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Abstract. In this paper, we consider a nonlinear multi-stage dynamic system to
characterize batch culture. We construct corresponding linear variational system for
the solution to the multi-stage system, also prove the boundedness of fundamental
matrix solutions for the linear variational system. On this basis, we prove strong
stability with respect to perturbance of initial state vector for the multi-stage system
through the application of such boundedness. From extensive simulation study, it is
observed that the strong stability is highly satisfactory.
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1 Introduction

1,3-Propanediol (1,3-PD) has a wide range of potential application on a large
commercial scale, especially as one of the bulk chemicals used as a monomer
for polyester, polyethers and polyurethanes [26]. Production methods for 1,3-
PD can be one of two categories: chemical synthesis and microbial conversion
of glycerol by Klebsiella pneumonia (K. pneumonia) [25]. This paper focuses
on the latter category, which has recently come into investigators attention
throughout the world because of no harm to environment, high region speci-
ficity and cheaply renewable feedstock [6]. In microbial fermentation process
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of glycerol bioconversion to 1,3-PD, a number of models were proposed to de-
scribe the process [24,29]. The fermentation process can be one of three types:
either batch culture (all substrate is present at the beginning of the reaction
and nothing is added or removed from the fermentor during the reaction); fed-
batch culture (fresh medium is added during the reaction to prevent nutrient
depletion, but nothing is removed); and continuous culture (fresh medium is
added during the reaction while old medium is removed) [17]. A comparison of
batch culture with continuous and fed-batch cultures has recently been come
into investigators notice throughout the world as it can obtain the highest pro-
duction concentration and molar yield 1,3-PD to glycerol [1]. Not only the
nonlinear dynamic behaviour of microorganisms has been the objective of a
number of theoretical works, but also much modelling research on the process
of batch culture has been reported recently in [2,16,23,28]. However, for all the
papers mentioned above, the strong stability is not taken into consideration in
batch culture.

There is a long history in stability study of dynamical system. Many theo-
retical and applied researchers are investigated by mathematicians, physicists,
astronomers and engineering professionals [9,11,22]. The rule of minimum total
energy, local point of which was stable and balanceable, was proposed by Tor-
ricelli in 17th century. This rule is expanded by Laplace and Lagrange, both of
which believe that the state of the corresponding zero kinetic energy and min-
imum potential energy was stable and balanceable if system was conservative
in 18th century. The general theory and method of motive stability was stud-
ied by Lyapunov in 19th century. The invariance theorem was considered by
LaSalle in 20th century. Generally, ranges of parameters are restricted in the
neighborhood of initial parameter values during the identification process [18].
Because we can not ensure the system is stable under the given ranges of param-
eters, stability of the system becomes a fundamental issue in system analysis
and design [27]. Stability theory was started by Morley [19], who introduced
several of the fundamental concepts, such as totally transcendental theories
and the Morley rank. Stable and superstable theories were first introduced by
Shelah [20], who was responsible for much of the development of stability the-
ory. The definitive reference for stability theory was proposed by Shelah [21],
though it is notoriously hard even for experts to read. Zhao [30] discussed sta-
bility of impulsive system by perturbing Lyapunov functions. Gao [7, 8] stud-
ied the approximate stabilisation and reachability of uncertain hybrid systems.
Li [15] researched the stability analysis of dynamic collaboration model with
control signals on two lanes. Fridman [5] investigated stability of linear descrip-
tor systems with delay through the application of a Lyapunov-based approach
by introducing its linearization. Chio [3, 4] researched the stability of linear
and nonlinear dynamic system using the notion of fundamental matrix solu-
tion and integral Gronwall’s inequality. The stability of equilibrium solutions
for nonlinear dynamic system was discussed by introducing its linearization in
continuous culture [13, 14, 27]. Nevertheless, there is no equilibrium point for
nonlinear dynamic system in batch culture. Therefore, the general approaches
fail to obtain the stability of the system in which the conditions to the existence
of equilibrium point are untenable.
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In this paper, to describe the process of batch culture of glycerol biconver-
sion to 1,3-PD induced by K. pneumoniae, we consider a nonlinear multi-stage
dynamic system in which there is no equilibrium point. Some properties of the
nonlinear system are discussed. Our goal is to prove the strong stability with
respect to perturbance of initial state vector for the solution of the multi-stage
system. For this, we establish corresponding linear variational system for the
solution to the multi-stage system and show the boundedness to fundamental
matrix solution of the linear variational system. After this works, we state and
prove the above strong stability through the application of such boundedness.
The numerical simulations are provided to confirm the theoretical results.

The rest of this paper is organized as follows. In Section 2, a nonlinear
multi-stage dynamic system is considered and some important properties of
the multi-stage system are discussed. In Section 3, we construct corresponding
linear variational system for the multi-stage system and prove the boundedness
of its fundamental matrix solution. In Section 4, we demonstrate the strong
stability with respect to perturbance of initial state for the solution of the
multi-stage system. In Section 5, numerical simulation of a batch experiment
is carried out. In Section 6, we draw the conclusions and trace the direction
for future works.

2 Nonlinear multi-stage dynamic system and its
properties

Some researchers considered the fermentation process as only growth period,
which neglected the distinctive impact of cells during different stages. In the
lag stage, the cells will take time to adjust and the exponential stage is charac-
terized by cell doubling. During the stationary stage growth will slow down and
eventually stop as nutrients become depleted or inhibitory metabolites build
up in this stage [28].

