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Abstract. In this paper, we propose a three–term PRP–type conjugate gradient
method which always satisfies the sufficient descent condition independently of line
searches employed. An important property of our method is that its direction is closest
to the direction of the Newton method or satisfies conjugacy condition as the iterations
evolve. In addition, under mild condition, we prove global convergence properties of
the proposed method. Numerical comparison illustrates that our proposed method is
efficient for solving the optimization problems.
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dition, global convergence.
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1 Introduction

Consider the following unconstrained optimization problem:

min
x∈Rn

f(x),

where f : Rn → R is a smooth function. We denote by g(x) the gradient of f
at x and abbreviate g(xk) and f(xk) by gk and fk, respectively. Also, we use
yk−1 = gk − gk−1 and || · || to stand for the Euclidian norm.
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The conjugate gradient (CG) methods are used for large–scale optimization
problems, because their memory requirements are modest. Usually, the general
procedure of the iterative computational scheme is presented by:

x1 ∈ Rn, xk+1 = xk + sk, sk = αkdk, k = 1, 2, · · · , (1.1)

where αk > 0 is a steplength, and dk is a search direction generated by

d1 = −g1, dk = −gk + βkdk−1, k = 2, 3, · · ·

Several famous formulas for βk are called the Fletcher–Reeves [15], Hestenes–
Stiefel [19], Polak–Ribière–Polyak [24] formulas. We refer to an excellent survey
[18] for a review on recent advances in this area. The parameters of the PRP
and HS methods are respectively given by

βHSk =
gTk yk−1
dTk−1yk−1

, βPRPk =
gTk yk−1
‖gk−1‖2

. (1.2)

Both above methods are usually recommended in actual computation due to
its superior computational performance. This can be attributed to the property
(∗), which was dated back to Gilbert and Nocedal [16]. That is, in the cor-
responding PRP+ method, in which the parameters βPRP+

k = max{βPRPk , 0},
the current search direction will automatically adjust to the steepest descent
direction when the step sk−1 is small, which prevents effectively jamming phe-
nomenon from occurring.

Recently, various modifications of the HS method have received growing
interests, in which conjugacy condition and sufficient descent condition are two
key factors to be considered in designing new methods.

The HS method has the property that it can satisfy automatically the stan-
dard conjugacy condition independent of any line search used [19], i.e.,

dTk yk−1 = 0. (1.3)

Later, the above “pure” conjugacy condition (1.3) was replaced by the so–
called Dai–Liao conjugacy condition [9]:

dTk yk−1 = −ξgTk sk−1,

where ξ > 0 is a constant. Also, the CG parameter proposed by Hager and
Zhang [17], that is

βHZk =
gTk yk−1
dTk−1yk−1

− 2
‖yk−1‖2

(dTk−1yk−1)2
gTk dk−1.

can be viewed as adaptive version of (1.2) corresponding to ξ = 2
||yk−1||2

sTk−1yk−1
.

Often, the sufficient descent condition has been used in the literature to
analyze the global convergence of conjugate gradient methods with inexact
line searches. That is, there exists a constant c > 0 such that

dTk gk ≤ −c‖gk‖2, ∀k ∈ N. (1.4)
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This property has been paid special attention by many authors, say, Dai and
Kou [8] proposed a family of CGOPT methods. To achieve good computational
performance, Babaie–Kafaki [3,5] focused on hybridizing different CG methods,
in which the conjugacy condition (1.3) and (1.4) are always satisfied. Yu et
al. [28],Andrei [1, 2],Babaie-Kafaki [4], Dong et al. [11, 12, 13, 14], Livieris and
Pintelas [20,21,22] proposed several modified spectral CG methods.

In this paper, we are interested in the three–term CG method. It is well–
known that a good direction to follow is the Newton direction −∇2f(xk)−1gk,
provided that the current point xk is close enough to a local minimizer x∗. In
the need of solving large–scale problems, computationally, though, it is difficult
or even impossible to evaluate or store the Hessian matrix of the function
exactly at each iteration. For this reason, various modified secant equations
and quasi–Newton algorithms are employed in the sense that they have the
attractive property of achieving a high–order accuracy in approximating the
second–order curvature information of the objective function.

