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Abstract. This paper aims to find the exact solution in an implicit form for the well-
known nonlinear boundary value problem, namely the MHD Jeffery-Hamel problem,
which can be described as the flow between two planes that meet at an angle. Also,
two accurate approximate analytic solutions (series solution) are obtained by the
variation of the power series method (VPS) and the Duan-Rach modified Adomian
decomposition method (DRMA).
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1 Introduction

The Jeffery-Hamel problem describes the flow of an incompressible conductive
viscous fluid between two rigid planes that meet at an angle 2α as shown in
the Figure 1 [12,17].

The flow can be either diverging or converging, where it is assumed to
be purely radial and steady, or vθ = vz = 0 and vr = vr(r, θ) with no-slip
conditions at θ = ±α. Using the continuity and the Navier-Stokes equations in
cylindrical coordinates. This leads us to look for solutions of the form

u(r, θ) =
F (θ)

r
,
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Figure 1. Geometry of the problem

where F is a function of θ only.
Following [12], we define the dimensionless parameters

f(η) =
F (θ)

Fmax
, η =

θ

α
,

then the problem can be reduced to the solution of the well-known nonlinear
third-order differential equation:

f ′′′(η) + 2αRef(η)f ′(η) + (4−H)α2f ′(η) = 0, (1.1)

subject to the mixed set of Dirichlet and Neumann boundary conditions

f(0) = 1, f ′(0) = 0, f(1) = 0, (1.2)

where Re is the Reynolds number and H is the Hartmann number.
A new exact solution of the Jeffery-Hamel problem in an implicit form

was given by Abbasbandy and Shivanian [1], where the authors derived the
following equation

1

2
f ′2(η) +

1

3
αRef3(η) +

1

2
(4−H)α2f2(η) = Af(η) +B,

which can be written as follows(
df

dη

)2

= 2Af + 2B − 2

3
αRef3 − (4−H)α2f2(η)f2,

where A = f ′′(0) + αRe+ (4−H)α2 and B are two constants that satisfy

A+B =
1

3
αRe+

1

2
(4−H)α2.

Also, the constants A and B, after assuming γ = f ′′(0), are given by

A = γ + αRe+ (4−H)α2, B = −2

3
αRe− 1

2
(4−H)α2 − γ.

Finally, they obtained a new exact solution in the implicit form

η =

∫ 1

f

1√
F (τ)

dτ,
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where

F (τ) = 2
(

(γ + αRe+ (4−H)α2)τ − 2αRe

3
− (4−H)α2

2
− γ
)

− 2αReτ3

3
− (4−H)α2τ2.

Various analytical approximations methods have also been proposed to solve
this problem: the homotopy analysis method (HAM) [13, 14, 15, 18, 19, 20, 21,
22], the homotopy perturbation method (HPM) [9, 10], the optimal homotopy
asymptotic method [9,10,11,16] and the Duan-Rach approach (DRA) [5], where
the authors proposed a new modified recursion scheme for the resolution of such
boundary value problems for nonlinear ordinary differential equations. They
derived the following recursion scheme for the solutions components:{

f0(η) = 1− η2,
fn+1(η) = f0(η) + L−1An(η)− η2

[
L−1An(η)

]
η=1

, n ≥ 0,
(1.3)

where L−1(·) =
∫ η
0

∫ η
0

∫ η
0

(·) dηdηdη and An(η) are the Adomian polynomials
and obtained from the definitional formula

An =
1

n!

dn

dλn

[
N

(
n∑
i=0

λi fi(η)

)]
λ=0

, n = 0, 1, 2, · · · .

In Dib et al. [5], they used a nocanonical variation of the Duan-Rach modi-
fied decomposition method to solve the nonlinear Jeffery-Hamel flow boundary
value problem, wherein Dib et al. selected a nocanonical partition of the non-
linear differential equation as Lf(η) + Nf(η) = 0 by incorporating the linear
remainder term Rf(η) into the nonlinear termNf(η), which unnecessarily com-
plicates the automated generation of the Adomian polynomials that decompose
the nonlinear term Rf(η). This degrades the efficiency of the subroutines used
to calculate the Adomian polynomials tailored to the physical nonlinear term.
Also, in Sheikholeslami et al. [23], they combined the classic Adomian decom-
position method with the method of undetermined coefficients to solve the
nonlinear Jeffery-Hamel flow boundary value problem.