In the light of the actual experiment, the following assumptions will be in
force throughout the rest of this paper, whether explicitly mentioned or not.

• A1. No medium is pumped inside and outside the bioreactor in the
process of batch culture; and

• A2. The concentrations of reactants are uniform in reactor,

while nonuniform space distribution is ignored.

Next we describe the main nomenclature: R+ denotes the set of posi-
tive real numbers, N+ denotes the set of positive integers, In denotes the
set {1, 2, . . . , n}, n ∈ N+, AT denotes the transposition of the vector or ma-
trix A, tf denotes the terminal time of the fermentation process, tf1 and tf2
are the given optimal parameters, xi(t):=[xi1(t), . . . , xi5(t)]T ∈ R5

+ is the state
variable vector (whose components are the state variables) of the ith stage at
t ∈ [tfi−1

, tfi ], i ∈ I3, x1(t0)=x0(tf0)=x0 ∈ R5
+ is initial state vector of the first

stage for the system (2.1), xi−1(tfi−1), i=2, 3 is both initial state vector of the
ith=2, 3 stage and end state of the (i− 1)th stage for the system (2.1),

Math. Model. Anal., 21(2):159–173, 2016.
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The known parameters, the values of which are derived from [25], are defined
as follows in batch culture.

• Ks denotes the Monod saturation constant for substrate in mmolL−1.

• Ys and Yj , j = 3, 4, 5, denote the maximum biomass growth yield in
gmmol−1 and product (extracellular 1,3-PD, acetate, ethanol) yield in
mmolg−1, respectively.

• µm denotes the maximum specific growth rate in h−1.

• ms and mj , j = 3, 4, 5, denote maintenance term of substrate consump-
tion and product (extracellular 1,3-PD, acetate, ethanol) formation under
substrate-limited conditions in mmolg−1h−1, respectively.

According to three different stages of batch culture D0:=[t0, tf ]⊂R+ of
glycerol to 1,3-PD, namely, the development stage (denoted by D1 := [t0 =
tf0 , tf1 ]⊂R+, or the first stage), the second or growth stage (denoted by D2 :=
[tf1 , tf2 ]⊂R+) and the stabilization stage (denoted by D3 := [tf2 , tf3 = tf ]⊂R+,
or the third stage), we consider the nonlinear multi-stage system of batch cul-
ture (see [25]): ẋi(t) = hi(xi(t)), t ∈ Di := [tfi−1

, tfi ], i ∈ I3,

xi(tfi−1) =

{
x0(t0) = x0, i = 1,
xi−1(tfi−1

), i = 2, 3.
(2.1)

From [24], we have

x∗=[0.01, 150, 0, 0, 0]T, x∗=[15, 2039, 939.5, 1026, 360.9]T.

So the admissible range Wα of state vector xi(t) is

Wα = [x∗, x
∗] :=

5∏
j=1

[xj∗, x
∗
j ] ⊂ R5

+. (2.2)

Based on the results in [25], the right term of the system (2.1) can be written
as follows

hi(xi(t)) :=
[
µ(t)xi1(t), −q2(t)xi1(t), q3(t)xi1(t),

q4(t)xi1(t), q5(t)xi1(t)
]T ∈ R5, i ∈ I3, (2.3)

where 
µ(t) = µm

x2(t)

x2(t) +Ks

5∏
j=2

(
1− xj(t)/x∗j

)
,

q2(t) = ms + µ(t)/Ys,
qj(t) = mj + µ(t)Yj , j = 3, 4, 5.

(2.4)

From (2.3) to (2.4), we can directly prove
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Property 1. hi(xi(t)), defined by (2.3), is measurable on t ∈ Di, i ∈ I3. Fur-
thermore, hi(xi) satisfies the linear growth condition, namely, there exists a
constant L > 0, such that ‖hi(xi(t))‖≤L(‖xi(t)‖ + 1), ∀xi ∈ Wa, i ∈ I3. In
addition, hi(xi(t)) is Lipschitz continuous in xi(t) ∈Wα, i ∈ I3.

According to the experiment process, we define the admissible set of initial
state vector x0 ∈ R5, denoted by W0⊂R5

+, namely,

W0 := [0.01, 0.25]× [150, 520]× {0} × {0} × {0} ⊂ R5
+. (2.5)

By Property 1 and the solution existence theorem of the ordinary differential
equations, it is easy to prove that

Property 2. ∀x0 ∈ W0, there exists a unique solution to the system (2.1), de-
noted by

x(t; t0, x0) =

 x1(t; t0, x0), t ∈ D1,
x2(t; tf1 , x

1(tf1)), t ∈ D2,
x3(t; tf2 , x

2(tf2)), t ∈ D3.
(2.6)

The solution set SW0 of the system (2.1) for different initial state vector
x0 ∈W0, is defined as follows.

SW0
:=
{
x(·; t0, x0)|x(·; t0, x0) is the solution of the system (2.1)
for x0 ∈W0

}
.

(2.7)

It follows from (2.2)-(2.4) that there exists a definition of partial derivative
of function hi(xi(t)) with respect to xi(t) ∈ Wa and hi(xi(t)) is continuous in
xi(t) ∈ Wa ⊂ R5. By Theorem 3.3 in [10], we can get an interesting property
as follows.

