Θ1‖∞, ‖Θ2‖∞

) ∫ L

0

(
X̃2+Θ̃2

)
dx

and conclude X̃ = Θ̃ = 0 on QT by using the Gronwall’s inequality and the
initial condition Θ̃(x, 0) = X̃(x, 0) = 0 for x ∈ [0, L]. The proof is complete.
ut
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Proposition 2. Assume that F and G satisfy (1.10), and that if uτ∗ ≤ L,
0 ≤ Θ0 ∈ C(0, L) ∩ L∞(0, L) and X0 ∈ C1((0, L] \ {L − uτ∗}) ∩ L∞(0, L),
otherwise, 0 ≤ Θ0 ∈ C(0, L)∩L∞(0, L) and X0 ∈ C1((0, L])∩L∞(0, L). Then,
there exists T > 0, depending only on F , G, ‖X0‖L∞(0,L), ‖Θ0‖L∞(0,L), Θinp,
ε, D and u, such that (2.1) has a unique solution (Θ,X) satisfying

Θ ∈ C2,1((0, L)× (0, T )) ∩ C1,0(QT \ {t = 0}) ∩ C(QT \ {(0, 0), (L, 0)}),

(2.19)

X ∈ C1,1(QT \ {(x, t) | t = ux, t ∈ [0, T ]}), (2.20)

lim
t↓0

Θ(·, t) = Θ0 locally uniformly in

{
(0, L] \ {L− uτ∗}, if uτ∗ ≤ L,
(0, L], if uτ∗ > L.

(2.21)

The proof of Proposition 2 is similar to that of Proposition 1, and so we
omit it here.

The second aim of this section is to provide two elementary results used to
show Theorem 1.

Lemma 3. Assume that ϕ = ϕ(t) ∈ Cabs[0, T ], f = f(t) ∈ C[0, T ], γ > 0 and

ϕ′ ≤ γ(1 + ϕ+ f) in (0, T ],

for some constant γ > 0. Then it holds that

ϕ(t) ≤ −1 + γeγt
(∫ t

0

e−γτf(τ)dτ +
1 + ϕ(0)

γ

)
, for all t ∈ [0, T ].

Lemma 3 is shown by solving the standard diffrential inequality, and so it
is omitted here.

Lemma 4. Assume that ϕ = ϕ(t) ∈ Cabs[0, T ] and

ϕ′ ≤ k1 + k2ϕ+ k3

∫ t

0

e−k4τϕ(τ)dτ in (0, T ], (2.22)

for some constants ki > 0 (i = 1, 2, 3, 4). Then, there exists g = g(t) ∈ C[0, T ],
determined by ϕ(0) and k1, . . . , k4, such that

ϕ(t) ≤ ek2t
(
ϕ(0) + k1t+ k3

∫ t

0

g(τ)dτ

)
, for all t ∈ [0, T ]. (2.23)

Proof. We put

ξ = ξ(t) =

∫ t

0

e−k4τϕ(τ)dτ.



A Mathematical Study on the System of Partial Differential Equations 561

Then it follows from (2.22) that

(ξ′(t) + k4ξ(t))
′ ≤ k1e−k4t +K(ξ′(t) + k4ξ(t)), (2.24)

where ′ = d
dt and K = max{1, k2, k3/k4}. We solve (2.24) to find

ξ(t) ≤ e−k4t
∫ t

0

e(k4+K)τ

{
k1

k4 +K
(1− e−(k4+K)τ ) + ϕ(0)

}
dτ =: g(t), (2.25)

which means
ϕ′ ≤ k1 + k2ϕ+ k3g(t).