The purpose of our research is to present an exact solution of the Pr. (1.1)–
(1.2) in an implicit form, and introduce approximate solutions to the Jeffery-
Hamel problem by the variation of the power series method [2, 3, 4, 24] and
the Duan-Rach modified Adomian decomposition method [6, 7, 8] and [25]. In
our approach (DRAM), we partition the nonlinear differential equation into
the canonical operator form of Adomian for the Jeffery-Hamel flow model as
Lf(η)+Rf(η)+Nf(η) = 0, which leads to increased overall efficiency, where L
is the linear operator to be inverted, R is the linear remainder operator and N
is the nonlinear operator. Finally, we discuss the solutions for different values
of the physical parameters of the Jeffery-Hamel equation.
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2 The exact solution

Integrating Eq. (1.1) from 0 to η and taking into account that f(0) = 1, we
obtain

f ′′(η) + αRef2(η) + (4−H)α2f(η) = A, (2.1)

where A = γ + αRe+ (4−H)α2 and γ = f ′′(0). Eq. (2.1) can be written as

f ′′(η) +

(√
αRef(η) +

(4−H)α2

2
√
αRe

)2

= A+
(4−H)2α3

4Re
,

or equivalently as

1√
αRe

(√
αRef(η) +

(4−H)α2

2
√
αRe

)′′
+

(√
αRef(η) +

(4−H)α2

2
√
αRe

)2

= A+
(4−H)2α3

4Re
. (2.2)

Let

z(η) =
√
αRef(η) +

(4−H)α2

2
√
αRe

. (2.3)

Thus Eq. (2.2) becomes

z′′(η) +
√
αRez2(η) = B, (2.4)

where B =
√
αRe[A+ (4−H)2α3

4Re ]. Eq. (2.4) is a nonlinear second-order differen-
tial equation, and we next derive its implicit solution. Multiplying both sides
of Eq. (2.4) by z′(η), we obtain

z′(η)z′′(η) = z′(η)(B −
√
αRez2(η)).

So that
z′(η)z′′(η)dη = (B −

√
αRez2(η))dz. (2.5)

Integrating both sides of Eq. (2.5), we have∫
z′(η)z′′(η)dη =

∫
(B −

√
αRez2) dz.

Thus

z′2(η) = 2
(
Bz(η)−

√
αRe

3
z3(η)

)
+ 2c1,

where c1 is an arbitrary constant of integration. It follows that

z′(η) = ±
√

2
(
Bz(η)−

√
αRez3(η)/3

)
+ 2c1.

Consequently,

dz√
2
(
Bz(η)−

√
αRez3(η)/3

)
+ 2c1

= ±dη.
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Therefore, ∫ z(η)

0

1√
2
(
Bτ −

√
αReτ3/3

)
+ 2c1

dτ = c2 ± η,

where τ is the variable of integration and c2 is another arbitrary constant of
integration. In view of (2.3), we have

z(0) =
√
αRef(0) +

(4−H)α2

2
√
αRe

=
√
αRe+

(4−H)α2

2
√
αRe

,

z′(0) =
√
αRef ′(0) = 0.

This yields

c1 = −Bz(0) +

√
αRe

3
z3(0), c2 =

∫ z(0)

0

1√
2
(
Bτ −

√
αRe
3 τ3

)
+ 2c1

dτ.

Accordingly, the exact solution in the implicit form is therefore given by

f(η) =
1√
αRe

z(η)− (4−H)α

2Re
,

where z(η) is given by∫ z(η)

0

dτ√
2
(√

αRe[γ+αRe+(4−H)α2+ (4−H)2α3

4Re ]τ−
√
αRe
3 τ3

)
+ 2c1

= c2±η,

and the constant γ can be determined by the given boundary condition

z(1) =
√
αRef(1) +

(4−H)α2

2
√
αRe

=
(4−H)α2

2
√
αRe

.