Property 3. ∀x(t0) = x0 ∈ W0, the solution x(t; t0, x0) of the system (2.1) is
continuous in (t; t0, x0) ∈ D0×D1×W0, where x1(t; t0, x0) is continuously dif-
ferentiable in (t; t0, x0) ∈ D1×D1×W0; xi(t; tfi−1

, xi−1(tfi−1
)) is continuously

differentiable in (t; tfi−1
, xi−1(tfi−1

)) ∈ Di × Di ×Wa, that is, x1(t; t0, x0) ∈
C1(D1×D1×W0,R5

+), xi(t; tfi−1
, xi−1(tfi−1

)) ∈ C1(Di×Di×Wa,R5
+), i = 2, 3.

Now that every component of the solution x(t; t0, x0) for the system (2.1)
denotes the concentrations of biomass, extracellular glycerol, extracellular 1,3-
PD, acetate, ethanol at time t ∈ D0, x(t; t0, x0) should be restricted in a
certain range according to the practical production, namely, x(t; t0, x0) ∈
Wα⊂R5

+,∀t ∈ D0. Let SW0a
be the solution set of satisfying the solution

x(t; t0, x0) ∈Wα,

SW0a
:=
{
x(t; t0, x0) ∈ SW0

⊂ C(D0 ×D1 ×W0,R5
+)|x(t; t0, x0) ∈Wa

}
. (2.8)

It is well known that the set SW0a
is nonempty based on numerical calcula-

tion in [24]. Next, we will prove the compactness of the solution sets SW0
and

SW0a
for the system (2.1).

Theorem 1. The sets SW0 and SW0a , defined by (2.7) and (2.8), are all com-
pact in C1(D0×D1×W0,R5

+) and are all convex in initial state vector x0 ∈W0.

Math. Model. Anal., 21(2):159–173, 2016.
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Proof. It follows from (2.5) that the set W0 ⊂ R5
+ is nonempty and compact.

By Property 3, we have that the mapping x0 ∈W0 7→ x(t, t0, x0) ∈ SW0
, defined

by (2.6), is continuous. Thus, SW0 is nonempty and compact in C1(D0×D1×
W0,R5

+). ∀x0, y0 ∈ W0 and ∀τ ∈ (0, 1), by the convexity of W0, we have
x0+τ(y0−x0) ∈W0. By Property 2, the solution x(t; t0, x0+τ(y0−x0)) ∈ SW0

of the system (2.1) is existent, where x(t0)=x0 + τ(y0 − x0) is the initial state
vector of the system (2.1), so SW0

is convex in x0 ∈W0.
It follows from (2.8) that SW0a

⊂SW0
. Let

{
xk(t; t0, x

k
0)
}∞
k=1

be any se-

quence of SW0a
, namely,

{
xk(t; t0, x

k
0)
}∞
k=1

is the sequence of compact set SW0
.

Thus, there exists a convergent subsequence in compact set SW0 , denoted by{
xkj (t; t0, x

kj
0 )
}∞
kj=1

. The subsequence satisfies: xkj (t; t0, x
kj
0 ) → x̄(t; t0, x̄0),

x
kj
0 → x̄0, as kj →∞. W0⊂R5 is a closed set and x

kj
0 ∈W0,∀kj , so x̄0 ∈W0.

Because xkj (t) = xkj (t; t0, x
kj
0 ) ∈ SW0a , is the solution of the system (2.1),

it satisfies state equation and initial conditions as follows:
ẋkj ,i(t) = hi(xkj ,i), t ∈ Di, i ∈ I3,

xkj ,i(tfi−1
) =

{
xkj ,0(t0) = x

kj
0 , i = 1,

xkj ,i−1(tfi−1
), i = 2, 3,

xkj (t; t0, x
kj
0 ) ∈Wa, namely, x∗l ≤ x

kj
l (t; t0, x

kj
0 ) ≤ x∗l , l ∈ I5.

(2.9)

By Properties 1-3, xkj (t; t0, x
kj
0 ) is continuous in x

kj
0 ∈ W0, hi(xkj ,i(t; t0, x

kj
0 ))

is continuous in xkj ,i(t; t0, x
kj
0 ) ∈Wα. As kj →∞, it follows from (2.9) that

˙̄xi(t; t0, x̄0) = hi(x̄(t; t0, x̄0)), t ∈ Di, i ∈ I3,

x̄i(tfi−1) =

{
x̄(t0) = x̄0, i = 1,
x̄i−1(tfi−1), i = 2, 3

and x∗l ≤ x̄l(t; t0, x̄0) ≤ x∗l , l ∈ I5. It follows from (2.8) that x̄(t; t0, x̄0) ∈ SW0a
.

This means that subsequence
{
xkj (t; t0, x

kj
0 )
}∞
kj=1

is convergent in SW0a
and its

limitation satisfies x̄(t; t0, x̄0) ∈ SW0a . Thus, the function set SW0a is compact
in C1(D0 ×D1 ×W0,R5

+). By the definition of convex set, we can prove that
SW0a

is convex in x0 ∈W0. ut

3 Linear variational system and its fundamental matrix
solution

Now that partial derivative of function hi(xi) is existent for xi ∈ Wa and
continuous in t ∈ D0, it follows that we can structure corresponding linear
variational systems (3.1)−(3.3) for the solution to the system (2.1).

