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Abstract. We consider averaging methods for solving the 3-D boundary-value prob-
lem of second order in multilayer domain.

The special hyperbolic and exponential type splines, with middle integral values of
piece-wise smooth function interpolation are considered. With the help of these
splines the problems of mathematical physics in 3-D with piece-wise coefficients are
reduced with respect to one coordinate to 2-D problems. This procedure also allows
to reduce the 2-D problems to 1-D problems and the solution of the approximated
problemsa can be obtained analytically. In the case of constant piece-wise coefficients
we obtain the exact discrete approximation of a steady-state 1-D boundary-value
problem.

The solution of corresponding averaged 3-D initial-boundary value problem is
also obtained numerically, using the discretization in space with the central difer-
ences. The approximation of the 3-D nonstationary problem is based on the implicit
finite-difference and alternating direction (ADI) methods. The numerical solution is
compared with the analytical solution.

Keywords: special splines, averaging method, 3D problem, ADI method, analytical solu-

tion.

AMS Subject Classification: 65N06; 656N20; 656N40; 65N25; 34C55; 65N35.

1 Introduction

The task of sufficient accuracy numerical simulation of quick solution 3-D prob-
lems for mathematical physics in multi-layered media is important in the known
areas of the applied sciences. With regard to the numerical analysis several nu-
merical methods are known for solving 3-D problems: FEM, BEM, spectral
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methods, multigrids and others methods. An example, in [6] a new template
for stability analysis of numerical schemes for parabolic and pseudoparabolic
problems with nonlocal conditions is given, in [10] efficient parallel algorithms
of the OpenFOAM-based Parallel Solver for simulation of Electrical Power
Cables are analysed. For simple engineering calculations two methods are ap-
plied [1], [2]: special finite difference scheme and conservative averaging method
(CAM) by using special integral hyperbolic type splines with two parameters
in every layer. We chose the CAM for engineering calculation and the solution
of 3-D problem can be obtained analytically.

CAM by using integral parabolic type splines was developed by A. Buikis in
his Doctoral Thesis [3] (in the Russian language) and in several papers [4], [11]
etc. as a unified analytical (or analytically-numerical) approach to PDE with
discontinuous coefficients. These methods were applied to create the mathe-
matical simulation of the mass transfer 3-D initial-boundary-value problems
for parabolic type partial differential equations of second order with piece-wise
coefficients in multi-layered underground systems. Domains of a similar com-
position are examined using other mathematical methods in [5], [8].

In this Paper the special spline with two different functions, which inter-
polate middle integral values of piece-wise smooth function, is defined. These
functions contain the independent solutions of corresponding homogeneous lin-
ear ODEs with parameters — characteristic values. Special hyperbolic and
exponential type splines are developed. With the help of these splines the
problems of mathematical physics in 3-D with piece-wise coefficients with re-
spect to one coordinate are reduced to problems for system of PDEs in 2-D.
The solutions of corresponding 3-D initial-boundary value problem in one layer
are obtained numerically, using the implicit alternating method by Duglas and
Rackford (ADI) [7]. The 3-D problem in multi-layered domain is reduced to
2-D and 1-D problems, using special integral exponential - type splines. Every
layer of these splines contain parameters, which can be selected in order to
decrease the error of the solution. In the unlikely event if the parameters for
the hyperbolic type spline tend to zero, we get the integral parabolic spline,
obtained from A.Buikis.

2 Formulation of Problem

The process of diffusion and convection is considered in a 3-D parallelepiped
2={(z,y,2):0<zx<L;,,0<y<L,,0<z<L,}

The domain §2 consist of multilayer medium.
We will consider the nonstationary 3-D problem for multi-layered piece-wise
homogenous materials of N layers in the domain

Qi = {($7yaz) HES (OvLm)vy € (O’Ly)az € (Zl',l,Zi)},i = ]-an

where H; = z; — z;_1 is the height of layer £2;,20 = 0,2y = L,.

We will find the distribution of mass transfer ¢; = ¢;(x,y, z,t) in every layer
£2; at the point (z,y,z) € §2; and at the time t by solving the following 3-
D initial-boundary value problem for partial differential equation of parabolic
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type (PDE) [8]:

%= £ D) T ral 4 B DLE) +ru

+6%(D1Z %Cz )+ rio 52— apci + fi,
x € (O,Lz), (O,Ly), (ZZ',17ZZ'), t e (O,tf), 1= ].,7N,
9c; (0,y,z,t) _ Oci(x,0,2,t) -0

ox - oy
Dlzw - ﬂz(cl(zayvovt) - COZ(I7y)) = O’
DZ%W +O[i1’(ci(L$7yvz7t) _Ciam(y,Z)) 0 N (21)
Diyiaci(zézy’z’t) + agy(ci(z, Ly, 2, t) — ciay(z, 2)) =0, 1,N,

DNzW + Oéz(CN(-r7y7Lzat) - caz(m,y)) =0,

Ci(m, Y, Ziat) = Ci+1<33797 Z%t),

Oci(x,y,zi,t dc; T,Y,21,t . I T —
Diz% - Diﬂyz%, i=1,N—1

Ci(‘rayVZaO) = Cio(xayvz)a 1= 17N7

where ¢; = ¢;(x,y, 2z,t) are the solutions in every layer, f; = f;(z,vy, 2,t) are the
fixed sours functions, Djy, Diy, Diz, Tiz, Tiy, Tiz, Gi0 are the constant coefficients,
Qig, Ay, 0z, B, 1 = 1, N are the constant mass transfer coefficients in the third
kind boundary conditions, ¢z, Ciay, Ciaz, Co» are the given concentration on the
boundary, ¢; is the final time, ¢;o(x,y, 2) are the given initial concentration.

