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Abstract. In this paper, we propose a mixed generalized Laguerre-Legendre pseu-
dospectral method for non-isotropic heat transfer with inhomogeneous boundary con-
ditions on an infinite strip. Some properties about the mixed generalized Laguerre-
Legendre approximation are established. By reformulating the equation with suitable
functional transform defined on an infinite strip, a mixed Laguerre-Legendre pseu-
dospectral scheme is constructed. Its convergence is proved. Numerical results are
presented to demonstrate the efficiency of this new approach and to validate our
theoretical analysis.
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1 Introduction

Spectral methods have been successfully used for numerical simulations of var-
ious problems in science and engineering, see [1, 2, 3, 7, 20]. Typically, Fourier
spectral methods are used for periodic problems, and the Legendre and Cheby-
shev spectral methods are used for problems defined on bounded domains. For
problems on unbounded domains, some authors also studied Hermite and La-
guerre approximations, see [4, 5, 6, 8, 9, 12, 13, 14, 17, 18, 19, 21, 23, 26, 27, 28].
Recently, Guo and Zhang [16], Wang [25] considered the spectral method for
differential equations of degenerate type, by using the following scaled gener-
alized Laguerre functions

L̃(α,β)
l (x) = e−

1
2βxL(α,β)

l (x) =
1

l!
x−αe

1
2βx∂lx(xl+αe−βx), α > −1, β > 0,
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which are mutually orthogonal with the weight function xα. By adjusting
the parameter α properly, we can derive simple alternative Galerkin varia-
tional formulations, which could be approximated directly and implemented
easily. Moreover, the adjustable parameter β offers great flexibility to match
the asymptotic behaviors of exact solutions at infinity. It is noted that Shen [19]
used such system with α = 0 and β = 1 for solving one-dimensional differential
equations.

In this paper, we consider the non-isotropic heat transfer in an infinite strip.
A straightforward approach is to truncate the infinite strip into a sufficiently
large subdomain and impose certain artificial boundary conditions. However,
generally it is difficult to find an accurate and effective boundary condition. By
using the fact that Laguerre functions are defined over infinite long intervals,
the authors proposed a mixed generalized Laguerre-Legendre spectral method
for solving this problem, see [25]. In practical computation, pseudospectral
methods are more preferable since we only need to evaluate unknown functions
at the interpolation nodes. In particular, it is much easier to deal with nonlinear
heat transfer process.

The aim of this paper is to develop the mixed generalized Laguerre-Legendre
pseudospectral method for non-isotropic heat transfer in an infinite strip, by
using the Legendre interpolation in the direction of finite length, and the gen-
eralized Laguerre function interpolation in the infinite long direction. Rigorous
error estimates on the Jacobi interpolation and generalized Laguerre interpo-
lation were well established, see [15, 24]. It is well known that the solutions of
heat transfer process decay very fast as x → ∞. Thus it is more appropriate

to take the Laguerre functions e
1
2βxL(α,β)

l (x) as the basis functions for this
type of problems so that the asymptotic behavior of the solutions can be bet-
ter fitted. Moreover, the use of scaled generalized Laguerre functions lead to
much simplified analysis, more precise error estimates. Wang [21] studied the
generalized Laguerre spectral method for Fisher’s equation on a semi-infinite
interval, Wang [22] also investigated a mixed spectral method for heat trans-
fer with Neumann boundary condition in an infinite strip by reformulating the
equation with suitable functional transform. Follow a similar idea as in [21,22],
we shall reformulate heat transfer with inhomogeneous Dirichlet boundary con-
ditions to some alternative forms with homogeneous boundary conditions im-
posed on some parts of the boundary with suitable functional transform defined
on an infinite strip. At the same time, the auxiliary function may also simulate
the asymptotic behaviors of the solution of heat transfer. Then, we construct a
mixed Laguerre-Legendre pseudospectral scheme for non-isotropic heat transfer
in an infinite strip. We establish some basic results on this mixed Laguerre-
Legendre approximation, from which the convergence of proposed scheme fol-
lows. We also design an efficient algorithm for implementation and present
some numerical results to validate the efficiency of this approach.

This paper is organized as follows. In Section 2, we recall some basic for-
mulas for Laguerre approximation, Legendre approximation and the mixed
Laguerre-Legendre interpolation approximation. Then we construct the mixed
Laguerre-Legendre pseudospectral scheme for non-isotropic heat transfer, in-
vestigate two useful mixed orthogonal projections, which play important roles
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in the numerical analysis of spectral methods for various differential equations
in an infinite strip. The convergence of proposed schemes are proved in Sec-
tion 3. We present a numerical example to demonstrate the high accuracy
of proposed algorithm in Section 4. The final section is for some concluding
remarks.

2 Mixed Laguerre-Legendre Interpolation

In this section, we recall the basic results on the mixed Laguerre-Legendre
interpolation.

2.1 Laguerre Interpolation

We first consider the one-dimensional Laguerre-Gauss-Radau interpolation.
Let Λ = {x | 0 < x < ∞} and χ(x) be a certain weight function. For in-
teger r ≥ 0,

Hr
χ(Λ) = { u | u is measurable on Λ and ||u||r,χ,Λ <∞},

equipped with the following inner product, semi-norm and norm

(u, v)r,χ,Λ =
∑

0≤k≤r

∫
Λ

∂kxu(x)∂kxv(x)χ(x)dx,

|u|r,χ,Λ =

∫
Λ

(∂rxu(x))2χ(x)dx, ‖u‖r,χ,Λ = (u, u)
1
2

r,χ,Λ.

In particular, H0
χ(Λ) = L2

χ(Λ), with the inner product (u, v)χ,Λ and the norm
||u||χ,Λ. We omit the subscript χ in the notations whenever χ(x) ≡ 1.

Let ωα,β(x) = xαe−βx, α > −1, β > 0. Especially, ωβ(x) = ω0,β(x) = e−βx.
The scaled Laguerre polynomial of degree l is defined by

L(β)
l (x) =

1

l!
eβx∂lx(xle−βx).

To design proper pseudospectral method for heat transfer, we use the Laguerre
functions as

L̃(β)
l (x) = e−

1
2βxL(β)

l (x), l = 0, 1, 2, · · · .

The set of L̃(β)
l (x) is a complete L2(Λ)–orthogonal system (cf. [16]).

For any positive integer N , PN (Λ) stands for the set of all polynomials

of degree at most N . Let ξ
(β)
R,N,Λ,j , 0 ≤ j ≤ N, be the zeros of polynomial

x∂xL(β)
N+1(x), which are arranged in ascending order. Denote by ω

(β)
R,N,Λ,j , 0 ≤

j ≤ N, the corresponding Christoffel numbers such that∫
Λ

φ(x)ωβ(x)dx =

N∑
j=0

φ(ξ
(β)
R,N,Λ,j)ω

(β)
R,N,Λ,j , ∀φ ∈ P2N (Λ). (2.1)
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Furthermore, let ξ̃
(β)
R,N,Λ,j = ξ

(β)
R,N,Λ,j and ω̃

(β)
R,N,Λ,j = eβξ

(β)
R,N,Λ,jω

(β)
R,N,Λ,j . We also

introduce the following discrete inner product and norm,

(u, v)N,β,Λ =

N∑
j=0

u(ξ̃
(β)
R,N,Λ,j)v(ξ̃

(β)
R,N,Λ,j)ω̃

(β)
R,N,Λ,j , ||u||N,β,Λ = (u, u)

1
2

N,β,Λ.