This solution is completely different from the one obtained by Abbasbandy and
Shivanian [1]. Therefore, it can be regarded as a new expression of the exact
solution of the Jeffery-Hamel problem.

3 The variation of the power series method (VPS)

The above exact solution in an implicit form is not very convenient for com-
parison purposes. For that reason, we present here a variation of the the power
series method [2,3,24], which can be applied to such equations to obtain accu-
rate quantitative solutions.

Power series solutions of linear homogeneous differential equations in initial-
value problems yield simple recurrence relations for the coefficients but gener-
ally are not adequate for nonlinear equations. The variation of the power
series method (VPS) using concepts of the decomposition method (the Ado-
mian polynomials An and transformations of series using the An) allows us
decreased computation and introduces an effective procedure.
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Integrating Eq. (2.1) from 0 to η and taking into account that the initial
condition f ′(0) = 0, we obtain

f ′ + αRe

∫ η

0

f2(η)dη + (4−H)α2

∫ η

0

f(η)dη = Aη.

Consequently,

f(η) = 1 +
A

2
η2−αRe

∫ η

0

∫ η

0

f2(η)dηdη− (4−H)α2

∫ η

0

∫ η

0

f(η)dηdη. (3.1)

We look for a series solution defined as

f(η) =

∞∑
n=0

Cnη
n. (3.2)

Thus

f2(η) =

∞∑
n=0

Anη
n =

∞∑
n=0

An(C0, C1, ..., C0)ηn =

∞∑
n=0

ηn
n∑
k=0

CkCn−k, (3.3)

which is the same nonlinear term obtained by the power series. The substitution
of Eqs. (3.2)–(3.3) into Eq. (3.1) yields

∞∑
n=0

Cnη
n = 1 +

A

2
η2 − αRe

∫ η

0

∫ η

0

∞∑
n=0

ηn
n∑
k=0

CkCn−kdηdη

−(4−H)α2

∫ η

0

∫ η

0

∞∑
n=0

Cnη
ndηdη. (3.4)

Carrying out these integrations, we have

∞∑
n=0

Cnη
n = 1 +

A

2
η2 − αRe

∞∑
n=0

ηn+2

(n+ 1)(n+ 2)

n∑
k=0

CkCn−k

−(4−H)α2
∞∑
n=0

Cn
ηn+2

(n+ 1)(n+ 2)
. (3.5)

In the first and second summations on the right, n can be replaced by n− 2 to
write

∞∑
n=0

Cnη
n = 1 +

A

2
η2 − αRe

∞∑
n=2

ηn

n(n− 1)

n−2∑
k=0

CkCn−2−k

−(4−H)α2
∞∑
n=2

Cn−2
ηn

n(n− 1)
. (3.6)

Finally, we can equate coefficients of the like powers of η on the left side and
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on the right side to arrive at recurrence relations for the coefficients. Thus

C0 = 1, C1 = 0,

C2 = A
2 − αRe

C2
0

2 − (4−H)α2C0

2 = 1
2 (A− αRe− (4−H)α2) = γ

2 ,

C3 = −αRe6

∑1
k=0 CkC1−k − (4−H)α2C1

6 = 0,

C4 = −αRe12

∑2
k=0 CkC2−k − (4−H)α2C2

12 ,

. . .

Cn = − αRe
n(n−1)

∑n−2
k=0 CkCn−2−k − (4−H)α2 Cn−2

n(n−1) , n ≥ 4.

The solution can then be written as

f(η) = C0 + C1η + C2η
2 + C3η

3 + ..., (3.7)

where the only unknown constant is γ = f ′′(0). In principle, γ can be de-
termined by imposing the boundary condition at the second point, that is
f(1) = 0. Thus, an analytical solution for f(η) can be determined by returning
the value of γ to the truncated solution of the original equation Eq. (3.7).

4 Approximate analytic solution by the Duan-Rach mo-
dified Adomian decomposition method (DRMA)

We propose here to solve this third-order nonlinear boundary value problem
by the Duan-Rach modified Adomian decomposition method (ADM) [6, 7, 8]
and [25].