3 The averaging method in z-direction using the special
integral spline with two fixed functions

By using the averaging method with respect to z with two fixed parametrical
functions f;,1, fiz2,7 = 1, N we construct a spline

Ci(xvya th) = Ciz(xv:%t) + miz(xa yvt)fzzl(z - Z) + ezszszZQ(Z - Z)v

where ¢;, (z,y,t) = H% f;:;l ci(z,y,z,t)dz, Gi, = H; /D,

/ fiz1dz :/ fizadz =0, Z; = (zi—1 + 2)/2, 2 € [zi-1,2], i =1,N.
Zi—1 Zi—1

For example, using the exponential functions f;,; and f;,> can be defined in
the following way:

2
i1 = explai1(z —%;)) — sinh(0.5a;,1 H;),
fiz1 p(aiz1( ) =y ( 1H;)
2
fiza = exp(air2(2 — %)) — vl sinh(0.5a;,2H;),

r2 a? -
where @iy = —55 —\/apr + Dy G2 = —ap
1z

2 2
Tzzz + i0
1Dz T Dy,
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We can determine the unknown functions m;.(z,y,t), e;.(x, y,t) from boun-
dary conditions (2.1) in z-direction:

1) my.af] + Gizer.als = B.(c1. — coz), for 2 =0,
2) Dn:(mnzfafq + Gnzenzfrahs) + az(en: — Caz
+mn. Nt enGnafh,) =0, forz=L,,
3) Ciz+mifl +eizGiflo = civiz Fmig1 2 fil o+ eiv1,:Giv12fT o
Di.(mi- fih +eizGiz fidy) = Div1 (i1 f 1+ eiv1,:Giv1 2 fi 22),

forz=2;, i=1,N—1,

where % = fiur(—0.5H;), f, = fiu(0.5H;), fom = 2Let(—05H,), fih =
0Lk (0.5H;), k = 132, afy = Dy f{sh — B fi%y, aly = D1 fi — B.fis.

For determination of e;,, from conditions on the contact lines z = z;, i =
1,N -1, z = z;_1, i = 2,N by excluding m;41,,, m;—1,. and m;, we obtain
the following system of N — 2 algebraic equations

@;i€iz + Qi ir1€i41,2 + Qi i—1€i—1,2 = D iCiz + Ui i+1Cit1,2
+bii—1Ci—1,, 1=2,N—1,

where b; ;41 = =, biic1 = =), b = —(biip1+bii—1), @i = Giz(biip1chy+
! p _ T
bii1€i3), @iig1 = Gig1,2biig1Ch, aiio1 = Gioy ¢ ¢, by = fla—ria f 1

_ £p X m _sm m m . _ DiZf;lZZ)l R —
Ciy = Jizo = Kiza [T 210 €y = 0741 T o1 — [T s Biz = L A

ap am
D iy Ko — Dizfi s m = fitte2 o omo -1 D —fm
Di—1,:f{7) .1 122 Diy1,-fo0 .0 itz Fem o il i—1,21Ji—1,21 izlo

m __ fm X g m __ £P __sp g P __ fpap ap
=it — “z,z3f‘—1,z1, Ci3 = f¢—1,22 5i—1,zfi—1,z1? 5i—1,z = f¢—1,22/f‘_1,z1~

From the boundary conditions at z = 0,z = L, and previous expressions
for : =1 and ¢ = N by excluding mi., my, we get:

ay,1€1, + ai2e2; = by 1¢1, + by 22, + bigcoz,

aN,NeN: + an,N—16N—1,- = ON NCNz +bN N—1EN—1,> + DN,0Caz,

where ail = Glz(clan’ﬁ—cfla{g), a1,2 = Gg’zclfsaﬁ, bl,l = —aﬁ—ﬁchl, b172 =
afj,bio = Bucly, ann = —Gn:(cfhaly + cfoaly), anv-1 = Gn-1:cizaly,
by.N = e +aly, by N-1 = —afy, bn,o = —azcRy, afy = DNZfI(:/pz1+o‘Zf]:l\7/zl7
Yy = DNz [y + @ R0 _