We solve this differential inequality and conclude (2.23). ut

3 Proof of the Theorem 1

First, we note that the problem (1.6)–(1.9) has the symmetry. In fact, for every
m ∈ {0, 2, 4, . . .} (resp. m ∈ {1, 3, 5, . . . , }), (1.6)–(1.9) on [2mτ∗, (2m+ 1)τ∗))
(resp. [(2m + 1)τ∗, (2m + 2)τ∗)) is reduced to the problem (2.1) replaced
QT by Qτ∗ , by change of variables (x, t) 7→ (x, t − 2mτ∗) (resp. (x, t) 7→
(−x, t− (2m+ 1)τ∗)). By combining this fact with Propositions 1–2 and their
proofs, and by regarding limt↑mτ∗(Θ(·, t), X(·, t)) as the initial data at time
t = mτ∗, m = 1, 2, . . ., we find that Theorem 1 holds if it is shown that for the
solution Θ = Θ(x, t) to (2.1) for T = τ∗, there exists C1 > 0 such that

‖Θ‖∞ ≤ C1, (3.1)

where C1 depends on τ∗ and given data ‖X0‖L∞(0,L), ‖Θ0‖L∞(0,L), Θinp, M ,
γ1, γ2, γ3, ε, D and u, and is bounded as long as they are bounded. Actually, we
see from (3.1) that the solution (Θ,X) to (1.6)–(1.9), satisfying (1.14)–(1.18),
extends in time, step by step, as T = τ∗, T = 2τ∗, . . ..

In the remainder of this section, we assume that ε = D = u = 1 because
the proof for other cases is similar to that for the case ε = D = u = 1. To
derive the L∞-bound (3.1), we use the energy method to obtain the following
differential inequality.

Lemma 5. Assume that (Θ,X) be a solution to (2.1) satisfing the proper-
ties (2.4)–(2.6) or (2.19)–(2.21). Then, there exist positive constants C2 =
C2(L,M) and C3 = C3(L,M) such that

d

dt
‖ψ(t)‖22 −

4p

p+ 1
‖ψ(t)‖22 ≤ Θ

p+1
inp −

4p

p+ 1
‖ψ(t)‖2H1

+ (p+ 1)C2

(
‖ψ(t)‖

2(p+γ2)
p+1

2(p+γ2)
p+1

+ ‖ψ(t)‖
2ps
p+1
2ps
p+1

)
+ (p+ 1)C2

{∫ t

0

e−γ1s
′C3τ‖ψ(τ)‖

2γ1γ3s
′

p+1

2γ1γ3s
′

p+1

dτ +
1 + ‖X0‖γ1s

′

γ1s′

γ1s′C3

}
(3.2)

for t ∈ (0, τ∗), p > 1 and s, s′ ∈ (1,∞) with 1/s+ 1/s′ = 1, where

ψ(x, t) = Θ
p+1
2 (x, t). (3.3)
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Proof. Multiplying the parabolic equation of (2.1) by Θp, p ≥ 1, and integrat-
ing on [0, L] in x, we have

1

p+ 1

d

dt

∫ L

0

Θp+1dx = I + II,

where

I = I(t) =

∫ L

0

ΘpΘxx −ΘpΘxdx, II = II(t) =

∫ L

0

ΘpF (Θ,X)dx.

The term I is estimated by

I = [ΘpΘx]
x=L
x=0 − p

∫ L

0

Θp−1Θ2
xdx−

1

p+ 1

∫ L

0

(Θp+1)xdx

≤ − 4p

(p+ 1)2

∫ L

0

(Θ
p+1
2 )2xdx+

{
Θp(Θinp −Θ) +

1

p+ 1
Θp+1

}∣∣∣∣
x=0

≤
Θp+1
inp

p+ 1
− 4p

(p+ 1)2
‖ψx(t)‖22,

recall (3.3), where we have used the non-negativity of Θ and the boundary
condition. The term (p+ 1)× II is estimated by

(p+ 1)× II = (p+ 1)

∫ L

0

ψ
2p
p+1F (ψ

2
p+1 , X)dx

≤ (p+ 1)M

∫ L

0

ψ
2p
p+1 (1 + |X|γ1 + ψ

2γ2
p+1 )dx

≤ (p+ 1)C4(L,M)(1 + ‖ψ‖
2(p+γ2)
p+1

2(p+γ2)
p+1

+ ‖ψ‖
2ps
p+1
2ps
p+1

+ ‖X‖γ1s
′

γ1s′
),

for all s, s′ ∈ (1,∞) satisfying 1/s+ 1/s′ = 1. Consequently, it follows that

d

dt
‖ψ(t)‖22 −

4p

p+ 1
‖ψ(t)‖22 ≤ Θ

p+1
inp −

4p

p+ 1
‖ψ(t)‖2H1

+ (p+ 1)C4(L,M)(1 + ‖ψ(t)‖
2(p+γ2)
p+1

2(p+γ2)
p+1

+ ‖ψ(t)‖
2ps
p+1
2ps
p+1

+ ‖X(t)‖γ1s
′

γ1s′
), (3.4)

for all t ∈ (0, T ), p ≥ 1 and s, s′ ∈ (1,∞) satisfying 1/s+ 1/s′ = 1.