ẏ1(t) =
∂h1(x1(t; t0, x0))

∂x1
y1(t), t ∈ D1, (3.1)

ẏ2(t) =
∂h2(x2(t; tf1 , x

1(tf1 ; t0, x0)))

∂x2
y2(t), t ∈ D2, (3.2)

ẏ3(t) =
∂h3(x3(t; tf2 , x

2(tf2 ; t0, x
1(tf1 ; t0, x0))))

∂x3
y3(t), t ∈ D3, (3.3)
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where x1(t; t0, x0) ∈ R5 is the solution of the first stage for system (2.1);
xi(t; tfi−1

, xi−1(tfi−1
)), i=2, 3 is the solution of the ith= 2, 3 stages for the sys-

tem (2.1).
By Theorem 3.3 in [10], x1(t)=x1(t; t0, x0) is the solution to the state equa-

tion (3.4) of the first stage for the system (2.1){
ẋ1(t) = h1(x1(t)), t ∈ D1

x1(t0) = x0,
(3.4)

so matrix
∂x1(t; t0, x0)

∂x0
∈ R5×5 is the fundamental matrix solution of linear

variable system (3.1) with initial state vector

∂x1(t0; t0, x0)

∂x0
= I, (I ∈ R5×5unit matrix). (3.5)

Similarly, for i=2, 3, xi(t)=xi(t; tfi−1 , x
i−1(tfi−1)) is the solution of the state

equation (3.6) of the ith stage for the system (2.1){
ẋi(t) = hi(xi(t)), t ∈ Di

xi(tfi−1) = xi−1(tfi−1).
(3.6)

Therefore, matrix
∂xi(t; tfi−1 , x

i−1(tfi−1))

∂xi−1(tfi−1)
∈ R5×5 is the fundamental matrix

solution of linear variational system (3.2) and (3.3) with initial state vector

∂xi(tfi−1 ; tfi−1 , x
i−1(tfi−1))

∂xi−1(tfi−1
)

= I, (I ∈ R5×5unit matrix), i = 2, 3. (3.7)

Let Φ1(t; t0, x0), Φ2(t; tf1 , x
1(tf1)) and Φ3(t; tf2 , x

2(tf2)) are the fundamental
matrix solutions of the linear variable systems (3.1)-(3.3) with initial state (3.5)-
(3.7), respectively. By Theorem 2.6.4 in [12], we give the following lemma

Lemma 1. Let x1(t; t0, x0) and y1(t; t0, y0) be the solutions to state equation
(3.4) of the first stage for the system (2.1) with the given initial state vectors
x1(t0; t0, x0) = x0 ∈W0 and y1(t0; t0, y0) = y0 ∈W0, respectively. Then,

y1(t; t0, y0)− x1(t; t0, x0) =

∫ 1

0

Φ1(t; t0, x0+τ(y0 − x0))dτ · (y0−x0),∀t ∈ D1.

Similarly, let xi(t; tfi−1
, xi−1(tfi−1

)) and yi(t; tfi−1
, yi−1(tfi−1

)) be the solutions
to state equation (3.6) of the ith=2, 3 stage for the system (2.1) with initial
state vector xi(tfi−1

) = xi−1(tfi−1
) ∈ W0 and yi(tfi−1

) = yi−1(tfi−1
) ∈ W0,

respectively. Then, ∀t ∈ Di, i=2, 3,

yi(t; tfi−1 , y
i−1(tfi−1))− xi(t; tfi−1 , x

i−1(tfi−1))

=

∫ 1

0

Φi(t; tfi−1
, xi−1(tfi−1

) + τ(yi−1(tfi−1
)− xi−1(tfi−1

)))dτ

·(yi−1(tfi−1)− xi−1(tfi−1)).

Math. Model. Anal., 21(2):159–173, 2016.
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4 Strong stability of nonlinear multi-stage dynamic
system

The purpose of the section is to discuss the strong stability with respect to
initial state vector for the solution to the system (2.1). Now, we introduce its
definition.

Definition 1. Let

x(t) = x(t; t0, x0) := [x1(t; t0, x0), x2(t; tf1 , x
1(tf1)), x3(t; tf2 , x

2(tf2))]T

be the solution of system (2.1) with initial state vector x1(t0; t0, x0) = x0 ∈
W0. For ∀ε > 0, if there exists a δ = δ(ε) > 0 such that the solution
y(t) = y(t; t0, y0) := [y1(t; t0, y0), y2(t; tf1 , y

1(tf1)), y3(t; tf2 , y
2(tf2))]T of the

system (2.1) with initial state vector y1(t0; t0, y0) = y0 ∈ W0 satisfies: y0 ∈
W0, |x0 − y0| < δ, |x(t)− y(t)| < ε,∀t ∈ D0. That is,∣∣x1(t; t0, x0)− y1(t; t0, y0)

∣∣ < ε,∀t ∈ D1,∣∣xi(t; tfi−1
, xi−1(tfi−1

))− yi(t; tfi−1
, yi−1(tfi−1

))
∣∣ < ε,∀t ∈ Di, i=2, 3.

Then, the solution x(t; t0, x0) of the system (2.1) is said to be strong stable with
respect to initial state vector x0 ∈W0.

To prove the strong stability of the solution for the system (2.1), we need
prove the boundedness of the fundamental matrix solution for the linear vari-
ational systems (3.1)-(3.3).