Next, we set QN,β(Λ) = { e− 1
2βxψ | ψ ∈ PN (Λ)}. Let Λ̄ = Λ ∪ {x = 0}. For

any u ∈ C(Λ̄), the Laguerre-Gauss-Radau interpolation ĨR,N,β,Λu ∈ QN,β(Λ)
is determined by

ĨR,N,β,Λu(ξ̃
(β)
R,N,Λ,j) = u(ξ̃

(β)
R,N,Λ,j), 0 ≤ j ≤ N. (2.2)

In the forthcoming discussions, we denote by c a generic positive constant which
does not depend on M,N, β and any function.

In order to obtain precise error estimates of pseudospectral method for the
first boundary values problems, we introduce the following orthogonal projec-
tion. For this purpose, let

0H
1(Λ) = {u | u ∈ H1(Λ) and u(0) = 0}, 0QN,β(Λ) = 0H

1(Λ) ∩QN,β(Λ).

The orthogonal projection: 0P
1
N,β,Λ : 0H

1(Λ)→ 0QN,β(Λ) is given by

(∂x(0P
1
N,β,Λu− u), ∂xφ)Λ = 0, ∀ φ ∈ 0QN,β(Λ).

Following the same line as in the proof of Lemma 2.2 of [13], we have that,

if u ∈ 0H
1(Λ), ∂rx(e

1
2βxu) ∈ L2

ωr−1,β
(Λ), integer r ≥ 1 and r ≤ N + 1, then

‖∂sx(0P
1
N,β,Λu− u)‖Λ ≤ cβs−1(βN)

1−r
2 ‖∂rx(e

1
2βxu)‖ωr−1,β ,Λ, s = 0, 1. (2.3)

2.2 Legendre-Gauss-Lobatto interpolation

We now turn to the Legendre-Gauss-Lobatto interpolation on the interval I =
{ y | |y| < 1}. For integer r ≥ 0, we define the space Hr(I) and its norm ‖u‖r,I
as usual. In particular, L2(I) = H0(I) with the inner product (u,w)I and the
norm ‖u‖I = ‖u‖0,I .

The Legendre polynomial of degree l is defined by

Ll(y) =
(−1)l

2ll!
∂ly(1− y2)l.

The set of Legendre polynomials is a complete L2(I)-orthogonal system.
Now, let M be any positive integer. PM (I) stands for the set of all poly-

nomials of degree at most M . Let ζL,M,I,k be the roots of polynomial (1 −
y2)∂yLM (y), 0 ≤ k ≤ M , which are arranged in ascending order. The corre-
sponding Christoffel numbers are denoted by ρL,M,I,k, 0 ≤ k ≤ M. We also
introduce the discrete inner product and norm as

(u, v)M,I =

M∑
k=0

u(ζL,M,I,k)v(ζL,M,I,k)ρL,M,I,k, ‖u‖M,I = (u, u)
1
2

M,I .
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Let Ī = I ∪ {y = ±1}. For any u ∈ C(Ī), the Legendre-Gauss-Lobatto
interpolation IL,M,Iu ∈ PM (I) is determined by

IL,M,Iu(ζL,M,I,k) = u(ζL,M,I,k), 0 ≤ k ≤M. (2.4)

Let H1
0 (I) = { u ∈ H1(I) and u(±1) = 0 } and P0

M (I) = H1
0 (I) ∩ PM (I).

The orthogonal projection P 1,0
M,I : H1

0 (I)→ P0
M (I) is defined by

(∂y(P 1,0
M,Iu− u), ∂yφ)I = 0, ∀ φ ∈ P0

M (I).

According to Theorem 3.4 of [10], we know that if u ∈ H1
0 (I), (1−y2)

q−1
2 ∂qyu ∈

L2(I) and integer q ≥ 1 and q ≤M + 1, then

‖∂sy(P 1,0
M,Iu− u)‖I ≤ cMs−q‖(1− y2)

q−1
2 ∂qyu‖I , s = 0, 1. (2.5)

2.3 Mixed Laguerre-Legendre Interpolation

We now consider the mixed Laguerre-Legendre interpolation approximation on
the domain Ω = Λ× I. Let χ(x, y) be a certain weight function. We define the
weighted space L2

χ(Ω) in the usual way, with the following inner product and
norm,

(u,w)χ,Ω =

∫ ∫
Ω

u(x, y)w(x, y)χ(x, y)dxdy, ‖u‖χ,Ω = (u, u)
1
2

χ,Ω .

We omit the subscript χ in the notations whenever χ(x, y) ≡ 1.

Let VM,N,β(Ω) = PM (I) ⊗ QN,β(Λ). The meanings of ξ̃
(β)
R,N,Λ,j , ω̃

(β)
R,N,Λ,j ,

ζL,M,I,k and ρL,M,I,k are the same as before. The discrete inner product and
norm are given by

(u, v)M,N,β,Ω=

M∑
k=0

N∑
j=0

u(ζL,M,I,k, ξ̃
(β)
R,N,Λ,j)v(ζL,M,I,k, ξ̃

(β)
R,N,Λ,j)ρL,M,I,kω̃

(β)
R,N,Λ,j ,

‖u‖M,N,β,Ω = (u, u)
1
2

M,N,β,Ω .

We have (cf. [24])

(φ, ψ)M,N,β,Ω = (φ, ψ)Ω , ∀ φ, ψ ∈ VM−1,N,β(Ω), (2.6)

‖φ‖Ω ≤ ‖φ‖M,N,β,Ω ≤
√

2 + 1/M ‖φ‖Ω , ∀ φ ∈ VM,N,β(Ω). (2.7)

Let ΩM,N,β = {(ξ̃(β)
R,N,Λ,j , ζL,M,I,k), 0 ≤ k ≤ M, 0 ≤ j ≤ N}. The mixed

Laguerre-Legendre interpolation IM,N,β,Ωu ∈ VM,N,β(Ω) is determined by

IM,N,β,Ωu(x, y) = u(x, y), (x, y) ∈ ΩM,N,β . (2.8)

Then (cf. [24])

‖IM,N,β,Ωu− u‖2Ω ≤ c(M−2q + (βN)1−r lnN)Cq,rM,β,Ω(u), (2.9)

Math. Model. Anal., 21(2):199–219, 2016.
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where

Cq,rM,β,Ω(u) =

∫
I

(β−2||∂rx(e
1
2βxu)||2ωr−1,β ,Λ

+ (1 + β−1)||∂rx(e
1
2βxu)||2ωr,β ,Λ)dy

+M−2

∫
I

(β−2||∂rx(e
1
2βx)∂yu)||2ωr−1,β ,Λ

+ (1 + β−1)||∂rx(e
1
2βx∂yu)||2ωr,β ,Λ)dy

+

∫
Λ

||(1− y2)
q−1
2 ∂qyu||2Idx

with integers r, q ≥ 1. Moreover, we have that for any φ ∈ VM,N,β(Ω) and
integers q, r ≥ 1(cf. [24]),

|(u, φ)Ω − (u, φ)M,N,β,Ω | ≤ c(M−q + (βN)
1−r
2 (lnN)

1
2 )(Cq,rM,β,Ω(u))

1
2 ‖φ‖Ω .

(2.10)

3 Mixed Laguerre-Legendre Pseudospectral Schemes

In this section, we consider the mixed Laguerre-Legendre pseudospectral me-
thod for non-isotropic heat transfer in an infinite strip.