In turn, we multiply the hyperbolic equation of (2.1) by Xq−1X, q ≥ 1, so
that

1

q + 1

d

dt

∫ L

0

|X|q+1dx+
1

q + 1

∫ L

0

(|X|q+1)xdx =

∫ L

0

|X|q−1XG(X,Θ)dx,

or
d

dt

∫ L

0

Xq+1dx ≤ (q + 1)

∫ L

0

|X|q−1XG(X,Θ)dx,
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recall that X = 0 at {0} × (0, L). The right-hand side is estimated by

(q + 1)

∫ L

0

|X|q−1XG(X,Θ)dx

≤ (q + 1)M

∫ L

0

|X|q(1 + |X|+ ψ
2γ3
p+1 )dx

≤ (q + 1)C5(L,M)

{
1 +

∫ L

0

|X|q+1dx+ ‖ψ‖
2γ3(q+1)
p+1

2γ3(q+1)
p+1

}
,

by the assumption (1.12). Thus we obtain

d

dt

∫ L

0

|X|q+1dx ≤ (q+1)C5(L,M)

{
1 +

∫ L

0

|X|q+1dx+ ‖ψ‖
2γ3(q+1)
p+1

2γ3(q+1)
p+1

}
, (3.5)

for all t ∈ (0, T ) and q ≥ 1. Applying Lemma 3 to (3.5), we get

‖X(t)‖q+1
q+1 ≤ −1 + (q + 1)C0e

(q+1)C5t

×

{∫ t

0

e−(q+1)C0τφp,q(τ)dτ +
1 + ‖X(0)‖q+1

q+1

(q + 1)C5

}
, (3.6)

for all t ∈ (0, T ), p ≥ 1 and q ≥ 1, where

φp,q(s) = ‖ψ(s)‖
2γ3(q+1)
p+1

2γ3(q+1)
p+1

.

Finally, we organize (3.4) and (3.6) for q + 1 = γ1 + s′, and conclude the
desired inequality (3.2). ut

Proof. Proof of Theorem 1: As already stated above, we have only to show
(3.1). We put s = (p+ 1)/p and s′ = p+ 1 in (3.2) and see from Lemma 5 and
(1.13) that

φ′ ≤ − 4p

p+ 1
‖ψ(t)‖2H1 +

{
Θp+1
inp +

C2

γ1C3
(1 + ‖X0‖γ1(p+1)

γ1(p+1))

}
+ (p+ 1)C6(L,M)φ+ (p+ 1)C7(L,M)

∫ t

0

e−γ1(p+1)C3τϕ(τ)dτ, (3.7)

for t ∈ (0, τ∗) and p > 1 by the assumption (1.13), where

φ = φ(t) = ‖ψ(t)‖22 = ‖Θ(t)‖p+1
p+1.

Applying Lemma 4 for (3.7) and noting the form of g(t) defined by (2.25) show

‖Θ(t)‖p+1 ≤ C8

for some C8 = C8(τ∗, ‖X0‖L∞(0,L), ‖Θ0‖L∞(0,L), Θinp,M, γ1, γ2, γ3, ε,D, u) > 0
independent of p and for all p > 1. Consequently, taking the limit p → ∞
assures the desired estimate (3.1). ut
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4 Concluding Remarks

In this section, we discuss more complicated models. The models which we
study are the following (A)–(C).