Based on the analysis above, the extension and application of some prop-
erties of quasi–Newton methods to nonlinear CG methods successfully revo-
lutionized the field of nonlinear optimization. For example, Zhang, Zhou and
Li proposed some three–term CG methods, which satisfied dTk gk = −‖gk‖2,
∀k ∈ N . Furthermore, Narushima et al. [23] extended this method to a general
three–term conjugate gradient method. Based on a combination of the scaled
memoryless BFGS method and the preconditioning technique, Andrei [1, 2]
proposed the THREECG and TTCG method.

Inspired by the above papers, we construct another way to generate the
search direction and proposed another three–term CG method, which is always
sufficiently descent as well as being close to the quasi–Newton direction.

2 Motivation and Properties

In this section, we begin to describe our motivation, and then present a detailed
description of our method.

Recently, Zhang, Zhou and Li [29] proposed a three–term MPRP method
and establish its global convergence with the Armijo line search, in which

dMPRP
k = −gk + βPRPk dk−1 −

gTk dk−1
||gk−1||2

yk−1.

By using the Gram–Schmidt orthogonalization on to dk−1 and gk, Cheng [7]
proposed a TMPRP method with the strong Wolfe line search, in which

dTMPRP
k = −gk + βPRPk dk−1 − βPRPk

gTk dk−1
||gk||2

gk. (2.1)

The structures of the search direction dMPRP
k and dTMPRP

k are to some
extent alike in the sense that both of them can be regarded as the variants of
the PRP method. Also, a nice property is that, at each iteration, the gener-
ated direction in the above two methods satisfied sufficient descent condition

Math. Model. Anal., 21(3):399–411, 2016.
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independent of any line search used, that is,

dTk gk = −‖gk‖2. (2.2)

However, the above methods do not satisfy the conjugacy condition and
the probably effective combination between them have been ignored, which
motivate this paper.

In this paper, we propose another three–term PRP–type method by noting
that our chief concern is to take advantage of the property of the Newton
method or the conjugacy condition in constructing the CG method.

We first simply merge the directions above into a single direction:

dNPRPk = (1− ξk)dMPRP
k + ξkd

TMPRP
k ,

where ξk is a hybridization parameter.
After some simple algebraic manipulations, we have

dNPRPk = dMPRP
k + ξk

gTk dk−1
||gk−1||2

(
yk−1 −

gTk yk−1
||gk||2

gk

)
, (2.3)

or equivalently,

dNPRPk = dMPRP
k + ξk

gTk dk−1
‖gk−1‖2

Tkyk−1,

where the orthogonal projection matrix

Tk = I − gkg
T
k

||gk||2

is a symmeric non–negative definite matrix with ||Tk|| = 1 and I denotes the
identity matrix.

Next, we explain in more detail how to obtain the desired value of ξk.
Recall that, in the QN method, an approximation matrix Bk−1 of the Hes-

sian matrix ∇2f(xk−1) is updated such that the new matrix Bk satisfies the
quasi–Newton equation

Bksk−1 = yk−1, (2.4)

which leads to the the quasi–Newton search direction, calculated by

dQNk = −B−1k gk.

The hybrid CG parameter ξk is justified by the following condition:

−B−1k gk = dMPRP
k − ξk

gTk dk−1
||gk−1||2

(
gTk yk−1
||gk||2

gk − yk−1
)
,

or equivalently,

−gk = Bkd
MPRP
k − ξkBk

gTk dk−1
||gk−1||2

(
gTk yk−1
||gk||2

gk − yk−1
)
.
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Note that ||gk||2 = −dTk gk. Pre-multiplying both sides of sk−1 and using
the effective standard secant equation (2.4) give the following relationship, that
is

−gTk sk−1 =− gTk dk−1
gTk−1dk−1

gTk yk−1 +
gTk dk−1
gTk−1dk−1

||yk−1||2

+ξk
gTk dk−1
gTk−1dk−1

(
(gTk yk−1)2

||gk||2
− ||yk−1||2

)
. (2.5)

Obviously, Equation (2.5) is satisfied trivially for gTk dk−1 = 0. We next
consider the case where gTk dk−1 6= 0.

By some simple algebraic manipulations, we have from (2.5) that

ξk =
||yk−1||2 + sTk−1gk−1 − gTk yk−1

||yk−1||2 −
(
gTk yk−1

||gk||

)2 . (2.6)

Notice first that ξk given by (2.6) is well–defined when ||yk−1|| 6= |gTk yk−1|
||gk|| .