How does the Duan-Rach modified decomposition method differ from the
classic Adomian decomposition method in the context of solving boundary
value problems such as the nonlinear Jeffery-Hamel flow boundary value prob-
lem? The difference is in the design of the recursion scheme for calculating the
solution components which comprise the approximate solutions.

Firstly, in the classic Adomian decomposition method combined with the
method of undetermined coefficients (e.g., Appendix A in [6]), the solution
components are calculated as if the boundary value problem was an initial
value problem with the proviso that the standard Adomian recursion scheme
incorporates one or more unknown constants of integration. Thus the clas-
sic Adomian recursion scheme results from inserting the decomposition series
into an equivalent nonlinear Volterra integral equation. Upon adding these
solution components as parameterized by the aforementioned undetermined
constants, the remaining boundary conditions are imposed on the approximate
solutions resulting in a single or a system of coupled algebraic or transcen-
dental equations of higher and higher degree. The roots of these equations
provide more accurate approximations of the undetermined constants and thus
more accurate approximate solutions of the original boundary value problem.
However, the resulting calculations yield multiple roots for each undetermined
constant with the necessity of discarding the spurious roots based upon physical
considerations. Secondly, in the Duan-Rach modified decomposition method
(e.g., Section 2 in [6]), the unknown constants of integration are determined
by formula before the recursion scheme is designed, hence there is no need for
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the determination of multiple roots for each undetermined constant with the
concomitant requirement to discard all spurious roots. Thus the Duan-Rach
modified recursion scheme results from inserting the decomposition series into
an equivalent nonlinear Fredholm-Volterra integral equation, where the nonlin-
ear Fredholm integrals effect the matching of the approximate solutions at the
boundaries.

In comparison, in the classic Adomian decomposition method combined
with the method of undetermined coefficients to solve nonlinear boundary value
problems, we impose the boundary conditions after calculating the solution
components fn(η), however in the Duan-Rach modified decomposition method
to solve nonlinear boundary value problems, we impose the boundary conditions
before calculating the solution components fn(η).

First, we define the linear operator L, linear remainder operator R, nonlin-
ear operator N and inverse linear operator L−1 as

Lf =
d3f

dη3
(η), Rf = a

df

dη
(η), Nf = bf(η)

df

dη
(η)

and

L−1(h) =

∫ η

0

∫ η

0

∫ η

0

h(η)dηdηdη,

where a = (4 − H)α2 and b = 2αRe. We rewrite the original equation in
Adomian’s operator-theoretic notation as

Lf(η) +Rf(η) +Nf(η) = 0.

Then we solve for the term Lf(η) on the left hand side as

Lf(η) = −Rf(η)−Nf(η).

Next we integrate both sides of this equation as

L−1Lf(η) = −L−1Rf(η)− L−1Nf(η),

where we calculate

L−1Lf(η) =

∫ η

0

∫ η

0

∫ η

0

d3f

dη3
(η)dηdηdη = f(η)− f(0)− ηf ′(0)− η2

2
f ′′(0).

Upon substitution, we have

f(η)− f(0)− ηf ′(0)− η2

2
f ′′(0) = −L−1Rf(η)− L−1Nf(η).

Solving for the solution on the left hand side of this equation, we obtain

f(η) = f(0) + ηf ′(0) +
η2

2
f ′′(0)− L−1Rf(η)− L−1Nf(η). (4.1)

Next we substitute the specified boundary values f(0) = 1 and f ′(0) = 0 into
Eq. (4.1) and obtain

f(η) = 1 +
η2

2
f ′′(0)− L−1Rf(η)− L−1Nf(η).

Math. Model. Anal., 21(2):174–187, 2016.
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Then we evaluate the solution at η = 1 and use the remaining boundary con-
dition to obtain

1 +
1

2
f ′′(0)− L−11 Rf(η)− L−11 Nf(η) = 0,

where we have defined the definite integral operator L−11 as

L−11 h(η) =
[
L−1h(η)

]
|η=1 =

∫ 1

0

∫ η

0

∫ η

0

h(η)dηdηdη.