3.1 Semi-discrete scheme

Let Γ = {(x, y) | 0 < x < ∞, |y| = 1} ∪ {(x, y) | x = 0, |y| ≤ 1 } be
the boundary of the domain Ω and Ω = Ω ∪ Γ . Denote by W (x, y, t) the
temperature. The positive constants ν and µ are the conductivities in the
directions x and y, respectively. The parameters a and b are some convective
constants. Moreover, F (x, y, t) and W0(x, y) describe the heat source and the

initial state, respectively. For simplicity, let ∂zW =
∂W

∂z
, etc. Then the non-

isotropic heat transfer in an infinite strip is governed by
∂tW (x, y, t) + a∂xW (x, y, t) + b∂yW (x, y, t)
−ν∂2

xW (x, y, t)− µ∂2
yW (x, y, t) = F (x, y, t), (x, y) ∈ Ω, 0 < t ≤ T,

W (x, y, t) = W1(x, y, t), (x, y) on Γ, 0 < t ≤ T,
W (x, y, t)→ 0, x→∞, 0 < t ≤ T,
W (x, y, 0) = W0(x, y), (x, y) ∈ Ω.

(3.1)
Let

W1(x, 1, t) = g1(x, t), W1(0, y, t) = g2(y, t), W1(x,−1, t) = g3(x, t).

We assume that

g1(0, t) = g2(1, t), g2(−1, t) = g3(0, t).

In fact, the above conditions implies that W (x, y, t) is continuous at the two
corners of boundary Γ . Next, set

WB(x, y, t) =
1

2
g1(x, t)(1 + y) +

1

2
g3(x, t)(1− y) + e−

1
2βxg2(y, t)

− 1

2
e−

1
2βx(1− y)g3(0, t)− 1

2
e−

1
2βx(1 + y)g1(0, t).
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It can be checked that WB(x, y, t) = W (x, y, t) on Γ , and that WB(x, y, t)→ 0
when x→∞. Now, we make a change of the variables W (x, y, t) = U(x, y, t)+
WB(x, y, t) and

f(x, y, t) = F (x, y, t)− ∂tWB(x, y, t)− a∂xWB(x, y, t)

− b∂yWB(x, y, t) + ν∂2
xWB(x, y, t) + µ∂2

yWB(x, y, t).

Then, (3.1) can be rewritten as
∂tU(x, y, t) + a∂xU(x, y, t) + b∂yU(x, y, t)
−ν∂2

xU(x, y, t)− µ∂2
yU(x, y, t) = f(x, y, t), (x, y) ∈ Ω, 0 < t ≤ T,

U(x, y, t) = 0, (x, y) on Γ, 0 < t ≤ T,
U(x, y, t)→ 0, x→∞, 0 < t ≤ T,
U(x, y, 0) = U0(x, y), (x, y) ∈ Ω,

(3.2)
where U0(x, y) = W0(x, y)−WB(x, y, 0). We can follow the same idea as in [12]
to prove the existence, uniqueness and regularity of (3.2).

Let V 0
M,N,β(Ω) = H1

0 (Ω) ∩ VM,N,β(Ω). A weak formulation of (3.2) is to

seek solution U ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)), such that (∂tU(t), v)Ω + a(∂xU(t), v)Ω + b(∂yU(t), v)Ω + ν(∂xU(t), ∂xv)Ω

+µ(∂yU(t), ∂yv)Ω = (f(t), v)Ω , ∀ v ∈ H1
0 (Ω), 0 < t ≤ T,

U(0) = U0.
(3.3)

The mixed pseudo-spectral scheme for (3.3) is to find uM,N ∈ V 0
M,N,β(Ω), such

that
(∂tuM,N (t), φ)M,N,β,Ω+a(∂xuM,N (t), φ)M,N,β,Ω+b(∂yuM,N (t), φ)M,N,β,Ω

+ν(∂xuM,N (t), ∂xφ)M,N,β,Ω + µ(∂yuM,N (t), ∂yφ)M,N,β,Ω

= (f(t), φ)M,N,β,Ω , ∀ φ ∈ V 0
M,N,β(Ω), 0 < t ≤ T,

uM,N (0) = IM,N,β,ΩU0.
(3.4)

Thanks to (2.6), (3.4) is equivalent to
(∂tuM,N (t), φ)M,N,β,Ω + a(∂xuM,N (t), φ)M,N,β,Ω + b(∂yuM,N (t), φ)Ω

+ν(∂xuM,N (t), ∂xφ)M,N,β,Ω + µ(∂yuM,N (t), ∂yφ)Ω = (f(t), φ)M,N,β,Ω ,
∀ φ ∈ V 0

M,N,β(Ω), 0 < t ≤ T,
uM,N (0) = IM,N,β,ΩU0.

(3.5)
The numerical solution of problem (3.1) is given by

wM,N (t) = uM,N (t) +WB(x, y, t). (3.6)

In order to analyze the numerical errors, we need to study the mixed
Laguerre-Legendre approximation. We define the weighted space as follow

H1
0,ωβ

(Ω) = {v | v ∈ H1
ωβ

(Ω), v(0, y) = v(x,±1) = 0}.

Math. Model. Anal., 21(2):199–219, 2016.



206 T. Wang and T. Sun

Lemma 1. For any v ∈ H1
0,ωβ

(Ω),

‖v‖ωβ ,Ω ≤
2√
β2 + 2

‖∇v‖ωβ ,Ω . (3.7)

Proof. For any v ∈ H1
0,ωβ

(Ω), following the same line as in the derivation of

Lemma 2.4 of [27], we can prove the following results,

β‖v‖ωβ ,Ω ≤ 2‖∂xv‖ωβ ,Ω , ‖v‖ωβ ,Ω ≤
√

2‖∂yv‖ωβ ,Ω ,

the combination of the above two formulas leads to (3.7). ut

Lemma 2. For any u ∈ H1
0 (Ω),

‖u‖Ω ≤
√

2‖∇u‖Ω . (3.8)

Proof. For any u ∈ H1
0 (Ω),∫

I

u2(x, y)dy → 0, as x→∞.

By (3.7) and integration by parts,

‖u‖2Ω = ‖e 1
2βxu‖2ωβ ,Ω ≤

4

β2 + 2
‖∇(e

1
2βxu)‖2ωβ ,Ω

=
4

β2 + 2

∫ ∫
Ω

e−βx((∂x(e
1
2βxu))2 + (∂y(e

1
2βxu))2)dxdy

=
4

β2 + 2

∫ ∫
Ω

e−βx((
β

2
e

1
2βxu+ e

1
2βx∂xu)2 + eβx(∂yu)2)dxdy

=
4

β2 + 2

∫ ∫
Ω

((
β2

4
u2 + βu∂xu+ (∂xu)2 + (∂yu)2)dxdy

=
4

β2 + 2

∫ ∫
Ω

((
β2

4
u2 + (∂xu)2 + (∂yu)2)dxdy,

which implies the desired result. ut

The orthogonal projection P 1,0
M,N,Ω : H1

0 (Ω)→ V 0
M,N,β(Ω) is defined by

(∇(P 1,0
M,N,Ωu− u),∇φ) = 0, ∀ φ ∈ V 0

M,N,β(Ω).

We shall use the follow notations with integers q, r ≥ 1,

B
q,r
β,Ω(u) = (1 + β−2)

×
∫
I

(‖∂rx(e
1
2βxu)‖2ωr−1,β ,Λ

+ (1− y2)q−1‖∂x(e
1
2βx∂qyu)‖2ωβ ,Λ)dy

+β−2

∫
I

||∂rx(e
1
2βx∂yu)||2ωr−1,β ,Λ

dy +

1∑
k=0

∫
Λ

||(1− y2)
q−1
2 ∂kx∂

q
yu||2Idx.
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Theorem 1. For any u ∈ H1
0 (Ω) and integers 1 ≤ r ≤ N + 1 and 1 ≤ q ≤

M + 1,

||∇s(P 1,0
M,N,β,Ωu− u)||2Ω ≤ c(M2−2q + (βN)1−r)Bq,rβ,Ω(u), s = 0, 1,

provided that B
q,r
β,Ω(u) is finite.