Theorem 2. Let x1(t; t0, x0) be the solution of state equation (3.4) of the first
stage for the system (2.1) with initial state x1(t0; t0, x0) = x0 ∈ W0 and
Φ1(t; t0, x0), t ∈ D1 the fundamental matrix solution for the linear variational
systems (3.1), then Φ1(t; t0, x0) is bounded in D1⊂R+. That is, there exists a
constant M > 0, such that∣∣Φ1(t; t0, x0)

∣∣ ≤M, ∀t ∈ D1.

Proof. Let Φ1(t; t0, x0):=[y1(t; t0, e
1), y2(t; t0, e

2), . . . , y5(t; t0, e
5)] ∈ R5×5. By

the definition of Φ1(t; t0, x0), we get ẏj(t; t0, e
j) =

∂h1(x1(t; t0, x0))

∂x1
yj(t; t0, e

j), t ∈ D1, j ∈ I5,

yj(t0; t0, e
j) = ej , j ∈ I5,

(4.1)

where ej ∈ R5 is an unit vector which the jth ∈ I5 component is 1, other
components are 0. Let

yj(t) := [yj1(t),yj2(t), . . . ,yj5(t)]T, j ∈ I5

be the solution of the system (4.1).
Since partial derivative of function hi(xi) is existent for xi ∈ Wa and

continuous in t ∈ D0 as well as Wa⊂R5 is a nonempty and compact set,
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∂h1(x(t; t0, x0))

∂x1
is bounded in t ∈ D1 for given (t0, x0) ∈ D1 × W0. That

is, ∃M1 > 0, such that∣∣∣∂h1(x1(t; t0, x0))

∂x1

∣∣∣ ≤M1, ∀t ∈ D1. (4.2)

Let

uj(t):= arg min
{∣∣uj(t)∣∣ : uj(t)∈C1(D1,R+), uj(t) ≥ max

1≤l≤5

∣∣yjl (t)∣∣}, (4.3)

Wj(t;uj(t)) := 5M1uj(t), j ∈ I5.

Clearly, Wj(t;uj(t)) is continuous in D1 × R+, so there exists an unique
solution uj(t) ≥ 1, t ∈ D1 to system (4.4){

u̇j(t) = Wj(t;uj(t)), t ∈ D1,

uj(t0) = 1, j ∈ I5.
(4.4)

For the right item of state equation for the system (4.1), due to∣∣yj(t0; t0, e
j)
∣∣ =

∣∣ej∣∣ = 1, uj(t0) = 1, j ∈ I5,

we have∣∣∣∂h1(x1(t; t0, x0))

∂x1
yj(t)

∣∣∣ ≤ ∣∣∣∂h1(x(t; t0, x0))

∂x1

∣∣∣∣∣yj(t)∣∣(Based on (4.2), we have)

≤M1

∣∣yj(t)∣∣(Based on the definition of norm, we have)

≤ 5M1 max
1≤l≤5

∣∣yjl (t)∣∣(Based on (4.3), we have)

≤ 5M1uj(t) = Wj(t;uj(t)), ∀t ∈ D1, j ∈ I5,

which implies∣∣∣∂h1(x1(t; t0, x0))

∂x1
yj(t)

∣∣∣ ≤Wj(t, uj(t)), j ∈ I5.

Comparing the systems (4.1) with (4.4), by Theorem 6.1 and Corollary 6.3
in [12], we get that the solution of the system (4.1) satisfies∣∣yj(t; t0, ej)∣∣ ≤ uj(t) ≤ ∣∣uj(t)∣∣ = max

t∈D1

uj(t), j ∈ I5. (4.5)

By uj(t)∈C1(D1,R+), uj(t) is bounded in D1⊂R+, namely,
∣∣uj(t)∣∣≤mj<∞.

By (4.5), we obtain that the solution yj(t; t0, e
i) of system (4.1) satisfies∣∣yj(t; t0, ej)∣∣ ≤ mj , ∀t ∈ D1, j ∈ I5.∣∣Φ1(t; t0, x0)

∣∣ =
∣∣[y1(t; t0, e

1), y2(t; t0, e
2), . . . , y5(t; t0, e

5)]
∣∣

=

5∑
j=1

5∑
l=1

|yjl (t; t0, e
j)| ≤

5∑
j=1

mj , ∀t ∈ D1.
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Let M =

5∑
j=1

mj , then

|Φ1(t; t0, x0)| ≤M, t ∈ D1, (4.6)

which completes our proof. ut

Using the same argument as in the proof of Theorem 2, we can easily carry
out the proof of Theorem 3.

Theorem 3. The fundamental matrix solutions Φ2(t; tf1 , x
1(tf1)) and

Φ3(t; tf2 , x
1(tf2)) of the linear variational systems (3.2) and (3.3) are bounded

in D2 and D3, respectively. Thus, there exists a constant M > 0, such that∣∣Φi(t; tfi−1
, xi−1(tfi−1

))
∣∣ ≤M, ∀t ∈ Di, i = 2, 3.

With the help of the preceding two theorems we can prove the strong sta-
bility of the solution for the system (2.1).

Theorem 4. Let x(t; t0, x0) is the solution of the system (2.1) with x(t0) =
x0 ∈ W0. Then, the solution x(t; t0, x0), denoted by (2.6), is strongly stable
with respect to initial state vector x0 ∈W0.