Solving for the second-order derivative evaluated at zero, we deduce

f ′′(0) = −2 + 2L−11 Rf(η) + 2L−11 Nf(η).

Upon substitution, we have determined that

f(η) = 1− η2 + η2L−11 Rf(η) + η2L−11 Nf(η)− L−1Rf(η)− L−1Nf(η),

which is the equivalent nonlinear Fredholm-Volterra integral equation which
incorporates all three boundary conditions and thus is without any undeter-
mined constants of integration. By the classic Adomian decomposition method,
we decompose the solution into the solution components to be determined by
recursion and the nonlinearity into the corresponding Adomian polynomials
tailored to the particular nonlinearity as

f(η) =

∞∑
n=0

fn(η), Nf = bf(η)
df

dη
(η) =

∞∑
n=0

An(η),

where the Adomian polynomials are

An(η) = An(f0(η), f1(η), ..., fn(η)) =

n∑
m=0

fn−m(η)
dfm
dη

(η).

Upon substitution, we obtain

∞∑
n=0

fn(η) = 1− η2 + η2L−11 R

∞∑
n=0

fn(η) + η2L−11

∞∑
n=0

An(η)

− L−1R
∞∑
n=0

fn(η)− L−1
∞∑
n=0

An(η).

Then we establish the Duan-Rach modified Adomian recursion scheme as
f0(η) = 1− η2,
fn+1(η) = aη2

∫ 1

0

∫ η
0

∫ η
0
dfn
dη (η)dηdηdη + bη2

∑n
m=0

∫ 1

0

∫ η
0

∫ η
0
fn−m(η)

×dfmdη (η)dηdηdη − a
∫ η
0

∫ η
0

∫ η
0
dfn
dη (η)dηdηdη

−b
∑n
m=0

∫ η
0

∫ η
0

∫ η
0
fn−m(η)dfmdη (η)dηdηdη, n ≥ 0.

Consequently, the first two components of the solution f(η) are given as

f0(η) = 1− η2,

f1(η) = −Reα
30

η6 +

(
Reα

6
− α2(H − 4)

12

)
η4 +

(
α2(H − 4)

12
− 2Reα

15

)
η2.
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5 Results and comparisons

In order to verify the accuracy of our present methods, we make a comparison
with the well-known results obtained by Abbasbandy and Shivanian [1] and
those obtained in [1], numerically by the Runge-Kutta method.

Tables 1 and 2 are the comparison of the approximate analytic solutions
obtained by the VPS and DRMA for the nth-stage approximation function of
f(η), where n = 8, for different values of Hartmann numbers when Re = 25
and α = 50.

Table 1. Comparison between numerical results [1], the VPS and DRMA solutions for
velocity when α = 50, H = 0 and Re = 25.

η Numerical VPS DRMA

0 1.000000 1.000000000000000 1.000000000000000
0.1 0.986671 0.986455061957507 0.986668611341585
0.2 0.947258 0.946405297103476 0.947250391080977
0.3 0.883419 0.881534702351960 0.883403734404411
0.4 0.797697 0.794426677824558 0.797673393063448
0.5 0.693233 0.688277813748159 0.693201028726370
0.6 0.573424 0.566594550112701 0.573387840317988
0.7 0.441 593 0.432970067089886 0.441555546599450
0.8 0.300674 0.291066580785463 0.300642848394286
0.9 0.152979 0.144956035469410 0.152959122991207
1 0.000000 0.000000000000000 0.000000000000000

Table 2. Comparison between numerical results [1], the VPS and DRMA solutions for
velocity when α = 50, H = 500, and Re = 25.