Proof. Clear, 0P
1
N,β,Λ(P 1,0

M,Iu) ∈ V 0
M,N,β(Ω). By projection theorem,

‖∇(P 1,0
M,N,β,Ωu− u)‖2Ω = inf

φ∈V 0
M,N,β(Ω)

‖∇(φ− u)‖2Ω

≤ ‖∇(0P
1
N,β,Λ(P 1,0

M,Iu)− u)‖2Ω ≤ F1(u) + F2(u) + F3(u),

where

F1(u) = 2||∂x(0P
1
N,β,Λu− u)||2Ω + 2||∂y(0P

1
N,β,Λu− u)||2Ω ,

F2(u) = 2||∂x(P 1,0
M,I(0P

1
N,β,Λu)− 0P

1
N,β,Λu)||2Ω ,

F3(u) = 2||∂y(P 1,0
M,I(0P

1
N,β,Λu)− 0P

1
N,β,Λu)||2Ω .

Thanks to (2.3) with s = 0, 1,

F1(u) ≤ c(βN)1−r
∫
I

||∂rx(e
1
2βxu)||2ωr−1,β ,Λ

dy

+cβ−2(βN)1−r
∫
I

||∂rx(e
1
2βx∂yu)||2ωr−1,β ,Λ

dy.

Next, by using (2.5) with s = 0 and (2.3) with s = 1, r = 1, we obtain that

F2(u) ≤ cM−2q

∫
Λ

||(1− y2)
q−1
2 ∂x∂

q
y(0P

1
N,β,Λu)||2Idx

≤ cM−2q

∫
Λ

||(1− y2)
q−1
2 ∂x∂

q
yu||2Idx

+cM−2q

∫
I

(1− y2)q−1||∂x(e
1
2βx∂qyu)||2ωβ ,Λdy.

Using (2.5) with s = 1 and (2.3) with s = 0, r = 1 again, we deduce that

F3(u) ≤ cM2−2q

∫
Λ

||(1− y2)
q−1
2 ∂qy(0P

1
N,β,Λu)||2Idx

≤ cM2−2q

∫
Λ

||(1− y2)
q−1
2 ∂qyu||2Idx

+cβ−2M2−2q

∫
I

(1− y2)q−1||∂x(e
1
2βx∂qyu)||2ωβ ,Λdy.

Finally, the desired results comes from a combination of previous statements
and (3.8). ut

Remark 1. For the domain decomposition spectral method of exterior prob-
lems, we refer to the Theorem 2.3 of work [13], which is the quasi-orthogonal
approximation.
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In order to analyze the numerical errors of non-isotropic heat transfer in an
infinite strip, we need the next following orthogonal projection. To this end,
we introduce the bilinear form aα,γ(u, v) as

aα,γ(u, v) = α(∂xu, ∂xv)Ω + γ(∂yu, ∂yv)Ω , α, γ > 0, ∀u, v ∈ H1
0 (Ω).

The projection P 1,0
M,N,β,α,γ,Ω : H1

0 (Ω)→ V 0
M,N,β(Ω) is defined by

aα,γ(P 1,0
M,N,β,α,γ,Ωu− u, φ)Ω = 0, ∀φ ∈ V 0

M,N,β(Ω). (3.9)

By (3.8) and Theorem 1, we can prove the following results.

Theorem 2. For any u ∈ H1
0 (Ω), and integers 1 ≤ r ≤ N + 1 and 1 ≤ q ≤

M + 1,

α||∂x(P 1,0
M,N,β,α,γ,Ωu− u)||2Ω + γ||∂y(P 1,0

M,N,β,α,γ,Ωu− u)||2Ω
≤ c(α+ γ)(M2−2q + (βN)1−r)Bq,rβ,Ω(u),

||P 1,0
M,N,β,α,γ,Ωu− u||2Ω ≤ c(α+ γ)(M2−2q + (βN)1−r)Bq,rβ,Ω(u).

(3.10)

We now deal with the convergence of scheme (3.5). Let UM,N = P 1,0
M,N,β,ν,µ,ΩU .

By using (2.6) and (3.9), we derive from (3.3) that
(∂tUM,N (t), φ)M,N,β,Ω + a(∂xUM,N (t), φ)M,N,β,Ω

+b(∂yUM,N (t), φ)Ω + ν(∂xUM,N (t), ∂xφ)M,N,β,Ω + µ(∂yUM,N (t), ∂yφ)Ω

=
6∑
j=1

Gj(t, φ) + (f(t), φ)M,N,β,Ω , ∀ φ ∈ V 0
M,N,β(Ω), 0 < t ≤ T,

UM,N (0) = P 1,0
M,N,β,ν,µ,ΩU0,

(3.11)
where

G1(t, φ) = (∂tUM,N (t), φ)M,N,β,Ω − (∂tU(t), φ)Ω ,
G2(t, φ) = a(∂xUM,N (t), φ)M,N,β,Ω − a(∂xU(t), φ)Ω ,
G3(t, φ) = b(∂y(UM,N (t)− U(t)), φ)Ω ,
G4(t, φ) = ν(∂xUM,N (t), ∂xφ)M,N,β,Ω − ν(∂xU(t), ∂xφ)Ω ,
G5(t, φ) = µ(∂y(UM,N (t)− U(t)), ∂yφ)Ω ,
G6(t, φ) = (f, φ)Ω − (f, φ)M,N,β,Ω .

Taking ŨM,N = uM,N − UM,N and subtracting (3.11) from (3.5), we obtain
that

(∂tŨM,N (t), φ)M,N,β,Ω + a(∂xŨM,N (t), φ)M,N,β,Ω + b(∂yŨM,N (t), φ)Ω

+ν(∂xŨM,N (t), ∂xφ)M,N,β,Ω + µ(∂yŨM,N (t), ∂yφ)Ω = −
6∑
j=1

Gj(t, φ),

∀ φ ∈ V 0
M,N,β(Ω), 0 < t ≤ T,

ŨM,N (0) = IM,N,β,ΩU0 − P 1,0
M,N,β,ν,µ,ΩU0.

(3.12)



Mixed Pseudospectral Method for Heat Transfer 209

Take φ = 2ŨM,N in (3.12). We deduce that for 0 < t ≤ T

∂t||ŨM,N (t)||2M,N,β,Ω + 2ν||∂xŨM,N (t)||2M,N,β,Ω

+2µ||∂yŨM,N (t)||2Ω = −2
7∑
j=1

Gj(t, φ),
(3.13)

where G7(t, φ) = a(∂xŨM,N , ŨM,N )M,N,β,Ω . Therefore, it suffices to estimate

the terms 2|Gj(t, ŨM,N )|. Firstly, we use the Cauchy inequality, (2.6), (2.7)
and (3.10) to verify that for integers r, q ≥ 1,

2|G1(t, ŨM,N (t))|
= 2
∣∣(∂tUM,N (t)− P 1,0

M−1,N,β,ν,µ,Ω∂tU(t), ŨM,N (t))M,N,β,Ω

+(P 1,0
M−1,N,β,ν,µ,Ω∂tU(t)− ∂tU(t), φ)Ω

∣∣
≤ 2(
√

3||∂t(U(t)− UM−1,N (t))||Ω
+||∂tU(t)− P 1,0

M−1,N,β,ν,µ,Ω∂tU(t)||Ω)||ŨM,N (t)||Ω
≤ c(ν + µ)(M2−2q + (βN)1−r)Bq,rβ,Ω(∂tU(t)) + ||ŨM,N (t)||2Ω .