Proof. ∀ε > 0, let y(t; t0, y0) ∈ SW0a be the solution of the system (2.1) with

y0 ∈W0,
∣∣x0 − y0∣∣ < ε

M
= δ(ε),

∣∣yi(tfi)− xi(tfi)∣∣ < δ(ε),

where M > 0 is a constant in Theorems 2 and 3. By Lemma 1, we have

y(t; t0, y0)− x(t; t0, x0) = (4.7)

=



∫ 1

0

Φ1(t; t0, x0 + τ(y0 − x0))dτ · (y0 − x0),∀t ∈ D1,∫ 1

0

Φi(t; tfi−1
, xi−1(tfi−1

) + τ(yi−1(tfi−1
)− xi−1(tfi−1

)))dτ

× (yi−1(tfi−1)− xi−1(tfi−1)),∀t ∈ Di, i=2, 3.

Since W0 ⊂ R5 is a convex and compact set, it follows that if
x0 ∈ W0, y0 ∈ W0, then, ∀τ ∈ (0, 1), x0 + τ(y0 − x0) ∈ W0 . Taking norm to
(4.7) gives ∣∣y(t; t0, y0)− x(t; t0, x0)

∣∣ ≤
≤



∣∣∣ ∫ 1

0

Φ1(t; t0, x0 + τ(y0 − x0))dτ
∣∣∣∣∣(y0 − x0)

∣∣, ∀t ∈ D1,∣∣∣ ∫ 1

0

Φi(t; tfi−1
, xi−1(tfi−1

) + τ(yi−1(tfi−1
)− xi−1(tfi−1

)))dτ
∣∣∣

×
∣∣(yi−1(tfi−1

)− xi−1(tfi−1
))
∣∣, ∀t ∈ Di, i = 2, 3.
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By Theorems 2 and 3 together with (4.6), we have

∣∣y(t; t0, y0)− x(t; t0, x0)
∣∣ ≤


M
∣∣(y0 − x0)

∣∣ ≤ ε, ∀t ∈ D1,

M
∣∣(yi−1(tfi−1

)− xi−1(tfi−1
))
∣∣ ≤ ε,

∀t ∈ Di, i = 2, 3,

namely, |y(t; t0, y0)− x(t; t0, x0)| ≤ ε,∀t ∈ D0. By Definition 1, this completes
the proof of Theorem 4. ut

5 Numerical simulation

A batch culture was carried out under anaerobic conditions at 37 oC with 4
groups initial state vectors, i.e.,
x10 = [0.102, 418.2609, 0, 0, 0], x20 = [0.2025, 441.337, 0, 0, 0],
x30 = [0.173, 402.9348, 0, 0, 0], x40 = [0.2245, 509.8913, 0, 0, 0], ∆xl0 = 0.1xl0,
l ∈ I4. The system (2.1) was numerical solved by using the Euler method. The
step size of the Euler method was 1/72000 h, which was derived empirically
after several numerical experiments.
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Figure 1. Comparison of biomass, glycerol, 1,3-PD concentration between experimental
data and computational results x(t, x10 + ρi∆x10), |ρi| < 1, i ∈ IN , N = 1000, with

x10=[0.102, 418.2609, 0, 0, 0].

Figures 1-4 show the comparison of the first three components between
experimental data and computational results x(t, xl0 + ρi∆xl0), |ρi| < 1, l ∈
I4, i ∈ IN , (N is the times of perturbation with initial state vector xl0) where the
stars denote the experimental data and the solid lines denote the computational
curves. From Figures 1-4, we can deduce the strong stability of the system (2.1).
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Figure 2. Comparison of biomass, glycerol, 1,3-PD concentration between experimental
data and computational results x(t, x20 + ρi∆x20), |ρi| < 1, i ∈ IN , N = 1000, with

x20=[0.2025, 441.337, 0, 0, 0].
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Figure 3. Comparison of biomass, glycerol, 1,3-PD concentration between experimental
data and computational results x(t, x30 + ρi∆x30), |ρi| < 1, i ∈ IN , N = 1000, with

x30=[0.173, 402.9348, 0, 0, 0].

6 Conclusions

This paper has studied the strong stability with respect to initial state for
the solution to the nonlinear multi-stage dynamic system in which there is no
equilibrium point. In addition, we structure corresponding linear variational
system for the solution to the multi-stage system. Then, a sufficient condition
on this strong stability are given by the boundedness to the fundamental matrix
solution of this linear variational system. Finally, numerical simulations are
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Figure 4. Comparison of biomass, glycerol, 1,3-PD concentration between experimental
data and computational results x(t, x40 + ρi∆x40), |ρi| < 1, i ∈ IN , N = 1000, with

x40=[0.2245, 509.8913, 0, 0, 0].

agreement with theoretical analysis, both of which confirm the correctness of
the presented theory.

The current work deals with the problem of strong stability of the multi-
stage system in batch culture. In a future work, our effort will focus on optimal
control of the multi-stage system.

Acknowledgements

This work was supported by the National Natural Science Foundation of China
(Grant Nos. 11171050 and 11371164), the National Science Foundation for
the Youth of China (Grant Nos. 11301051, 11301081 and 11501574), the
Provincial Natural Science Foundation of Fujian (Grant No. 2014J05001), the
Fundamental Research Funds for Central Universities in China (Grant No.
DUT15LK25), Natural Science Foundation of Shandong Province in China
(Grant No. ZR2015AL010) and the China Scholorship Council (CSC, No.
201506060121).