Using the obtained values a; j,b; ;, ¢,7 = 1, N we can determine the 3-

diagonal N-order matrices AS, B with these elements, the N-order diagonal
matrix By with the elements [b19,0,0,...0,bn ], the N-order vectors-column
e,,c, with the elements e;,,c;, and the N-order vector-column cy with the
elements [cp;,0,0,...0,cqz]. Then we have the system of N algebraic equations
in the following vector form

Aiez(l‘vyat) = B;CZ(.’I?, y?t) + BOCO(xay)' (31)

The matrix A¢ is a diagonal dominant and we can write the unique solution in
the form e, (z,y,t) = B{,c.(z,y,t)+BS,co(z,y), where BS, = (AS)"1 B¢, BS, =

Math. Model. Anal., 21(4):450-465, 2016.
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(A9)~1By. Similarly we obtain m.(x,y,t) = B c.(x,y,t) + By co(x, y), where
B = BBy, + C7*, By, = B'B5, + C{". Here B]*,C7* are the 2- diagonal

: . Gi.al} G
N-order matrices with the elements b7"; = —=212 b7 | = —%26’3, by, =
? 11 ’ il
Gy .cly - .
2@012’ iy = f’fi’ cry = 1/cfi, ey = —1/cfi, CF° is the N-order diagonal
matrix with the elements [-B./a%},0,0,...0,0].

We can determine the diagonal N—order matrices Dy, Dy, 74, Ty, Oz, 0y, HY,
H™, a% with the corresponding elements D;,, Diy, Tizs Tiy, Qig, Qy, RS, h:rz‘,
a? and the N-order vectors-columns f,(z,y,t), Coy(T); cop(Y); cz0, ¢z with
the elements fiz(m y, 1), ¢ Z”ay(x), et W), cizolz,y), ciz(z,y, ), where hS,
C;fz (Di (it = f23) +1iz(fho — [122)), BiE = ﬁ(Diz(ffz]i = [E) il —
fzzl)) fZZ(x Y, )_ %f;: f(.%' Y, 2 t)dZ cuu(y) = if,:,l Ciaw(yv )dZ,
C;]ay(x) = hlrl fZZ; ) Czay(x Z)dz Ciz 0(1' y) H Cio(:v,%z)dz.

Then we have the new initial-boundary value 2D problem in following vector
form:

Zi—1

Bcz(gt,y,t) - %(Dz Bcz(ax:;yi)) T, Bcz(amy 4 2 (D Bcz(azy t))

oy, 22D 20 (2 t) + (Dhisz + DhTBiZ)Cz(% y,t)

Oy
+(DheB§z + DhmBénz)CO(x, y) + fz(xv Y, t)v
e (0, ,t) Oc, (z,0,t) _
Ba:y oy - O (3.2)

D M —+ Ofa:(cz(L$7yat) - cZz(y)) = 07
Dy%fﬂjt) —‘rCYy(Cz(l‘ Lyat) CU (l‘)) = O’
Cz<x7y70) = Cz,0(£7y)7x ( Ly Y E ) te (0 tf)

4 The averaging method in y-direction

Using the averaging method with respect to y with two fixed parametrical
functions fiy1, fiy2, ¢ =1, N:

Ciz(x,y,t) = ciy(x, t) + myy(z,t) fiy1(y — 0.5Ly) + eiy(x,t)Giy fiy2(y — 0.5L,),

Y L L, L
where ¢y (x, 1) fo Veiz(z,y, t)dy, Giy = Df/ya fo Y fidy = fo Y fiyady =
0,i=1,N. For example, fiy1 = ezp(aZ?l(y 0.5Ly)) — ﬁ sinh(0.5ai?il.Ly),
fiy2 = exp(aiy2(y — 0.5L,)) — msmh(Oﬁangy), where a;,; = _251 _
7"2 Lyo o Tiy r?y kzyo k ) ) < 0is th
4D2 + ; Qigy2 2D,, + 4D?y + iy0 — Qip — Qiy, Aiy > U 1S e

coefﬁment on ¢;, in equations (3.2).

We can determine the unknown functions mg,(x,t), e;y (2, t), from boundary
conditions (3.2) in the following form:

Diy (mlyfzrz/:’)l+€lyGly zy2) + aly(mlyfzy1+elyGly 1Yy2 + Ciy (JJ t) zay(x))zov

My iyt +eiyGiy fiyz =0 or ey = —biy (ciy(z,1) — 1ay(x))? miy = —Giykiy ey,
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a m f‘l.y m
where bly = O‘Zy/(o‘zyGly(fﬁﬂ Zy zy1)+LZl(fzy2 'V‘: zypl)) H = f‘”i’ iyk —
afi a dfi
iiyk(—omy), P e = fur(05Ly) | fom = %(—0.5@,), fin = fyk (0.5L,),
=1,2.
Then the initial-boundary value problem (3.2) can be written in the follow-
ing form

dey(z,t) Ocy (z, Ocy (z,
Oept) = (D) (;x 2 — afe,(,1)
+(H,'By'— HSBE)( y(@,t)—cqy (@) + (HEBY, + HI'BY{})cy(w, )
+(HIBS, + HI'B3L)cg(z) + fy(z,t), (4.1)
2400 — 0, D, 2Ze + a0y (Lo ) = i) = 0,