(3.14)

Similarly,

2|G2(t, ŨM,N (t)) +G3(t, ŨM,N (t)) +G4(t, ŨM,N (t)) +G5(t, ŨM,N (t))|
≤ c
(1

ν
+

1

µ
+1
)

(ν+µ)(M2−2q + (βN)1−r)(Bq,rβ,Ω(U(t)) + B
q,r
β,Ω(∂xU(t)))

+
1

2
ν||∂xŨM,N (t)||2Ω + µ||∂yŨM,N (t)||2Ω + (a2 + b2)||ŨM,N (t)||2Ω .

(3.15)
Obviously,

2|G6(t, ŨM,N )| ≤ c(M2−2q + (βN)1−r lnN)Cq−1,r
M,β,Ω(f(t)) + ||ŨM,N (t)||2Ω .

(3.16)
Next, by (2.7) and Cauchy inequality,

2|G7(t, ŨM,N )| ≤ 6|a|||∂xŨM,N (t)||Ω ||ŨM,N (t)||Ω

≤ 1

2
ν||∂xŨM,N (t)||2Ω +

18a2

ν
||ŨM,N (t)||2Ω . (3.17)

Furthermore, we use (2.9) and (3.10) to derive that

||ŨM,N (0)||2Ω ≤ 2||IM,N,β,ΩU0 − U0||2Ω + 2||U0 − P 1,0
M,N,β,ν,µ,ΩU0||2Ω

≤ c(ν + µ)(M2−2q + (βN)1−r lnN)(Bq,rβ,Ω(U0) + Cq−1,r
β,Ω (U0)).

For simplicity of statements, let

EM,N,ν,µ,β(u(t)) = ||u(t)||2M,N,β,Ω +

∫ t

0

(ν||∂xu(ξ)||2M,N,β,Ω + µ||∂yu(ξ)||2Ω)dξ.

Eν,µ,β(u(t)) = ||u(t)||2Ω +

∫ t

0

(ν||∂xu(ξ)||2Ω + µ||∂yu(ξ)||2Ω)dξ.

By inserting (3.14)-(3.17) into (3.13), we find that

∂tEM,N,ν,µ,β(ŨM,N (t))

≤ d∗Eν,µ(ŨM,N (t)) + c∗(M2−2q + (βN)1−r lnN)Dq,rβ,Ω(t),
(3.18)
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where

c∗ = c
(1

ν
+

1

µ
+ 1
)

(ν + µ), d∗ =
(

1 +
18

ν

)
a2 + b2 + 2,

Dq,rβ,Ω(t) = B
q,r
β,Ω(∂tU(t)) + B

q,r
β,Ω(U(t)) + B

q,r
β,Ω(∂xU(t)) + Cq−1,r

M,β,Ω(f(t)).

Due to (2.7), we have that

Eν,µ,β(ŨM,N (t)) ≤ EM,N,ν,µ,β(ŨM,N (t)) ≤ cEν,µ,β(ŨM,N (t)). (3.19)

Then (3.18) reads

∂t(EM,N,ν,µ,β(ŨM,N (t))e−d
∗t)

≤ cc∗e−d∗t(M2−2q + (βN)1−r lnN)Dq,rβ,Ω(t).
(3.20)

Integrating (3.20) with respect to t and using (3.19), we obtain that

Eν,µ,β,(ŨM,N (t)) ≤ EM,N,ν,µ,β,(ŨM,N (t))
≤ c(M2−2q + (βN)1−r)RΩ(U,U0, q, r, ν, µ, β, t),

(3.21)

where

RΩ(U,U0, q, r, ν, µ, β, t)

= ed
∗t(c∗

∫ t

0

e−d
∗ξDq,rβ,Ω(ξ)dξ + (ν + µ)(Bq,rβ,Ω(U0) + Cq−1,r

M,β,Ω(U0))).

A combination of (3.10) and (3.21) leads to that

Eν,µ(U(t)− uM,N (t)) ≤ c(M2−2q + (βN)1−r lnN)

·(RΩ(U,U0, q, r, ν, µ, β, t) + (ν + µ)(

∫ t

0

B
q,r
β,Ω(U(ξ))dξ + B

q,r
β,Ω(U(t)))).

This, together with (3.6), implies that for 0 ≤ t ≤ T ,

Eν,µ(W (t)− wM,N (t))
≤ c(M2−2q + (βN)1−r lnN)(R̄Ω(W,W0,WB , q, r, ν, µ, β, t)

+(ν + µ)(

∫ t

0

(Bq,rβ,Ω(W (ξ)) + B
q,r
β,Ω(WB(ξ)))dξ

+B
q,r
β,Ω(W (t)) + B

q,r
β,Ω(WB(t)))),

where

R̄Ω(W,W0,WB , q, r, ν, µ, β, t)

= ed
∗t(c∗

∫ t

0

e−d
∗ξD

q,r
β,Ω(ξ)dξ + (ν + µ)(Bq,rβ,Ω(W0) + Cq−1,r

M,β,Ω(W0)

+B
q,r
β,Ω(WB(·, ·, 0)) + Cq−1,r

M,β,Ω(WB(·, ·, 0))))

with

D
q,r
β,Ω(t) = B

q,r
β,Ω(∂tW (t)) + B

q,r
β,Ω(W (t)) + B

q,r
β,Ω(∂xW (t)) + Cq−1,r

M,β,Ω(F (t))

+B
q,r
β,Ω(∂tWB(t))+B

q,r
β,Ω(WB(t))+B

q,r
β,Ω(∂xWB(t))+Cq−1,r

M,β,Ω(∂tWB(t))

+Cq−1,r
M,β,Ω(a∂xWB(t)) + Cq−1,r

M,β,Ω(b∂yWB(t)) + Cq−1,r
M,β,Ω(ν∂2

xWB(t))

+Cq−1,r
M,β,Ω(µ∂2

yWB(t)).

Remark 2. The result (3.10) improve the result (3.5) of [25]. In fact, the right
term of (3.5) of [25] includes the factor (α+ γ + 1).
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3.2 Full-discrete scheme

We consider the full-discrete scheme of (3.2). Denote by [T ] the integer part of
any fixed positive constant T . Let τ be the mesh size of the variable t and

Rτ (T ) = { t = kτ | k = 1, 2, · · · , [T/τ ]}, R̄τ (T ) = Rτ (T ) ∪ {0}.

Let

Dτu(t) =
1

τ
(u(t+ τ)− u(t)), û(t) =

1

2
(u(t+ τ) + u(t)).

In the numerical analysis of the full-discrete scheme of (3.2), we need the
following approximation results.

Lemma 3. We have (cf. Lemma 4.6 of [7])

‖û(t)− u(t+ τ/2)‖R ≤ cτ
3
2 ‖u‖H2(t,t+τ ;L2(R)),

‖Dτu(t)− ∂tu(t+ τ/2)‖R ≤ cτ
3
2 ‖u‖H3(t,t+τ ;L2(R)),

provided that the related norms exist.

The full-discrete scheme of (3.2) is to seek uM,N (t) ∈ V 0
M,N,β(Ω), such that


(DτuM,N (t), φ)M,N,β,Ω + a(∂xûM,N (t), φ)M,N,β,Ω + b(∂yûM,N (t), φ)Ω

+ν(∂xûM,N (t), ∂xφ)M,N,β,Ω + µ(∂yûM,N (t), ∂yφ)Ω = (f̂(t), φ)M,N,β,Ω ,
∀ φ ∈ V 0

M,N,β(Ω), t ∈ Rτ (T − τ),

uM,N (x, y, 0) = IM,N,β,ΩU0.
(3.22)

We now consider the convergence of scheme (3.22). Let UM,N = P 1,0
M,N,β,ν,µ,ΩU .