References

[1] A. Ashoori, B. Moshiri, A.Khaki-Sedigh and M.R. Bakhtiari. Opti-
mal control of a nonlinear fed-batch fermentation process using model
predictive approach. Journal Process Control, 19(7):1162–1173, 2009.
http://dx.doi.org/10.1016/j.jprocont.2009.03.006.

[2] G. Cheng, L. Wang, R. Loxton and Q. Lin. Robust optimal control of a micro-
bial batch culture process. Journal of Optimization Theory and Applications,
167(1):342–362, 2015. http://dx.doi.org/10.1007/s10957-014-0654-z.

Math. Model. Anal., 21(2):159–173, 2016.

http://dx.doi.org/10.1016/j.jprocont.2009.03.006
http://dx.doi.org/10.1007/s10957-014-0654-z


172 J. Zhang, J. Yuan, E. Feng, H. Yin and Z. Xiu

[3] S.-K. Choi, Y.-H. Cui and N. Koo. Variationally stable dynamic sys-
tems on time scales. Advances of Difference Equations, 2012(1):129, 2012.
http://dx.doi.org/10.1186/1687-1847-2012-129.

[4] S.-K. Choi and N. Koo. On the stablility of linear dynamic system on time
scales. Journal of Difference Equations Applications, 15(2):167–183, 2009.
http://dx.doi.org/10.1080/10236190802008528.

[5] E. Fridman. Stability of linear descriptor systems with delay: a Lyapunov-based
approach. Journal of Mathematical Analysis and Applications, 273(1):24–44,
2002. http://dx.doi.org/10.1016/S0022-247X(02)00202-0.

[6] K. Gao, X. Zhang, E. Feng and Z. Xiu. Sensitivity analysis and param-
eter identification of nonlinear hybrid systems for glycerol transport mecha-
nisms in continuous culture. Journal of Theoretical Biology, 347:137–143, 2014.
http://dx.doi.org/10.1016/j.jtbi.2013.12.025.

[7] Y. Gao, J. Lygeros and M. Quincampoix. On the reachability problem for uncer-
tain hybrid systems. IEEE Transactions on Automatic Control, 52(9):1572–1586,
2007. http://dx.doi.org/10.1109/TAC.2007.904449.

[8] Y. Gao, J. Lygeros, M. Quincampoix and N. Seube. Approximate stabilisation of
uncertain hybrid systems. Hybrid Systems: Computation and Control, 2623:203–
215, 2003. http://dx.doi.org/10.1007/3-540-36580-X 17.

[9] S. Gottlieb, C.W. Shu and E. Tadmor. Strong stability-preserving high-
order time discretization methods. SIAM review, 43(1):89–112, 2001.
http://dx.doi.org/10.1137/S003614450036757X.

[10] D.P. Hou. Ordinary differential equation. People’s Education Press, 1980.

[11] D. Klatte and K. Tammer. Strong stability of stationary solutions and Karush-
Kuhn-Tucker points in nonlinear optimization. Annals of Operations Research,
27(1):285–307, 1990. http://dx.doi.org/10.1007/BF02055199.

[12] V. Lakshmikantham and S. Leela. Differential and Integral Inequalities. Theory
and Applications. Academic Press, New York, 1969.

[13] X. Li, E. Feng and Z. Xiu. Stability analysis of equilibrium for microorganisms
in continuous culture. Applied Mathematics-A Journal of Chinese Universities,
20(4):377–383, 2005. http://dx.doi.org/10.1007/s11766-005-0014-8.

[14] X. Li, R. Qu and E. Feng. Stability and Hopf bifurcation of a delay differential
system in microbial continuous culture. International Journal of Biomathemat-
ics, 02(03):321–338, 2009. http://dx.doi.org/10.1142/S179352450900073X.

[15] Z. Li, R. Zhang, S. Xu, Y. Qian and J. Xu. Stability analysis of dy-
namic collaboration model with control signals on two lanes. Communica-
tions in Nonlinear Science and Numerical Simulation, 19(12):4148–4160, 2014.
http://dx.doi.org/10.1016/j.cnsns.2014.04.021.

[16] C. Liu. Modelling and parameter identification for a nonlinear time-delay sys-
tem in microbial batch fermentation. Applied Mathematical Modelling, 37(10-
11):6899–6908, 2013. http://dx.doi.org/10.1016/j.apm.2013.02.021.

[17] C. Liu and Z. Gong. Modelling and optimal control of a time-delayed switched
system in fed-batch process. Journal of the Franklin Institute, 351(2):840–856,
2014. http://dx.doi.org/10.1016/j.jfranklin.2013.09.014.