Cy<.7;‘,0) = cy,O( )7 (OvLa:)at € (O’tf)7

where Hy, H,", By, B;" are the N-order diagonal matrices with the elements

G;
hfy = Tj(Dly(ffpr - zy2) + riy(fiz;Q - fzyQ)) hm = fy(Dzy(fZﬁ - Zﬁl) +
riy(fhn — flyi)s 5, = biy, by = Giykfibiy, ¢y, fy are the N-order vectors-
columns with the elements ¢;y, fiy, cf(z) is the N —order vector-column with

fz z,Y, )dy, ( ) =
L ) L
Liy fo v Caz(x7y)dya coz(‘r) = Ty fO COZ $7y)dy» az = %y fo v a,x( )dy7
Ly
Cy,o(x) = %y fo Cz,O(xay)dy'

two nonzero elements ¢, (x), co (x), fy(z,t)

5 The averaging method in z-direction

It is also possible to do the averaging with respect to x coordinate:

1 [l
Cialt) = - / iy (@, ), iy (,8) = cin () + mis (t) fior (& — 0.5Ly)
x JO
Lo Lo
+ €z (t)Gig fiza(x — 0.5L,), fiz1dy = fizady =0,
0 0

with the unknown functions m;;(t), €;.(t). For example,

fiz1 = exp(ajz1(x — 0.5L;)) — sinh(0.5a;21 L),

Qg1 Lm

fiza = exp(aize(z — 0.5L,)) — sinh(0.5a;22 L),

Qig2lig

2 2
r 72 k?
where a;;1 = 3D \/ 1D% fl‘:f, Aig2 = 2D7:r +
D7

aZy — iz, aip < 0 is the coefficient depending on ¢;y, in (4.1).
We can determine these functions from boundary conditions (4.1) in the
following form:

Dlx(mm’fi + GWJG’L zzZ) + aﬂ?(m’biﬂfz:vl + €ix m’fzx2 + clll?( ) - zaz) - O
My 1;? + eimGim ir2 =0or Cix = *bzz(czx(t) - C;)(fm)a Mgy = *Gimﬂimeixa

Math. Model. Anal., 21(4):450-465, 2016.
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where bz = i /(iaGia(fln — Kiafiz1) + La(fidy — Kinfig1))s Bl = ;}ﬁa
Gia: = DLing Z;Ik = fzxk(_05L:z:)a fik = fzzk(O5La:)7 {ZZ = ajg;l;k (_05-[/30)7

K2

fih = 2Luk(0.5L,), k = 1,2.
Then the initial-boundary value problem (4.1) can be written in the follow-
ing form:

aCm m M e Re e e m
=(H By — HE BS) (e (t) =)+ (HEBS,+HI B2 )ea () —agea (1)
(HZ€B2Z + H:TBZW;)CZ))’U + (H;nB;n - HiB;)( 1’( ) - am) + fﬂ:(t)a
cz(0) =cg0, te€(0,ty),

(5.1)
where HZ, H*, B, B* are the N-order diagonal matrices with the elements
hgy = G2 (Dia(Fidy = F&) + ria(fhy = [i2))s W2 = 2 (Dis(Fih — JE0) +
Tiw ([P0 — 1), b5y = big, b = Gigkltbiy, ¢y, fr are the N-order vectors-
columns with elements Ciz, fiz, c§’, are the N-order vector-column with two

nonzero elements cj?, co?,

027

1 [l 1 [l
= Z/o fylz,t)dx, cp0= L—l/o cy0(x) d
=7, co (x)dx, ¢l = . /. ¢, (z) da.

Therefore from (5.1) we have the initial value problem for the system of N
ODEs of the first order. The solutions for this system can be obtained with
classical methods.

For the averaged stationary solution (f, is a constant vector) we also get
the analytical solution in the form

Cp = (Ha:,y,z)_l(_fm +g)7

where H,,. = HSBS, + H" B} + H"B™ — HSB® + H"B™ — HSBS — a2,
is the N-order matrix and g = (HmBm HEB;)CZ; + (H'B)' — Hy By )y —
(H¢BS, + HI*BIL)cy? is the N-order vector-column.

6 CAM for solving 1-D multi-layer diffusion problem with
the hyperbolic type integral spline

For solving (2.1) without convection r;; = r;y, = r;, = 0 we consider hyperbolic
functions in the z-direction with parameters a;,1, @;.2,7 = 1, N:

0.5H; sinh(a;.1(z — %)) fior = (0 25sinh2(ai22(z —-Z))

fizl = Sinh(0-5ailei) ’ Sinh2(0-5aiz2Hi

- AiOz)a

where A;p, = 0.25 (smh(;;;(lii)zg?)f{{)q € [0,1/12]. We see that the param-

eters a;.1, ;-2 tend to zero when the limit is the integral parabolic spline [4],
(z=2%)* 1

— . We also see
H? 12

because Ao, — 15 as fi1 = (2 — %), fizz =
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that f7y = —0.5H;, Lzl = 0.5H;, 2, = fipz2 = Airz, [ET = gzpl = di1,
iazgl = dzzZa ff;z = dzz?a where Azlz = 0.25 — AiOz S [1/671/4]a Ailz — %7

dizl = 0.5Hiaiz1 COth(0.5CLi21Hi) — 1, dizg = O.5Hiai22 coth(0.5aiZ2Hi) — 1, if
@iz, Qizz — 0.