We derive from (3.3) that

(DτUM,N (t), φ)M,N,β,Ω + a(∂xÛM,N (t), φ)M,N,β,Ω + b(∂yÛM,N (t), φ)Ω
+ν(∂xÛM,N (t), ∂xφ)M,N,β,Ω + µ(∂yÛM,N (t), ∂yφ)Ω

=
6∑
j=j

Ḡj(t, φ) + (f̂(t), φ)M,N,β,Ω , ∀ φ ∈ V 0
M,N,β(Ω), t ∈ Rτ (T − τ),

UM,N (x, y, 0) = P 1,0
M,N,β,ν,µ,ΩU0(x, y),

(3.23)
where

Ḡ1(t, φ) = (DτUM,N (t), φ)M,N,β,Ω − (∂tU(t+ τ/2), φ)Ω ,

Ḡ2(t, φ) = a(∂xÛM,N (t), φ)M,N,β,Ω − a(∂xU(t+ τ/2), φ)Ω ,

Ḡ3(t, φ) = b(∂y(ÛM,N (t)− U(t+ τ/2)), φ)Ω ,

Ḡ4(t, φ) = ν(∂xÛM,N (t), ∂xφ)M,N,β,Ω − ν(∂xU(t+ τ/2), ∂xφ)Ω ,

Ḡ5(t, φ) = µ(∂y(ÛM,N (t)− U(t+ τ/2)), ∂yφ)Ω ,

Ḡ6(t, φ) = (f(t+ τ/2), φ)Ω − (f̂(t), φ)M,N,β,Ω .

Taking ŨM,N = uM,N − UM,N and subtracting (3.23) from (3.22), we obtain

Math. Model. Anal., 21(2):199–219, 2016.



212 T. Wang and T. Sun

that

(Dτ ŨM,N (t), φ)M,N,β,Ω + a(∂x
ˆ̃
UM,N (t), φ)M,N,β,Ω + b(∂y

ˆ̃
UM,N (t), φ)Ω

+ν(∂x
ˆ̃
UM,N (t), ∂xφ)M,N,β,Ω + µ(∂y

ˆ̃
UM,N (t), ∂yφ)Ω

= −
6∑
j=1

Ḡj(t, φ), ∀ φ ∈ V 0
M,N,β(Ω), t ∈ Rτ (T − τ),

ŨM,N (x, y, 0) = IM,N,β,ΩU0(x, y)− P 1,0
M,N,β,ν,µ,ΩU0(x, y).

(3.24)

Taking φ = 2
ˆ̃
UM,N (t) in (3.24), we obtain that

Dτ‖ŨM,N (t)‖2M,N,β,Ω + 2ν‖∂x
ˆ̃
UM,N (t)‖2M,N,β,Ω

+2µ‖∂y
ˆ̃
UM,N (t)‖2Ω = −2

8∑
j=1

Ḡj(t, φ),
(3.25)

where

Ḡ7(t, φ) = a(∂x
ˆ̃
UM,N (t),

ˆ̃
UM,N (t))M,N,β,Ω ,

Ḡ8(t, φ) = b(∂y
ˆ̃
UM,N (t),

ˆ̃
UM,N (t))Ω .

Clearly,

|Ḡ1(s, ˆ̃UM,N (s))| ≤ |(DτU(t), ˆ̃UM,N (s))Ω − (∂tU(t+ τ
2 ), ˆ̃UM,N (s))Ω |

+|(DτU(t), ˆ̃UM,N (s))M,N,β,Ω − (DτU(t), ˆ̃UM,N (s))Ω |
+|(DτUM,N (t), ˆ̃UM,N (s))M,N,β,Ω − (DτU(t), ˆ̃UM,N (s))M,N,β,Ω |.

We use the Cauchy-Schwarz, Young’s inequality, Lemma 3, (3.10), (2.8) and
(2.10) to verify that for integers q ≥ 1, r ≥ 1 and s ∈ Rτ (t− τ),

2τ |Ḡ1(s, ˆ̃UM,N (s))| ≤ τ2‖ ˆ̃UM,N (s)‖2Ω + cτ4‖U‖2H3(s,s+τ ;L2(Ω))

+c(ν + µ)(M2−2q + (βN)1−r)Bq,rβ,Ω(DτU(s))

+c(M−2q + (βN)1−r lnN)Cq,rM,β,Ω(DτU(s)).

(3.26)

Similarly,

2τ |
5∑
j=2

Ḡj(s,
ˆ̃UM,N (s))| ≤ c(ν+µ)(M2−2q+(βN)1−r)Bq,rβ,Ω(Û(s))

+ τ2‖ ˆ̃UM,N (s)‖2Ω + c(M−2q + (βN)1−r lnN)Cq,rM,β,Ω(Û(s)), (3.27)

2τ |Ḡ6(s, ˆ̃UM,N (s))| ≤ cτ4‖f‖2H2(s,s+τ ;L2(Ω)) + τ‖ ˆ̃UM,N (s)‖2Ω

+ c(M−2q + (βN)1−r lnN)Cq,rM,β,Ω(f̂(s)) + τ2‖ ˆ̃UM,N (s)‖2Ω , (3.28)

2τ |
8∑
j=7

Ḡj(s,
ˆ̃UM,N (s))| ≤ ντ‖∂x ˆ̃UM,N (s)‖2Ω + µτ‖∂y ˆ̃UM,N (s)‖2Ω

+ τ(a2/ν + b2/µ)‖ ˆ̃UM,N (s)‖2Ω . (3.29)
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Furthermore, we use (2.9) and (3.10) to derive that

‖ŨM,N (0)‖2Ω ≤ c(ν + µ)(M2−2q + (βN)1−r)Bq,rβ,Ω(U0)

+ c(M−2q + (βN)1−r lnN)Cq,rM,β,Ω(U0(s)). (3.30)

We sum up the (3.25) for s ∈ R̄τ (t − τ), and use the (3.26)-(3.30) to obtain
that

(1− τ(3T + 1 + a2/ν + b2/µ)‖ŨM,N (t)‖2M,N,β,Ω

+τ
∑

s∈R̄τ (t−τ)

(
ν‖∂x

ˆ̃
UM,N (s)‖2M,N,β,Ω + µ‖∂y

ˆ̃
UM,N (s)‖2Ω

)
≤ τ

∑
s∈R̄τ (t−τ)

(3T + 1 + a2/ν + b2/µ)‖ŨM,N (s)‖2M,N,β,Ω

+cτ4(‖U‖2H3(0,T ;L2(Ω)) + ‖f‖2H2(0,T ;L2(Ω)))

+c(ν + µ)(M2−2q + (βN)1−r lnN)

×
∑

s∈R̄τ (t−τ)

(Bq,rβ,Ω(Û(s))+B
q,r
β,Ω(Dτ Û(s))+B

q,r
β,Ω(U0) + Cq−1,r

M,β,Ω(Û(s))

+Cq−1,r
M,β,Ω(Dτ Û(s)) + Cq−1,r

M,β,Ω(U0) + Cq−1,r
M,β,Ω(f̂(s))).