We expect to take advantage of the fast local convergence of the Newton method
in at least the final iterations, but the PRP method will have to be modified
in order to converge globally. Having the view that the PRP+ method has
the property βPRPk > 0 (βk = 0 can be regard as its truncation form), which
is equivalent to the inequality gTk yk−1 > 0. To eliminate the probable effect
of unboundedness of ξk and establish the global convergence of our proposed
method, we proposed the following strategy in constructing the search direction:

dk =

{
−gk, k /∈ K,
dNPRPk , k ∈ K. (2.7)

In (2.7), the index set K is defined by

K = {k|k ∈ N, 0 < ζk < 1− η}, (2.8)

where η ∈ (0, 1) is a given constant and

ζk =
gTk yk−1

||gTk ||||yk−1||
.

Remark 1. The condition (2.5) was originated form Perry [25], that is, dTk yk−1 =

dTk (Bksk−1) = (Bkdk)
T
sk−1 = −gTk sk−1. Without the loss of generality, in-

stead of using the above condition, we choose the general form of the conjugacy
condition, that is, dTk yk−1 = −tgTk sk−1. Obviously, if t = 0, then the above con-
dition reduces to the usual conjugacy condition, otherwise, it becomes the DL
conjugacy condition.

Math. Model. Anal., 21(3):399–411, 2016.
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With the change of conjugacy condition comes a change of the choice of the
parameter ξk in (2.6), given by

ξ̂k =
||yk−1||2 + tsTk−1gk−1 − gTk yk−1

||yk−1||2 −
(
gTk yk−1

||gk||

)2 , (2.9)

where t ≥ 0 is a constant.

For convenience, we call our method (2.3) and (2.9) as NPRP method in
later part of this paper, and state the steps of this method as follows.

Algorithm 2.1 (NPRP method)

Step 0. Chosen positive constants ρ < σ < 1, t, ε and η . Select x1 ∈ Rn,
set k = 1.

Step 1. Test a criterion for stopping the iterations. If ‖gk‖ < ε, then stop,

otherwise calculate dk by (2.7) with the parameters ξ̂k defined by (2.9).

Step 2. Determine the steplength αk by the strong Wolfe conditions, i.e.,

f(xk + αkdk)− f(xk) ≤ ραkgTk dk, |g (xk + αkdk)
T
dk| ≤ −σgTk dk. (2.10)

Step 3. Set xk+1 = xk + αkdk and k = k + 1, return to Step 1.

3 Convergence Analysis

In this section, we prove the global convergence of the proposed method. For
general nonlinear functions, similar to [16] and [17], we can obtain a weaker
global convergence in the sense that lim inf

k→∞
||gk|| = 0. To this end, we proceed

by contradiction that, there exists a constant ε > 0 such that

||gk|| ≥ ε, for all k ∈ N ; (3.1)

otherwise a stationary point has been found. We also assume that the objective
function always satisfies the following assumptions.

Assumption 3.1

–Boundedness Assumption: The level set, defined by Ω = {x ∈ Rn|f(x) ≤
f(x1)} is bounded; that is, there exists a constant B > 0 such that

||x|| ≤ B, ∀x ∈ Ω. (3.2)

–Lipschitz Assumption: In some neighborhood Ω0 of Ω, f is continuously
differentiable, and g is Lipschitz continuous, namely, there exists a constant
L > 0 such that

||g(x)− g(y)|| ≤ L||x− y||,∀x, y ∈ Ω0.

Clearly, there exists a constant γ > 0 such that ||g(x)|| ≤ γ, for all x ∈ Ω.

The following Zoutendijk condition is often used to prove convergence of
CG method.
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Theorem 1. [27] Suppose that Assumptions 3.1 hold. Consider any iterative
method of the form (1.1) where dk is a descent direction and αk satisfies the
Wolfe conditions. Consider the general conjugate gradient method, we have∑
k≥1

(gTk dk)2/‖dk‖2 < +∞.

Subsequently, analogous to [16], we state some properties for the direction
dk, formula βk and step sk.

Theorem 2. Suppose that Assumptions 3.1 and (3.1) hold. Let {xk} be gene-
rated by Algorithm 2.1. Then, there are two positive constants C1 and M such
that

|βPRPk | ≤ C1||sk−1|| (3.3)

‖Rk‖ ≤M, (3.4)

where

Rk =


−gk, k /∈ K,

−gk −
gTk dk−1
||gk−1||2

yk−1 + ξ̂k
gTk dk−1
||gk−1||2

(
yk−1 −

gTk yk−1
||gk||2

gk

)
, k ∈ K.