It is possible to show that this spline for a;,; = \/a?O/Diz, ;2 = 0.5a;,1
integrate exactly the following 1D boundary-value problem:

%(Dizacéiz)) —a%ci(2) + Fi =0, z€(zi-1,2),i=1,N,
D238 — B.(e1(0) — Co) =0,

D224 E=) 4 (en(L2) = Ca) =0,

ci(z) = ci_s_l(zi),Dizacgi(ji) = DH_LZ&%IZ(ZI), 1=1,N—1,

(6.1)

where I}, Cy, C, are constant parameter.

Table 1. The maximal error § and averaged values cj,,-exact, ¢, - approx)

a, B a1 a2 1) c

2 1 0 0 0.092 0.769 0.792
- - 0.5 0.5 0.084 0.802 -
- - 1.0 1.0 0.062 0.785 -
- - 1.4 14 0.050 0.791 -
- - 1.5 1.5 0.050 0.802 -
- - b b/2 0.0 0.792 0.792
2 0 0 0 0.339 0.672 0.808
- - 1.3 1.3 0.243 0.727 -
- - 2.0 20 0134 0.791 -
- - 25 25 0.088 0.843 -
- - 23 23 0.081 0.822 -
- - b b/2 0.0 0.808 0.808
20 O 0 0 0.339 0.672 0.809
- - 23 23 0.081 0.823 -
- - b b/2 0.0 0.809 0.809

Ezample 1. We consider the 1-D problem (6.1) with one layer (N=1) in the
following form:
{gz(@gg)) be(z) + fo=0, z€(0,L.),
Oc dc
D252~ B(e(0) = Co) = 0, D- =) + - (e(L:) — Ca) =0,

where b? = a3/D., fo = F/D,. Therefore the exact solution is
c(z) = Py sinh(bz) + Py cosh(bz) + fo/b?,
where the constants
Py =B.(Pa+ fo/b?/D.b—Co), P»=a.(Cq— fo/b%) + B(Co— fo/b)
x (cosh(bL.) + a; sinh(bL.)/(bD.))/( cosh(bL.)(a + B-)
+ sinh(bL. ) (bD. + a.f:/(bD2))).

Math. Model. Anal., 21(4):450-465, 2016.



458 A.Buikis, H. Kalis and I. Kangro

The averaged values are ¢’ = L;! fOLZ c(z)dz = Lib(Pl(cosh(bLz) - 1)+
Pysinh(bL,)) + fo/b%.

This form of solution was also applied to discreate approximation ¢(z;), z; =
jh,h = %,j = 0, N by using the exact finite difference scheme (FDS) from N.
Bahvalov [1]. For comparison we use the averaged method with respect to z
for hyperbolic type integral spline.

The Table 1 shows the numerical results for ' =0,L, =1,L, =1,L, =
1,Cy = 03,C, = 2.0,D, = 1073, D, = D, = 3-107% b = 2.4335. The
maximal error § and averaged values are presented, the dependence on a; = a1,
a9 = a2, , B, (a1 = ag = 0 for parabolic spline) is investigated.

Figures 1, 2 represent the solutions ¢(z) for N = 20, a, = 20, 8. = 0,
a1 = az = 2.3 and for a; = b,as = b/2, respectively. Note that for a; = as
and FDS we get 6 = 0.0222, and for a1 = b, ay = b/2 we get § = 0. For
L, =3,F =0.1,b = 24335 follows: c;, = 23.14, ¢, = 16.87, § = 6.27 (for
parabolic spline), cp, = 16.87, c;,, = 16.87, 6 = 0 (for hyperbolic type spline

with a; = b, a9 = b/?)

Concentration c=c(z),Dz=0.0010

181 1 1.8

16l « analytic solution ] 16
e quadratic spline
141 m— gxponential spline q 1.4 »  analytic solution
- = =FDS ®  quadratic spline
12F R 12 — exponential spline

081 fl{ 1 0.8

- ~Ze0 : .
(4

0.6 '_-‘. . 1 0.6 . A4

[ Sp—_ . 04, L

. .
0.2 . . 1 0.2 . .
eo eo s ®
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
2
Figure 1. One layer solution c(z) for Figure 2. One layer solution ¢(z) for L, =

L,=1,a,=20,8, =0,a1 = a2 =2.3 3,D1, = 10e — 03, D2, = 10e — 04, a2 = a1 /2

Figures 3, 4 represent the functions f1,, fa, for the hyperbolic spline depend-
ing on parameters a; = az € [0,25], and for the parabolic spline a; = as = 0.
For the spline with 2 parameters a; = b,as = b/2 we have the exact solution
for all values of parameters L., F\ b, D,,Cy, Cy, a, B.