(3.31)

Let

EM,N,β,Ω(v, t)

= ‖v(t)‖2M,N,β,Ω + τ
∑

s∈R̄τ (t−τ)

(
ν‖∂xv̂(s)‖2M,N,β,Ω + µ‖∂y(v̂(s)‖2Ω

)
,

ρ(t) = (ν + µ)
∑

s∈R̄τ (t−τ)

(Bq,rβ,Ω(Û(s)) + B
q,r
β,Ω(Dτ Û(s)) + B

q,r
β,Ω(U0)

+Cq−1,r
M,β,Ω(Û(s)) + Cq−1,r

M,β,Ω(Dτ Û(s)) + Cq−1,r
M,β,Ω(U0) + Cq−1,r

M,β,Ω(f̂(s)))

+‖U‖2H3(0,T ;L2(Ω)) + ‖f‖2H2(0,T ;L2(Ω)).

Finally, using Lemma 2 of [7] for (3.31), we can derive that, if

τ < (3T + 1 + a2/ν + b2/µ)−1,

then for all t ∈ R̄τ (T )

EM,N,β,Ω(UM,N − uM,N , t)

≤ cρ(t)e(3T+1+ a2

ν + b2

µ )t(τ4 +M2−2q + (βN)1−r lnN).

4 Numerical Results

In this section, we describe the implementations for pseudospectral schemes
(3.5), and present some numerical results confirming the theoretical analysis.
We use the Crank-Nicolson discretization in time t, with the mesh size τ .

For simplicity of statements, we use the notation

aM,N,Ω(z, φ) = a(∂xz, φ)M,N,β,Ω + b(∂yz, φ)Ω

+ ν(∂xz, ∂xφ)M,N,β,Ω + µ(∂yz, ∂yφ)Ω .
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Then the fully discrete scheme of (3.22) reads,
1

τ
(uM,N (t+τ)−uM,N (t), φ)M,N,β,Ω+

1

2
aM,N,Ω(uM,N (t+τ)+uM,N (t), φ)

=
1

2
(f(t+ τ) + f(t), φ)M,N,β,Ω , t = 0, τ, 2τ, · · · , T − τ,

uM,N (0) = PM,N,β,ΩU0.
(4.1)

Let

AM,N,Ω(z, u) =
1

2
τaM,N,Ω(z, u) + (z, u)Ω ,

GM,N,Ω(z, u) = −1

2
τaM,N,Ω(z, u) + (z, u)Ω .

Then, at each time step, we need to solve the equation

AM,N,Ω(uM,N (t), φ) = GM,N,Ω(uM,N (t− τ), φ)

+
1

2
τ(f(t) + f(t− τ), φ)Ω , ∀ φ ∈ V 0

M,N,β(Ω). (4.2)

For notational convenience, let

η
(β)
l (x) = L̃(β)

l (x)− L̃(β)
l+1(x), 0 ≤ l ≤ N − 1.

ζk(y) = Lk(y)− Lk+2(y), 0 ≤ k ≤M − 2.

In actual computation, we expand the numerical solution as

uM,N (x, y, t) =

N−1∑
l=0

M−2∑
k=0

ak,l(t)η
(β)
l (x)ζk(y).

Let

fk′l′ = (f(t), η
(β)
l′ (x)ζk′(y))M,N,β,Ω , 0 ≤ k′ ≤M − 2, 0 ≤ l′ ≤ N − 1,

and define the vectors

X(t) = (a0,0(t), a1,0(t), · · · , aM−2,0(t), a0,1(t), a1,1(t), · · · , aM−2,1(t),

· · · , a0,N (t), a1,N (t), · · · , aM−2,N−1(t))T ,

F = (f0,0(t), f1,0(t), · · · , fM−2,0(t), f0,1(t), f1,1(t), · · · , fM−2,1(t),

· · · , f0,N (t), f1,N (t), · · · , fM−2,N−1(t))T .

Taking φ = η
(β)
l′ (x)ζk′(y) in (4.2) for 0 ≤ k′ ≤M − 2 and 0 ≤ l′ ≤ N − 1, we

find that (4.2) is equivalent to the following system of

C11X(t) = C̃11X(t− τ) +
1

2
τ(F1(t) + F1(t− τ)),

where

C11 = A11 ⊗B11 +
1

2
τ(a(A12 ⊗B12) + b(A13 ⊗B13)

+ ν(A14 ⊗B14) + µ(A15 ⊗B15)),

C̃11 = A11 ⊗B11 −
1

2
τ(a(A12 ⊗B12) + b(A13 ⊗B13)

+ ν(A14 ⊗B14) + µ(A15 ⊗B15)),
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where the matrices

A1q = (a
(1,q)
l′l ) and B1q = (b

(1,q)
k′k ), 1 ≤ q ≤ 5,

with the entries

a
(1,1)
l′l = a

(1,3)
l′l = a

(1,5)
l′l =

∫
Λ

η
(β)
l′ (x)η

(β)
l (x)dx, a

(1,2)
l′l =

∫
Λ

η
(β)
l′ (x)∂xη

(β)
l (x)dx,

a
(1,4)
l′l =

∫
Λ

∂xη
(β)
l′ (x)∂xη

(β)
l (x)dx, 0 ≤ l′, l ≤ N − 1,

and

b
(1,1)
k′k = b

(1,2)
k′k = b

(1,4)
k′k =

 (ζk′ , ζk)M,I , k′ = k = M − 2,∫
I

ζk′(y)ζk(y)dy, otherwise,

b
(1,3)
k′k =

∫
I

ζk′(y)∂yζk(y)dy, b
(1,5)
k′k =

∫
I

∂yζk′(y)∂yζk(y)dy, 0 ≤ k, k′ ≤M−2.

We now calculate the entries of A1q and B1q, 1 ≤ q ≤ 5. First, by (2.5) and
(2.6) of [11], we obtain that for 0 ≤ l′, l ≤ N ,

a
(1,1)
l′l =


−1/β, l′ = l − 1,
2/β, l′ = l,
−1/β, l′ = l + 1,
0, otherwise,

a
(1,2)
l′l =


−1/2, l′ = l − 1,
0, l′ = l,
1/2, l′ = l + 1,
0, otherwise,

a
(1,4)
l′l =


β/4, l′ = l − 1,
β/2, l′ = l,
β/4, l′ = l + 1,
0, otherwise.

Next, we use (2.1) and (2.2) of [24] to obtain that for 0 ≤ k′, k ≤M − 2,

b
(1,1)
k′k =



(ζk′ , ζk)M,I , k′=k=M−2,

− 2

2k + 1
, k′ = k − 2,

2

2k + 1
+

2

2k + 5
, k′ = k,

− 2

2k′ + 1
, k′ = k + 2,

0, otherwise,

b
(1,3)
k′k =

 2, k′ = k − 1,
−2, k′ = k + 1,
0, otherwise,

b
(1,5)
k′k =

{
4k + 6, k′ = k,
0, otherwise.

Now, we take the test function

W (x, z, t) = sin(x+ y)/
√
t+ 1 e−x

2

.

Let a = 1, b = 1, ν = 1 and µ = 1 in (4.1). The numerical errors are measured
by the discrete norm

EM,N (t) = ‖W (t)− wM,N (t)‖M,N,β,Ω .
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Figure 1. log10 EM,N (1) vs M of scheme (3.5) for (3.2) with different τ .

In Figure 1, we plot the errors log10EM,N (t) withN = 5M , t = 1 and β = 3.
Clearly, the errors decay fast when M and N increase and τ decreases. It is seen
that for the fixed time step size τ = 0.01 and the small mode M ≤ 10, the total
numerical errors are dominated by the approximation errors in the space, and
so they decay fast as M increases. But for M ≥ 10, the total numerical errors
are dominated by the approximation errors in time t. Thus, the numerical
solutions keep the same accuracy, even if M and N are further increased.
A similar situation happens for τ = 0.001. On the other hand, for small
τ ≤ 0.0001, the total numerical errors are dominated by the approximation
errors in the space, and so they decay very fast as M and N increase. The
above observations agree very well with theoretical analysis in Section 3.3. In
particular, they show the spectral accuracy in the space of scheme (3.5).
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Figure 2. log10 EM,N (1) vs M of scheme (3.5) for (3.2) with different β.