(3.5)

Proof. Clearly, it suffices to show the case where 0 < ζk ≤ 1− η is satisfied.
We first estimate the upper bound for

∣∣gTk dk−1/dTk−1yk−1∣∣. Observe that

gTk dk−1 = dTk−1yk−1 + gTk−1dk−1 < dTk−1yk−1.

On the other hand, we have from the Wolfe condition (2.10) that

gTk dk−1 > σgTk−1dk−1 = σdTk−1yk−1 + σgTk dk−1

and therefore gTk dk−1 > − σ
1−σd

T
k−1yk−1 holds. Combining the above upper and

lower bound for gTk dk−1 yields

|gTk dk−1| ≤ cσdTk−1yk−1, (3.6)

where cσ = max {1, σ/(1− σ)}. The above inequations (3.6) gives

|gTk−1sk−1| ≤ yTk−1sk−1 + |gTk sk−1| ≤ (1 + cσ)sTk−1yk−1 ≤ 2B(1 + cσ)||yk−1||

and

|ξ̂k| · ||yk−1|| ≤
||yk−1||2 + t|sTk−1gk−1|+ |gTk yk−1|
||yk−1||2 −

(
gTk yk−1/||gk||

)2 ||yk−1||

≤ ||yk−1||+ 2tB(1 + cσ) + ||gk||
1−

(
gTk yk−1/(||gk|| ||yk−1||)

)2 ≤ 2tB(1 + cσ) + 3γ

1− (1− η)2
.

Setting cλ =
2tB(1 + cσ) + 3γ

1− (1− η)2
, we have |ξ̂k| · ||yk−1|| ≤ cλ.

Math. Model. Anal., 21(3):399–411, 2016.
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The above inequality together with the strong Wolfe condition (2.10) and
Equations (2.2) gives that

||Rk|| ≤ ||gk||+
|gTk dk−1|
||gk−1||2

||yk−1||+ |ξ̂k|
gTk dk−1
||gk−1||2

(
yk−1 −

gTk yk−1
||gk||2

gk

)
= ||gk||+ σ||yk−1||+ σ|ξ̂k| · ||Tk|| · ||yk−1||
≤ ||gk||+ σL||sk−1||+ σcλL||sk−1||.

Setting M = γ + 2(1 + cλ)σcλLB, we get ||Rk|| ≤M .
On the other hand, we obtain from (2.10) that

yTk−1dk−1 > −(1− σ)gTk−1dk−1 = (1− σ)||gk−1||2 > (1− σ)ε2.

We now insert the lower bound for yTk−1dk−1 and the Lipschitz estimate

(2.10) for yk−1 into βPRPk to get:

|βPRPk | ≤ ||gk||||yk−1||
||gk−1||2

≤ L||gk||||sk−1||
ε2

.

The conclusion (3.3) is seen to hold by letting C1 = Lγ/ε2. ut

The next theorem will show that, asymptotically, the search direction chan-
ges slowly. Similar to [16], it suffices to establish a bound for the change
uk − uk−1 in the normalized direction uk = dk/||dk||.

Theorem 3. Suppose that Assumptions 3.1 and (3.1) hold. Let {xk} be gene-

rated by Algorithm 2.1. Then, we have dk 6= 0 and
+∞∑
k=1

||uk − uk−1||2 <∞.

Proof. It’s clear that ||dk|| ≥ ||gk|| 6= 0 and therefore uk is well defined. For
convenience, set rk = Rk/||dk|| and

δk =

{
0, k /∈ K,
βPRPk ||dk−1||/||dk||, k ∈ K. (3.7)

By the definition Rk in (3.5) and δk in (3.7), we get uk = rk + δkuk−1. Using
this relation with the identity ||uk|| = ||uk−1|| = 1, we have that

||rk|| = ||uk − δkuk−1|| = ||uk−1 − δkuk||.