(A) ODE-Hyperbolic-Hyperbolic system
{εscsρs+(1−ε)εpcgρg}∂Θs∂t = α0αv(Θg −Θs) + (−δH)W1(X,Θs),

εcgρg
∂Θg
∂t = −U(t)cgρ

o
g
∂Θg
∂x − α0αv(Θg −Θs),

εg
∂X
∂t = −U(t)ρog

∂X
∂x +W2(X,Θs), in (0, L)× (0, T ),

(4.1)

with the initial-boundary conditions

Θs|t=0 = Θs,0, Θg|t=0 = Θg,0, X|t=0 = X0, on [0, L], (4.2)

Θg =
1− κ(t)

2
Θg, X =

1− κ(t)

2
X, at {0} × (0, T ), (4.3)

Θg =
1 + κ(t)

2
Θg, X =

1− κ(t)

2
X, at {L} × (0, T ), (4.4)

for given functions Θs,0 = Θs,0(x), Θg,0 = Θs,0(x) and X0 = X0(x), where κ(t)
is as in (1.2) and “Θg = Θg” or “X = X” is regarded as an empty condition.
Note that there is no boundary condition on Θs = Θs(x, t). The model (4.1)–
(4.4) was used for studies of RFOs for exothermic and endothermic processes,
see [7] and [9], respectively.

(B) Parabolic-Hyperbolic-ODE-Hyperbolic system

{εscsρs + (1− ε)εpcgρg}∂Θs∂t
= λs,ef

∂2Θs
∂x2 + α0αv(Θg −Θs) + η(−δH)W1(Xs, Θs),

εcgρg
∂Θg
∂t = −U(t)cgρ

o
g
∂Θg
∂x − α0αv(Θg −Θs),

εp(1− ε)ρg ∂Xs∂t = β0avρg(Xg −Xs) + ηW2(Xs, Θs),

ε
∂Xg
∂t = −U(t)ρog

∂Xg
∂x − β0avρg(Xg −Xs), in (0, L)× (0, T ),

(4.5)

Θs|t=0 = Θs,0, Θg|t=0 = Θg,0,

Xs|t=0 = Xs,0, Xg|t=0 = Xg,0, on [0, L], (4.6)

∂Θs
∂x

= 0, Θg =
1− κ(t)

2
Θg, Xg =

1− κ(t)

2
Xg, at {0} × (0, T ), (4.7)

∂Θs
∂x

= 0, Θg =
1 + κ(t)

2
Θg, Xg =

1− κ(t)

2
Xg, at {L} × (0, T ), (4.8)

for given functions Θs,0 = Θs,0(x), Θg,0 = Θs,0(x) and X0 = X0(x), where κ(t)
is as in (1.2) and “Θg = Θg” or “X = X” is regarded as an empty condition.
Note that there is no boundary condition on Xs = Xs(x, t). The model (4.5)–
(4.8) describes a two-phase model accounting for longitudinal shear dispersion
in a solid phase and mass transfer limitations inside and outside the catalyst
particles under the condition that temperature gradients catalyst are not high,
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and was studied experimentally and numerically in [11].

(C) System with compartment
RFR devices with compartment are often used in applications, see [16] for
details. One of how to formulate them is as follows. Assume that there are
N -rooms in the packed bed whose length is L, for instance, see Figure 1 below
for N = 5.

Figure 1. A simplified picture of RFR with switching time and compartments. 1 and 5
are inlet parts, 2 and 4 are catalyst parts, and 3 is a heat exchanger part. In this case,

L1 = 0.31L, L2 = 0.41L, L3 = 0.59L and L4 = 0.69L.

For simplicity, we focus on temperature of the gas and the solid. Then, the
equation of the j th room (i = 1, 2, . . . , N − 1, N) can be described by (4.1)
in (Lj−1, Lj) × (0, T ) (0 = L0 < L1 < L2 < · · · < LN−1 < LN = L), and

we denote the unknown functions by (Θ
(j)
s , Θ

(j)
g , X(j)). The initial condition is

imposed as follows:

Θ(j)
s

∣∣∣
t=0

= Θs,0, Θ(j)
g

∣∣∣
t=0

= Θg,0, X(j)
∣∣∣
t=0

= X0, on [Lj−1, Lj ],

for j = 1, 2, · · · , N , where Θs,0 = Θs,0(x), Θg,0 = Θg,0(x), X0 = X0(x) are
given C1 functions on [0, L]. The boundary condition is imposed as follows:

Θg =
1− κ(t)

2
Θg, Θs =

1− κ(t)

2
X, at {0} × (0, T ),

Θg =
1 + κ(t)

2
Θg, Θs =

1− κ(t)

2
X, at {L} × (0, T ),

where κ(t) is as in (1.2) and “Θg = Θg” or “Θs = Θs” is regarded as an
empty condition. Note that any boundary conditions do not imposed on for
X = X(x, t) and for Θg and Θs at {Lj} × (0, T ) (j = 1, . . . , N − 1).