[18] J. Liu. Strong stability in variational inequalities. SIAM
Journal on Control and Optimization, 33(3):725–749, 1995.
http://dx.doi.org/10.1137/S0363012992240527.

http://dx.doi.org/10.1186/1687-1847-2012-129
http://dx.doi.org/10.1080/10236190802008528
http://dx.doi.org/10.1016/S0022-247X(02)00202-0
http://dx.doi.org/10.1016/j.jtbi.2013.12.025
http://dx.doi.org/10.1109/TAC.2007.904449
http://dx.doi.org/10.1007/3-540-36580-X_17
http://dx.doi.org/10.1137/S003614450036757X
http://dx.doi.org/10.1007/BF02055199
http://dx.doi.org/10.1007/s11766-005-0014-8
http://dx.doi.org/10.1142/S179352450900073X
http://dx.doi.org/10.1016/j.cnsns.2014.04.021
http://dx.doi.org/10.1016/j.apm.2013.02.021
http://dx.doi.org/10.1016/j.jfranklin.2013.09.014
http://dx.doi.org/10.1137/S0363012992240527


Strong Stability of a Nonlinear Multi-Stage Dynamic System 173

[19] M. Morley. Categoricity in power. Transactions of the American Mathemati-
cal Society, 114(2):514–538, 1965. http://dx.doi.org/10.1090/S0002-9947-1965-
0175782-0.

[20] S. Shelah. Stable theories. Israel Journal of Mathematics, 7(3):187–202, 1969.
http://dx.doi.org/10.1007/BF02787611.

[21] S. Shelah. Classification theory and the number of nonisomorphic models. Studies
in Logic and the Foundations of Mathematics (2nd ed.), Elsevier, 1990.

[22] R.-J. Spiteri and S.-J. Ruuth. A new class of optimal high-order strong-stability-
preserving time discretization methods. SIAM Journal on Numerical Analysis,
40(2):469–491, 2002. http://dx.doi.org/10.1137/S0036142901389025.

[23] J. Wang, J. Ye, H. Yin, E. Feng and L. Wang. Sensitivity analysis
and identification of kinetic parameters in batch fermentation of glycerol.
Journal of Computational and Applied Mathematics, 236(9):2268–2276, 2012.
http://dx.doi.org/10.1016/j.cam.2011.11.015.

[24] L. Wang. Determining the transport mechanism of an enzyme-catalytic complex
metabolic network based on biological robustness. Bioprocess and Biosystems
Engineering, 36(4):433–441, 2013. http://dx.doi.org/10.1007/s00449-012-0800-
7.

[25] L. Wang, Q. Lin, R. Loxton, K.-L. Teo and G. Cheng. Opti-
mal 1, 3-propanediol production: Exploring the trade-off between pro-
cess yield and feeding rate variation. J. Process Control, 32:1–9, 2015.
http://dx.doi.org/10.1016/j.jprocont.2015.04.011.

[26] U. Witt, R.-J. Müller, J. Augusta, H. Widdecke and W.-D. Deck-
wer. Synthesis, properties and biodegradability of polyesters based
on 1,3-propanediol. Macromol. Chem. Phys., 195(2):793–802, 1994.
http://dx.doi.org/10.1002/macp.1994.021950235.

[27] Z.-L. Xiu, A.-P. Zeng and W.-D. Deckwer. Multiplicity and stability anal-
ysis of microorganisms in continuous culture: Effects of metabolic over-
flow and growth inhibition. Biotechnology and Bioengineering, 57(3):251–
261, 1998. http://dx.doi.org/10.1002/(SICI)1097-0290(19980205)57:3¡251::AID-
BIT1¿3.0.CO;2-G.

[28] J. Yuan, X. Zhang, X. Zhu, E. Feng, H. Yin, Z. Xiu and B. Tan. Identification and
robustness analysis of nonlinear multi-stage enzyme-catalytic dynamical system
in batch culture. Computational and Applied Mathematics, 34(3):957–978, 2015.
http://dx.doi.org/10.1007/s40314-014-0160-9.

[29] A.-P. Zeng. A kinetic model for product formation of microbial and
mammalian cells. Biotechnology and Bioengineering, 46(4):314–324, 1995.
http://dx.doi.org/10.1002/bit.260460404.

[30] H. Zhao and E. Feng. φ0-stability of an impulsive system obtained from perturb-
ing Lyapunov functions. Nonlinear Analysis: Theory, Methods & Applications,
66(4):962–967, 2007. http://dx.doi.org/10.1016/j.na.2005.12.034.

Math. Model. Anal., 21(2):159–173, 2016.

http://dx.doi.org/10.1090/S0002-9947-1965-0175782-0
http://dx.doi.org/10.1090/S0002-9947-1965-0175782-0
http://dx.doi.org/10.1007/BF02787611
http://dx.doi.org/10.1137/S0036142901389025
http://dx.doi.org/10.1016/j.cam.2011.11.015
http://dx.doi.org/10.1007/s00449-012-0800-7
http://dx.doi.org/10.1007/s00449-012-0800-7
http://dx.doi.org/10.1016/j.jprocont.2015.04.011
http://dx.doi.org/10.1002/macp.1994.021950235
http://dx.doi.org/10.1002/(SICI)1097-0290(19980205)57:3<251::AID-BIT1>3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1097-0290(19980205)57:3<251::AID-BIT1>3.0.CO;2-G
http://dx.doi.org/10.1007/s40314-014-0160-9
http://dx.doi.org/10.1002/bit.260460404
http://dx.doi.org/10.1016/j.na.2005.12.034

	Introduction
	Nonlinear multi-stage dynamic system and its properties
	Linear variational system and its fundamental matrix solution
	Strong stability of nonlinear multi-stage dynamic system
	Numerical simulation
	Conclusions
	References