The above equality, together with δk ≥ 0 implies that

||uk − uk−1|| ≤ (1 + δk)||uk − uk−1||
≤ ||uk − δkuk−1||+ ||uk−1 − δkuk|| = 2||rk||. (3.8)

We have from (3.4) and the Zoutendijik condition that∑
k≥1

||rk||2 =
∑
k≥1

||Rk||2

||dk||2
≤
∑
k≥1

M2

||dk||2

=
∑
k≥1

M2

||gk||4
||gk||4

||dk||2
≤ M2

ε4

∑
k≥1

(gTk dk)2

||dk||2
<∞. (3.9)
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Thus, the conclusion follows from (3.8) and (3.9). ut

Note that the parameter βPRPk have the property (∗), firstly proposed by
Gilbert and Nocedal in [16].

Theorem 4. Suppose that Assumptions 4.1 hold. Let {xk} be generated by
Algorithm 2.1. Then, there exist constants b > 1 and λ > 0 such that

|βPRPk | ≤ b, and ||sk−1|| ≤ λ =⇒ |βPRPk | ≤ 1/b.

Subsequently, using the Theorems 2, 3 and 4, we establish the global con-
vergence of Algorithm 2.1 for the general functions.

Theorem 5. Suppose that Assumptions 3.1 hold. Let {xk} be generated by
Algorithm 2.1. Then the method converges in the sense that lim inf

k→∞
||gk|| = 0

holds.

Proof. The proof is divided into the following two steps.
Step 1: A bound on the steps sk. Let 4 ∈ N , chosen large enough such

that 4 ≥ 4BC1, where B and C1 are defined in (3.2) and (3.3), respectively.
For any l > k ≥ k0 with l− k ≤ 4, proceeding the same proof as the case two

of Theorem 3.2 in [16] we get
l−1∑
j=k

||sk|| ≤ 2B.

Step 2: A bound on the directions dk. From the (3.3), we obtain that

‖dNPRPk ‖2 ≤
(
||Rk||+ |βPRPk | ||dk−1||

)2
≤ (M + C1||sk−1|| ||dk−1||||)2 ≤ 2M2 + 2 (C1||sk−1|| ||dk−1||)2 .

Now, the remaining argument is similar to the case (iii) in Theorem 2 in [17],
thus we omit it. This completes the proof. ut

4 Numerical Experiments

In this section, we report numerical results on a set of 145 nonlinear uncon-
strained optimization test problems on the CUTEr collection [6], with default
dimensions as presented in Hager’s homepage:
“http://www.math.ufl.edu/hager/”, and also listed in the Table 1.

The following CG methods are test, the involved parameters are listed:

• 1. The HZ method [17]: The CG method with the truncation of

βHZ+
k = max

{
βHZk ,

−1

||dk−1||min{η, ||gk−1||}

}
, where η = 0.1.

• 2. The TMPRP method [7]: The CG method with the search direction
defined by (2.1).

• 3. The NPRP method (Algorithm 2.1): The CG method with the direc-
tion defined by (2.7), where η = 10−5 in (2.8).

Math. Model. Anal., 21(3):399–411, 2016.
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Table 1. Specifications of the test functions