7 CAM for solving 1-D multi-layer mass transfer problem
with the exponential type integral spline

It is possible to show that the integral spline integrates the exact following 1D
boundary-value problem in N layers:

%(Dw Bcéiz)) + Tiz Bcéiz) —CL%OCZ(Z)—FF,L = 0, z € (Zifh 21)72 = ]., N,

D1, 240 53 (¢1(0) — Co) =0,

DNz% + az<CN(Lz) - Ca) = Oa

CZ(ZZ> = cit1(2i), Diz 665(5” = Di+1,zaci+372(zl)7i =1,N -1,

(7.1)
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GRAF y=0.5sinh(a*(z-L/2))/sinh(a/2),a=0(1)25 GRAF y=0.25"sinh?(a" (z-L/2))/sinh?(@/2),a=0(1)25

Figure 3. Values of functions f1, for Figure 4. Values of functions f2, for
hyperbolic spline with a1 = a2 € [0, 25] hyperbolic spline with a1 = a2 € [0, 25]

where F;, Cy, C, are constant parameters (see Section 10 (N = 5 and N = 10)).

Using the averaging in z-direction (3.1,3.2) we have the averaged value ¢!
for the solution ¢;(z) of boundary-value problem (7.1) in the following matrix
form:

¢t = (ao2 — HEBY, — HI'BYL) ™' ((HS B3, + HY'B)eo + F),
where the elements on the diagonal of N-order matrices HS, H" are h{, =

2]3‘: (DizaiZQ +Tiz) blnh(05al22Hl) and thZL = Hli(DizaiZI +7"iz) blnh(05azlel)
The spline-solution is defined as:

C(Z) = CZ + F.im, + G, F.qe,

with N-order diagonal matrices F,q, F,o, G,. Similarly the exact analytical
solution of (7.1) can be obtained.

For two layers (N=2) by L, = 3,H; = 1.8, Hy = 1.2, D; = 1073, Dy =
1074, oy = 10%,8; = 10%,Cy = 0.3, C, = 3.0, r; = —0.01, 75 = 0.01, F} =
0.001, F» = 0.001, we have the following numerical results (see Figure 5): the
maximal error — 2 - 1077 (exponential spline), 0.6045 (parabolic spline), the
averaged values ¢! = 0.3332, ¢4 = 0.8391 (exact and exponential splines),
¢} = 0.3662, ¢ = 0.8055 (parabolic spline). Figure 6 represents how function
f121 for exponential spline is depending on the parameter aly, € [—5, 5].

8 CAM for solving 3-D diffusion problem in one layer
with the exponential type integral spline

For averaging (2.1) in one layer (Z7 = L./2) we consider exponential functions
following in the z-direction. From boundary conditions the system of two
algebraic equations follows

bllmz + b12ez = ﬂz(cz - COz)a
b21mz + bZQez = _az(cz - caz)7

Math. Model. Anal., 21(4):450-465, 2016.
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Concentration c=c(z),ere=0.0000,erp=0.6045 GRAF y=f1z

© analytic solution
e exponential spline
25l <= = parabolic spline 8

Figure 5. Two layers solutions for Figure 6. Values of functions f1,; for
L, =3,D1, =10e — 03, D2, = 10e — 04 exponential spline, ali, € [—5(1)5]

where by = sz;ﬁm - /Bzf;q» bo1 = sz;in + a; zla bio = sz,me - G.p. 55,
boo = L. [y + G.a. fF,. The solution is given in the form

myz; = amCy — bmcaz —CmCozy, €z = —QeCy — becaz + CeCoz,
where a,, = (B.ba2 + azb12)/d, by, = abia/d, e = B2ba2/d, ac = (a:bi +

B:b21)/d, be = azbi1/d, ce = Brba1/d, d = bi1baz — bigbas.
The new 2D initial-boundary value problem is in the form

dcz (x,y,t) 9 9cs (z,y,t) 9cs (z,y,t)
at = 57 (Do ==5757) + ra =5,

o z sY, 12} z Y
+ 4 (D, 2ty o 2D 4 (g, — a)es (2, y, )

+azcaz + szOZ + fz(ajv Y, t)a
Oc:(0,y,t) _ Oca(x,0,t) _ 0
ox - Oy -

D, 2eslet) 4 o (e (Lyvy,t) — clyly)) = 0,
Oc. (x,Ly, v o
D, 2= t) (e, (, Ly, t) — by () = 0,

Cz('rayao) = Cz,O(‘rvy)v T e (O7Lx)7 AS (OvLy)7 te (Oatf)v

where g, = b1a,;, — b2GLae < 0,a, = —b1by, + 01GLbe, b, = —bicp + b2G e,
by = Ll sinh(a.1L,/2)(D.a.1 +7.),ba = Ll sinh(az2L,/2)(D.a.s +12).
For averaging in the y-direction we use the following parameters:

r r2 a2 —g, r r2 a2 —g,
ay = — y o y2_|_(o g)’ ayp = — vy y2+(o 9).
2D, 4D2 D, 2D, 4D3 D,