We now give the existence and uniqueness of solutions global in time to the
system stated above in (A)–(C). The proofs are similar to that of Theorem 1
or easier than that of 1. Therefore, we shall only state the results.

Theorem 2. Assume that Θg, X ∈ C1(0, L]∩L∞(0, L) and Θs ∈ C1[0, T ], and
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that W1 and W2 satisfy

W1,W2 ∈ C(R2), |Wi(ξ, η)| ≤ K(1 + |ξ|+ |η|), for any (ξ, η) ∈ R2,

for i = 1, 2 and for some K > 0 Then, there exists a unique solution (Θs, Θg, X)
to (4.1)–(4.4) such that

Θg, X ∈ C1,1((Q \ Γ ) ∪ Γ ′2,0) ∩ C(Q \ (Γ2 ∪ Γ3)),

Θs ∈ C1,1(Q) ∪ L∞loc(Q).
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Appendix

Variables:
x: space variable (axial coordinate),
t: time variable.

(Unknown) Functions:
Θ = Θ(x, t): temperature of the catalyst,
X = X(x, t): fractional conversion of the catalyst,
Xs = Xs(x, t): fractional conversion on the surface of the catalyst pellet,
Xg = Xg(x, t): conversion in the gas phase.

(Given Positive) Constants:
L: bed length,
εg: fraction of gas phase in packed bed,
ρg: gas-phase density,
cg: gas-phase heat capacity,
εs: fraction of solid phase in packed bed,
ρs: solid-phase density,
cs: solid-phase heat capacity,
λef : effective heat conductivity,
λef,s: effective heat conductivity of packed bed solid phase,
ρog: gas-phase density at normal temperature and pressure,
−δH: heat of reaction,
Θinp: inlet temperature,
β0: mass transfer coefficient,
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η: effectiveness factor,
tc: space time,
n: number of switches.

(Given) Functions: U(t) = κ(t)u: linear velocity,
u: absolute value of linear velocity

κ(t) =

{
+1, at t ∈ [2mT∗, (2m+ 1)T∗) ,

−1, at t ∈ [(2m+ 1)T∗, (2m+ 2)T∗) ,

for m = 0, 1, . . ..
τ∗: half of the cycle duration,
W1 = W1(X,Θ): rate of chemical reaction,
W2 = W2(X,Θ): rate of chemical reaction.

Notations: QT = (0, L)× (0, T ),
QT = closure of QT ,
(Ω ⊂ Rd) : open set,
Lip(Ω): Space of continuous functions on Ω which is satisfy Lipschitz condi-
tion, i.e. 0 < γ ≤ 1, u : Ω → R satisfy the estimate
| u(x)− u(y) |≤ ∃C | x− y | (∀x, y ∈ Ω),
Ck(Ω): space of continuous functions possessing continuous derivatives up to
order k on Ω,
Ck(Ω): space of all u ∈ Ck(Ω) such that u and ∂αu(| u |≤ k) extend continu-
ously to the closure Ω, where α is a multiindex,
Ck,γ(Ω): Hölder spaces,i.e. space of all functions u ∈ Ck(Ω) and whose kth

-partial derivatives are Hölder continuous with exponent γ.
In other words

Ck,γ(Ω) :=
{
u ∈ Ck(Ω) | ‖u‖Ck,γ(Ω) <∞

}
with

‖u‖Ck,γ(Ω) :=
∑
|α|≤k

‖∂αu‖C(Ω) +
∑
|α|=k

[∂αu]C0,γ(Ω),

where

[u]C0,γ(Ω) := sup
x,y∈Ω,x6=y

{ | u(x)− u(y) |
| x− y |γ

}
.