In Figure 2, we plot log10EM,N (t) at t = 1, with N = 5M , τ = 0.001 and
different values of parameter β. It seems that the errors with suitably bigger
β are smaller than those with smaller β. However, how to choose the best
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parameter β is still an open problem. Roughly speaking, if the exact solution
decays faster as x increases, then it is better to take suitably bigger β.
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Figure 3. log10 EM,N (t) vs t of scheme (3.5) for (3.2).

In Figure 3, we plot the numerical errors log10EM,N (t) with β = 3,M =
25, N = 3M, τ = 0.001. They indicate the stability of scheme (3.5).

5 Conclusions

In this paper, we studied numerical simulation of non-isotropic heat trans-
fer with Dirichlet boundary condition in an infinite strip. Since its solution
decays exponentially as x → ∞, it is better to use the Laguerre functions

e−
1
2βxL(β)

l (x) as the basis functions. Thus, we construct a mixed pseudospec-
tral schemes which is the most appropriate for numerical simulation and save
a lot of work. Moreover, the adjustable parameter β offers great flexibility to
match the asymptotic behaviors of exact solutions at infinity. The use of scaled
generalized Laguerre functions leads to much simplified analysis, more precise
error estimates. The numerical results indicate the spectral accuracy of the
proposed scheme and coincide with theoretical analysis well.

In this paper, we treat the inhomogeneous Dirichlet data by means of a
lifting so that the inhomogeneous boundary condition is satisfied exactly. In
particular, the lifting in this paper is expressed explicitly and may also simulate
the asymptotic behaviors of the solution of heat transfer. Moreover, we could
combine the idea of [22] and this paper to design and analyze spectral methods
for various mixed inhomogeneous boundary value problems defined on infinite
strip. We shall report the related results in the future.

Acknowledgments

aThis work of the first author is supported in part by NSF of China N.11371123,
N.11571151, N.11171227, Fund of Henan Education Commission N.14B110021.
bThis work of the second author is supported in part by NSF of China N.
11401380 and N.11326244.

Math. Model. Anal., 21(2):199–219, 2016.



218 T. Wang and T. Sun

The authors thank sincerely the anonymous referees and Master Luyu Wang
for their valuable suggestions and comments, which highly improve the quality
of this article.

References

[1] Ch. Bernardi and Y. Maday. Spectral methods. In Techniques of Scientific
Computing (Part 2), Handbook of Numerical Analysis, pp. 209–485. Elsevier,
Amsterdam, 1997. http://dx.doi.org/10.1016/S1570-8659(97)80003-8.

[2] J.P. Boyd. Chebyshev and Fourier spectral methods. 2nd edition. Dover Publica-
tion Inc., Mineola, New York, 2001.

[3] C. Canuto, M.Y. Hussaini, A. Quarteroni and Th.A. Zang. Spectral Methods.
Springer-Verlag, Berlin, 2006.

[4] O. Coulaud, D. Funaro and O. Kavian. Laguerre spectral approximation of
elliptic problems in exterior domains. Computer Methods in Applied Mechan-
ics and Engineering, 80(1-3):451–458, 1990. http://dx.doi.org/10.1016/0045-
7825(90)90050-V.

[5] D. Funaro. Polynomial Approximations of Differential Equations. Springer-
Verlag, Berlin, 1992.

[6] D. Funaro and O. Kavian. Approximation of some diffusion evolution equa-
tions in unbounded domains by Hermite functions. Mathematics of Com-
putation, 57(196):597–619, 1991. http://dx.doi.org/10.1090/S0025-5718-1991-
1094949-X.

[7] B.-Y. Guo. Spectral methods and their applications. World Scientific, Singapore,
1998. http://dx.doi.org/10.1142/9789812816641.

[8] B.-Y. Guo and J. Shen. Laguerre-Galerkin method for nonlinear partial differ-
ential equations on a semi-infinite interval. Numerische Mathematik, 86(4):635–
654, 2000. http://dx.doi.org/10.1007/PL00005413.

[9] B.-Y. Guo, J. Shen and Ch.-L. Xu. Generalized Laguerre approximation and
its applications to exterior problems. Journal of Computational Mathematics,
23(2):113–130, 2005.

[10] B.-Y. Guo and L.-L. Wang. Jacobi approximations in non-uniformly Jacobi-
weighted Sobolev spaces. Journal of Approximation Theory, 128(1):1–41, 2004.
http://dx.doi.org/10.1016/j.jat.2004.03.008.

[11] B.-Y. Guo, L.-L. Wang and Z.-Q. Wang. Generalized Laguerre interpolation and
pseudospectral method for unbounded domains. SIAM Journal on Numerical
Analysis, 43(6):2567–2589, 2006. http://dx.doi.org/10.1137/04061324X.

[12] B.-Y. Guo and T.-J. Wang. Mixed Legendre-Hermite spectral method for heat
transfer in an infinite plate. Computers & Mathematics with Applications,
51(5):751–768, 2006. http://dx.doi.org/10.1016/j.camwa.2006.03.004.

[13] B.-Y. Guo and T.-J. Wang. Composite Laguerre-Legendre spectral method
for exterior problems. Advances in Computational Mathematics, 32(4):393–429,
2008. http://dx.doi.org/10.1007/s10444-008-9112-5.

[14] B.-Y. Guo and Ch.-L. Xu. Mixed Laguerre-Legendre pseudospectral method
for incompressible fluid flow in an infinite strip. Mathematics of Computation,
73(245):95–125, 2004. http://dx.doi.org/10.1090/S0025-5718-03-01521-7.

http://dx.doi.org/10.1016/S1570-8659(97)80003-8
http://dx.doi.org/10.1016/0045-7825(90)90050-V
http://dx.doi.org/10.1016/0045-7825(90)90050-V
http://dx.doi.org/10.1090/S0025-5718-1991-1094949-X
http://dx.doi.org/10.1090/S0025-5718-1991-1094949-X
http://dx.doi.org/10.1142/9789812816641
http://dx.doi.org/10.1007/PL00005413
http://dx.doi.org/10.1016/j.jat.2004.03.008
http://dx.doi.org/10.1137/04061324X
http://dx.doi.org/10.1016/j.camwa.2006.03.004
http://dx.doi.org/10.1007/s10444-008-9112-5
http://dx.doi.org/10.1090/S0025-5718-03-01521-7


Mixed Pseudospectral Method for Heat Transfer 219

[15] B.-Y. Guo and K.-J. Zhang. On non-isotropic Jacobi pseudospectral method.
Journal of Computational Mathematics, 26(4):511–535, 2008.

[16] B.-Y. Guo and X.-Y. Zhang. Spectral method for differential equa-
tions of degenerate type on unbounded domains by using generalized La-
guerre functions. Applied Numerical Mathematics, 57(4):455–471, 2007.
http://dx.doi.org/10.1016/j.apnum.2006.07.032.

[17] Y.-J. Jiao and B.-Y. Guo. Mixed spectral method for Navier-Stokes equations in
an infinite strip by using generalized Laguerre functions. International Journal
of Numerical Analysis and modeling, 9(4):982–998, 2012.

[18] Y. Maday, B. Pernaud-Thomas and H. Vandeven. Une tentative de rehabilitation
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