Name Dim Name Dim Name Dim Name Dim

AKIVA 2 ALLINITU 4 ARGLINA 200 ARGLINB 200
ARWHEAD 5000 BARD 3 BDQRTIC 5000 BEALE 2
BIGGS6 6 BOX3 3 BOX 10000 BRKMCC 2
BROWNAL 200 BROWNBS 2 BROWNDEN 4 BROYDN7D 5000
BRYBND 5000 CHAINWOO 4000 CHNROSNB 50 CLIFF 2
COSINE 10000 CRAGGLVY 5000 CUBE 2 CURLY10 10000
CURLY20 10000 CURLY30 10000 DECONVU 63 DENSCHNA 2
DENSCHNB 2 DENSCHNC 2 DENSCHND 3 DENSCHNE 3
DENSCHNF 2 DIXMAANA 3000 DIXMAANB 3000 DIXMAANC 3000
DIXMAAND 3000 DIXMAANE 3000 DIXMAANF 3000 DIXMAANG 3000
DIXMAANH 3000 DIXMAANI 3000 DIXMAANJ 3000 DIXMAANK 3000
DIXMAANL 3000 DIXON3DQ 10000 DJTL 2 DQDRTIC 5000
DQRTIC 5000 EDENSCH 2000 EG2 1000 EIGENALS 2550
EIGENBLS 2550 EIGENCLS 2652 ENGVAL1 5000 ENGVAL2 3
ERRINROS 50 EXPFIT 2 EXTROSNB 1000 FLETCBV2 5000
FLETCHCR 1000 FMINSRF2 5625 FMINSURF 5625 FREUROTH 5000
GENHUMPS 5000 GENROSE 500 GROWTHLS 3 GULF 3
HAIRY 2 HATFLDD 3 HATFLDE 3 HATFLDFL 3
HEART6LS 6 HEART8LS 8 HELIX 3 HIELOW 3
HILBERTA 2 HILBERTB 10 HIMMELBB 2 HIMMELBF 4
HIMMELBG 2 HIMMELBH 2 HUMPS 2 JENSMP 2
JIMACK 3549 KOWOSB 4 LIARWHD 5000 LOGHAIRY 2
MANCINO 100 MARATOSB 2 MEXHAT 2 MOREBV 5000
MSQRTALS 1024 MSQRTBLS 1024 NCB20B 5000 NCB20 5010
NONCVXU2 5000 NONDIA 5000 NONDQUAR 5000 OSBORNEA 5
OSBORNEB 11 OSCIPATH 10 PALMER1C 8 PALMER1D 7
PALMER2C 8 PALMER3C 8 PALMER4C 8 PALMER5C 6
PALMER6C 8 PALMER7C 8 PALMER8C 8 PARKCH 15
PENALTY1 1000 PENALTY2 200 PENALTY3 200 POWELLSG 5000
POWER 10000 QUARTC 5000 ROSENBR 2 S308 2
SCHMVETT 5000 SENSORS 100 SINEVAL 2 SINQUAD 5000
SISSER 2 SNAIL 2 SPARSINE 5000 SPARSQUR 10000
SPMSRTLS 4999 SROSENBR 5000 STRATEC 10 TESTQUAD 5000
TOINTGOR 50 TOINTGSS 5000 TOINTPSP 50 TOINTQOR 50
TQUARTIC 5000 TRIDIA 5000 VARDIM 200 VAREIGVL 50
VIBRBEAM 8 WATSON 12 WOODS 4000 YFITU 3
ZANGWIL2 2

For the methods of TMPRP and NPRP, similar to the CG Descent al-
gorithm, we used the approximate Wolfe conditions proposed by Hager and
Zhang (2005) in the line search procedure, with the same parameter values as
considered in CG Descent version 5.3. We stop the iterations if the inequality
||gk||∞ ≤ 10−6 is satisfied. The implementations are run on a mobile computer
with 3.2 GHz of CPU, 1 GB of RAM and Centos 6.2 server Linux operation
system.

The detailed numerical results, including the CPU time in seconds and
the number of iterations, the number of function evaluations, and gradient
evaluations implementation for each of the tested method, can be found in [26].

It should be pointed out that inspired by Livieris and Pintelas [20, 21, 22],
we consider to use the different values t ∈ {0.1k}10k=0 in actual computation.
We obtained from the data that Algorithm 2.1 with the optimal choice for the
parameter t = 0.8, performed slightly better than others and are correspon-
dingly named NPRP method on the website above. Also, the item NFG is
denoted by NFG = NF + 3NG, where NF and NG denote the the number
of function evaluations and gradient evaluations, respectively.

Consequently, efficiency comparisons are made, using the performance pro-
files of Dolan and Moré [10], which will present a wealth of information in-
cluding efficiency and robustness. More analytically, the left side of the figure
presents the percentage of test problem for which a method performs fastest,
the right side gives the percentage of the test problems that are successfully
solved. The top curve is the method that solved the most problems in a time
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that was within a factor ω of the best time.

a) b)

c)

Figure 1. Performance profiles with respect to: a) the number of iteration, b) the total
CPU-time, c) the total number of function and gradient evaluations

As shown by the figures,the NPRP method slightly outperforms the TM-
PRP and HZ+ methods in the perspectives of iteration numbers, the total
number of function and gradient evaluations, and the CPU time. Since the
Figures 1 graphically illustrate that the curve of ”NPRP” is always the top
performer for almost all values of ω, it seems to conclude that the NPRP
method are effective for solving these test problem.

5 Conclusions

In this paper, we propose a three–term conjugate gradient method which always
satisfy the sufficient descent condition independently of line searches employed.
The corresponding search direction is closest to the direction of the Newton
method or satisfies conjugacy condition as the iterations evolve. Global con-
vergence of the methods has been briefly discussed. Numerical results show
that the proposed method is efficient for solving the optimization problems.
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