η Numerical VPS DRMA

0 1.000000 1.000000000000000 1.000000000000000
0.1 0.990220 0.990191088843965 0.990221459649174
0.2 0.960933 0.960817622578632 0.960938953460878
0.3 0.912273 0.912014074665348 0.912286635420987
0.4 0.844383 0.843921028956877 0.844404805547638
0.5 0.757286 0.649683485195127 0.757316749874023
0.6 0.650719 0.522543850373255 0.650757737814319
0.7 0.523909 0.432970067089886 0.523952697857051
0.8 0.375290 0.373693410046810 0.375331054503237
0.9 0.202125 0.200721112552433 0.202153222327359
1 0.000000 0.000000000000001 0.000000000000000

The velocity profiles f(η) have been plotted in Figures 2–3 for a fixed
Reynolds number (Re = 50) in two cases, i.e. the convergent channel and
divergent channel (α = −50 and α = 50) flows.

Figure 2 shows the velocity f(η) for different increasing values of the Hart-
mann number H by the VPS method with α = 50 and α = −50.

Figure 3 shows the velocity f(η) for different increasing values of the Hart-
mann number H by the DRMA method with α = 50 and α = −50.

Math. Model. Anal., 21(2):174–187, 2016.
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Figure 2. The 8th-stage approximation obtained by the VPS for Re = 50 and
a) α = −50, b) α = 50.
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Figure 3. The 8th-stage approximation obtained by the DRMA for Re = 50 and
a) α = −50, b) α = 50.

In all these figures, we observe that when H increases the velocity also
increases for both α = 50 and α = −50. Moreover when H increases the
curvature of the curves increases too.

Table 3 compares the values of f ′′(0) for several values of Hartmann num-
bers when the Reynolds number is fixed, i.e. (Re = 10). Table 5 compares the
values of f ′′(0) for different Reynolds numbers Re when H = 0.

The comparisons in all the above cases are found to be in excellent agree-
ment. In Tables 3 and 4 we compare the values of γ = f ′′(0) for different values
of Hartmann numbers when the Reynolds number is fixed, i.e. Re = 10 and
α = ±50, where the angle α is converted from the unit of degrees to the unit
of radians. This clearly indicates that there are good agreements between the
numerical and exact solutions.
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Table 3. Comparison between the exact, numerical results [1] and DRMA solutions for
γ = f ′′(0) for different values of Hartmann numbers when α = −50 and Re = 10.

H Exact Numerical DRMA

10 -1.784546840578866 -1.78454677 -1.784546771043338
20 -1.588153536993253 -1.58815350 - 1.588153458548008
30 -1.413692023436293 -1.41369209 -1.413691404841239
40 -1.258993935085547 -1.25899392 -1.258987239768864
50 -1.121989043572515 -1.12198915 -1.121950278544477
60 -1.000742927541422 -1.00074269 -1.000580168712826
70 -0.893474274815973 -0.89347438 -0.892933733530960
80 -0.798567273772039 -0.79856737 -0.797045260069311
90 -0.714567787224302 -0.71456776 -0.710794480334909
100 -0.640177852876257 -0.64017806 -0.631716493718889

Table 4. Comparison between the exact, numerical results [1] and DRMA solutions for
γ = f ′′(0) for different values of Hartmann numbers when α = 50 and Re = 10.

H Exact Numerical DRMA

10 -2.251948602981818 -2.25194858 -2.251948586581649
20 -2.527192232687426 -2.52719225 -2.527192217906175
30 -2.832629302137010 -2.83262931 -2.832628472744923
40 -3.169712187544089 -3.16971221 -3.169703937108614
50 -3.539415645558434 -3.53941564 -3.539367220445977
60 -3.942140271189139 -3.94214029 -3.941936731143501
70 -4.377652476579882 -4.37765249 -4.376973662025479
80 -4.845071824815794 -4.84507184 -4.843165937552160
90 -5.342911258048444 -5.34291127 -5.338228874413803
100 -5.869165116815401 -5.86916513 -5.858828307218483

6 Conclusions

In this work, we have considered the nonlinear Jeffery-Hamel flow problem,
which can be described as the flow between two planes that meet at an angle.
We have demonstrated that the exact solution can be obtained in a straightfor-
ward manner by using a direct method. Also, very good approximate analytic
solutions were obtained by the variation of the power series method and the
Duan-Rach modified Adomian decomposition method; furthermore a compar-
ison with some well-known results shows that the present solutions are highly
accurate.
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