We see that ffjk = dpy, fyi" = ayk exp(—0.5ay,Ly), fyk = ay exp(0.5ay, Ly),
for = exp(0.5ayLy) — o2~ sinh(0.5ayrLy), k = 1,2.
It follows from boundary conditions that

p— J— U
my = —ey,Gyky, €, = —by(cy — cay)7

where k, = fi3" [ fo, by = ay/(Ly(f Ky fyt) + ayGy(frs — ”yfé)l))'
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The new 1D initial-boundary value problem is in the form

Ocy(x,t) @(Dxacy(m t))_|_ xacz(m,t)

ot Oz ox

+(gs—ad—bygy)cy (@, t) + ascl, +b.cl, + byGyCay + fy(x,1),
2400 = 0, D, P+ a0y (Lo ) = i) = 0,
cy(x,O) = Cy70(l‘), (OaLw)’ te (07tf)a

where g, = 5 — ry fy + 2”‘( Ky sinh(a,q Ly /2) + sinh(ay2 L, /2)) >

For averaging in the z-direction we use az1 = — 57~ — \/ 7+ (ao%iwygy)
2_
azg = —% + \/475'2 + %ggijbygy) Then we get = exp(0.5ak, L) —

T L sinh(0.5ak,Ly), f" = aky exp(—0.5ak; Ly), ka = ak, exp(0.5ak, L),
k= 1, 2.
From boundary conditions it follows that

Mg = _eCEGIK/ZL’? €x = _bz(cz - Cm})v

where ki = f337/f1", be = 0 /(La(f33 — Kaf31) + @Ga(fra — Kafir))-
We have the followmg initial Value problem for ODE:s of the first order:

a €T
(61‘/(” (9= — af — bygy — baga)ca(t)

tazcg? 4+ b.cgl + bygycay + bagucay + fu(t),
cz(0) = cg0, te€(0,ty),

where g, = fib — P+ 2”( kg sinh(ayy Ly /2) + sinh(age L, /2)) > 0
For the stationary solutlon we get

Y+ b.cpl + bygycy + bagacoy + fm
-9z + ao + bygy + bzgm

Ca;:

Then we have the stationary 3D solution in following analytical form:

cy(x) = cotmg fo1+erGofra, €y(x) = _by(cy(m)_CZy)v my(z) = —ey(2)Gyky,
cx(w,y) = cy(z) + my(z) f1(y) + ey (2)Gy fy2(v),
ex(r,y) = —aecz(2,y) — beCaz + CeCozy, Mz (T,Y) = amcz(T,y) — byCaz — CmCoz,

C(Ivya Z) - CZ(SC,y) + mZ(I7y)f21(Z) + ez(x7y)GZf22(Z)'

9 The numerical approximations with ADI method for
the 3-D problem in one layer
We use a uniform space grid (K + 1) x (N +1) x (M +1):

{(zk7y’uxj)7 Zk:(k_l)hza yz:<z_1)hlja '/L']:(.]_l)h:m 221,N+1,
j=1,M+1, k=1,K+1, Kh, =L, N, hy=L,, Mh,=L,}.

For the time ¢ we use the discrete grid ¢, = nr,n = 0,1,.... Subscripts
(k,i,j,n) refer to z,y,x,t indices with the grid spacing, and for the approxi-
mation of function c(z,y, z,t) we get a grid function U}, ; = c(2k, yi, T, tn).

Math. Model. Anal., 21(4):450-465, 2016.
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For solving 3D problem (2.1) we use the discrete approximation

(U]?a—::; Uk7J)/T7(A +A +A) I::Lj_;+sz]a nZOa

k=1,K+1,i=1N+1, j =1, M+1 and ADI method by Douglas and
Rachford [7,9]:

U = Ukig)/m = AU + AU+ AU +
k=2K, i=2N, j=2M,

n+2/3 n+1/3 n23 n
(U+/ _U+/)/T— AU, i _Uk,i,j)7

zg’

ki, ki, ki (9.1)
k=1,K +1, Z:2N j=1,M +1,

n +2/3 n n
(U = Ul fr = A Uit = U, ),

E=1K+1, z-l,N—i—l, J=2,M.

After elimating the unknowns at fractional time moments t,,1/3,t,12/3 we
obtain the previous discrete problem with approximation error O(72). Here
Ay, Ay, A, are the difference operators, approximated the differential operators

Q(Dxac(zvy,x,t))Mx@c(z,y,m) Q(Dyﬁc(zyy,x,t)>+ry36(zvy,x,t)

Ox Ox Ox T Oy Oy Oy ’
0 dc(z,y,x,t dc(z,y,x,t
7% (Dz%) + Tz% _ a%c(z,y, z,t)
and boundary conditions with central differences, f,?,i)j = f.(2k, ¥i, 2, tn). The
approximation is monotonous if h, < TD K hy < %, h, < 2‘ E For solving
“ Y

Unt1/3 gnt2/3 and U™ we use Thomas algorithm in z, y and x directions
respectively.

Levels of C by z=L2/2, MaxCz=4.8639, MinCz=2.3843 Levels of Cnum by z=Lz/2, MaxCz=4.8306, MinCz=2.5001
T

Figure 7. Levels of averaged Figure 8. Levels of numerical
concentration c(z,y, L /2) concentration ¢(z,y, L,/2)

10 Numerical results

The numerical results are obtained for K = 19N = M =21, L, = 3, L, =
Ly=1, 0, =20,8, =100 = ay = 2,¢0> = 4,¢0, = 1.3,Caz = Cay = 2.5,
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D, =D, =3-10"3, D, = 1072,r, = 0.01,r, = 0.001,r, = —0.001, f =
0.1,ap = 0.1. We have following numerical values: g¢g. = —0.069,b,g,
0.0129, b9, = 0.0281,al, = —10.1,a2, = 0.1,al, = —3.73,a2, = 7.06,al,
—7.45,a2, = 3.73.

For using the ADI method for the initial condition the stationary averaged
solution ¢, (z,y, z) is selected. We have the stationary solution with 7 = 1,
ty = 300, then the maximal error is 1078, the maximal value of c(z,y, 2) is
5.29 for averaged method, 5.16 for ADI method (see Figures 7-10).

Concentration c(z)by Lx/2,Ly/2,Max=4.9115Min=1.3376 Concentration cvid=c(x),Dz=0.0100

ERr FF A A
* * *
* ****

* %
*
*
e, *
*
*
*

0 05 1 15 2 25 3 0 0.2 04 0.6 0.8 1

Figure 9. Averaged and numerical Figure 10. Averaged concentration cg(z)

concentration ¢(Lz /2, Ly /2, z)

Depending on the number of grid points (X, N,M ) we have the following
maximal values of the solution for ADI method: 5.1616 ( K = 19, M = N =
21), 5.1587 ( K =29, M = N = 31).

Figure 11 shows the graphics of functions ¢;(z) (7.1) in 5 uniform layers
(N =5H, =06,L, = 3,8, = o, = 10,Cy = 0.3,C, = 2) for D;, =
[0.01; 2;0.03; 4; 0.05], ;,=[0.1;0.2; 0.3; 0.4; 0.5], F;=[0.04; 0.08; 0.12; 0.16; 0.20],
a?y = [0.1;0.2;0.3;0.4; 0.5]. In Figure 12 the parameters remain the same, only
the source term F; has the opposite sign.

Concentration c=c(z),ere=0.0000

©  analytic solution
== exponential spline

05

Figure 11.

Figure 13 shows the graphics of functions ¢;(z) (7.1) in 10 uniform layers

Math. Model. Anal., 21(4):450-465, 2016.

Function ¢(z) for a positive

source F(N=5)

25

Concentration c=c(z) ere=0.0000

© analytic solution
e exponential spline

Figure 12. Function c(z) for a negative

source F(N=5)




464 A.Buikis, H. Kalis and I. Kangro
(N=10,H; =06,L, =6,5, = a, =10,Cy =0.3,C, = 2) for

D, =1[0.01;2;0.03; 4;0.05; 0.01; 2; 0.03; 4; 0.05],
ri» = [0.1;0.2;0.3;0.4;0.5;0.1; 0.2; 0.3; 0.4; 0.5],
F; =[0.04;0.08;0.12; 0.16; 0.20; 0.04; 0.08; 0.12; 0.16; 0.20],
a?o =10.1;0.2;0.3;0.4;0.5;0.1;0.2; 0.3; 0.4; 0.5].

In Figure 14 the parameters remain the same as in Figure 13, but the source
term F; has an opposite sign.

Concentration c=c(z),ere=0.0000 Concentration c=c(z),ere=0.0000

6 © analytic solution 1 ©  analytc solution
=—e— exponential spline e exponential spline

0.5

Figure 13. Function c¢(z) for a positive Figure 14. Function ¢(z) for a negative
source F(N=10) source F(N=10)

11 Conclusions

The 3-D mass transfer problem in multi-layered domain is reduced to 2-D and
1-D problems using the special integral parabolic , hyperbolic and exponential
type splines. These splines are obtained from the general spline with two fixed
functions. The parameters of these functions are the characteristic values for
the corresponding homogeneous ODEs of second order in fixed direction. These
parameters are the best parameters for minimal error.

The 1-D differential and discrete problems are solved analytically. For hy-
perbolic spline the best parameter for minimal error is calculated.

The solutions for the corresponding averaged non-stationary 3-D initial-
boundary value problem are obtained numerically using alternating-direction
implicit (ADI) method proposed by Douglas and Rachford.

The stationary numerical solution is compared with the analytical solution.
The max absolute value of difference between corresponding numerical and
averaged data was 1-2 percent.
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