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Abstract. This paper is concerned with the dynamics of a viral infection model
with diffusion under the assumption that the immune response is retarded. A time
delay is incorporated into the model described the delayed immune response after
viral infection. Based upon a stability analysis, we demonstrate that the appearance,
or the absence, of spatial patterns is determined by the delay under some condi-
tions. Moreover, the spatial patterns occurs as a consequence of Hopf bifurcation.
By applying the normal form and the center manifold theory, the direction as well
as the stability of the Hopf bifurcation is explored. In addition, a series of numerical
simulations are performed to illustrate our theoretical results.
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1 Introduction

Mathematical modelling of viral dynamics has attracted the interest of experi-
mentalists and theorists alike during the last few decades [10,11,13,21,28,31].
This is because viral models can provide insights into the dynamics of viral load
in vivo and may play a significant role in the development of a better under-
standing of diseases and various drug therapy strategies against them. During
viral infections, it is well-known and pointed out by the work of [5, 17] that
viral reproduction always involves host cells and uses the cellular machinery
for the synthesis of their genome and other components. On the other hand,
Bartholdy et al. [2] and Wodarz et al. [30] found that the turnover of free virus
is much faster than that of infected cells, which allowed them to make a quasi-
steadystate assumption, that is, the amount of free virus is simply proportional
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to the number of infected cells. Hence, Bonhoeffer et al. presented the sim-
plified model in [4]. Antibodies, cytokines, natural killer cells, and T cells are
essential components of a normal immune response to a virus. In particular, cy-
totoxic T lymphocytes (CTLs) play a key role in antiviral defense by attacking
virus-infected cell, and it is also believed that they are the main host immune
factor that limits the extent of virus replication in vivo and thus determines
virus load [34]. Therefore, the population dynamics of viral infection with CTL
response has been paid much attention in the last few decades.

Most of them use ordinary differential equations to describe different aspects
of the dynamics of the host-parasite interaction, and in some sense, delay mod-
els give better compatibility with reality, as they capture the dynamics from the
time of infection to the infectiousness. For example, during HIV infection, the
intracellular phase is about 0.9 days, but the average half-life of plasma virus
is only around 6 h [19]. Thus, delays should be incorporated into the infection
equation and/or the virus production equation of a model to account for effect
of intracellular delay which leads to mathematical models by delay differential
equation (DDE). Many authors have studied the mathematical modeling of
viral dynamics with CTL immune response in the literature, which are given
by systems of ordinary differential equation (ODE) and DDE [8,14,20,22,29].

Based on the above discussion, Wang et al. [26] proposed a basic mathe-
matical model: 

du1

dt
= λ− du1 − βu1u2,

du2

dt
= βu1u2 − au2 − pu2u3,

du3

dt
= cu2(τ)− bu3,

(1.1)

where u1, u2, u3 represent the densities of susceptible host cells, free virus and
cytotoxic T lymphocytes (CTLs). Susceptible host cells are generated at a
rate λ, die at a rate du1 and become infected by the virus at a rate βu1u2.
Infected cells die at a rate au2 and are killed by the CTL response at a rate
pu2u3, corresponding to lytic effector mechanisms of CTL response. The CTL
response is activated at a rate proportional to the number of infected cells
at a previous time cu2(τ) = cu2(t − τ), τ is a positive constant accounting
for the time delay of CTL response, and also decays exponentially at a rate
proportional to its current strength bu3. It is assumed that the parameters in
system (1.1) are positive constants.

Note that model (1.1) implicitly assumes that cells and viruses are well
mixed, and ignores the mobility of cells, viruses and CTLs, whereas biological
motion plays a crucial role in many biological phenomena. In fact, many in-
vestigators have introduced population movements into related equations for
ecological, epidemiological and tumorigenic modelling and simulations in ef-
forts to understand the most basic features of spatially distributed interac-
tions [7, 12, 16, 18, 25, 27]. But so far, there have been few studies to consider
the influences of spatial structures on virus dynamics. Thus, we introduce the
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random mobility for cells, viruses and CTLs into (1.1):
u1t − d1∆u1 = λ− du1 − βu1u2, (x, t) ∈ Ω × (0, T ),
u2t − d2∆u2 = βu1u2 − au2 − pu2u3, (x, t) ∈ Ω × (0, T ),
u3t − d3∆u3 = cu2(τ)− bu3, (x, t) ∈ Ω × (0, T ),
∂u1/∂η = ∂u2/∂η = ∂u3/∂η = 0, (x, t) ∈ ∂Ω × (0, T ),
ui(x, t) = ϕi(x, t)(i = 1, 2, 3), (x, t) ∈ Ω × [−τ, 0].

(1.2)

Ω is a bounded domain in Rn with smooth boundary ∂Ω, η is the outward unit
normal vector on the boundary. The homogeneous Neumann boundary condi-
tion implies that the above system is self-contained and there is no infection
across the boundary. The positive constants di(i = 1, 2, 3) are the free diffusion
coefficients corresponding to ui(i = 1, 2, 3). The initial function ϕi(i = 1, 2, 3)
is positive, Hölder continuous and satisfies ∂ϕi/∂η = 0 on the boundary.

Denote u = (u1, u2, u3) and

G(u) =

 G1(u)
G2(u)
G3(u)

 =

 λ− du1 − βu1u2

βu1u2 − au2 − pu2u3

cu2(τ)− bu3


.

It is clear that problem (1.2) always has two equilibria. The first is E0 =
(λ/d, 0, 0) and it represents the state in which the virus is absent. Further,
denote R0 = λβ/(ad), here R0 is called the basic reproduction ratio of system
(1.2). It is easy to show that if R0 > 1, system (1.2) admits a unique endemic
equilibrium u∗ = (u∗1, u

∗
2, u
∗
3), which is described by the following expressions

u∗1 =
cλ

cd+ bβu∗3
, u∗2 =

bu∗3
c
,

u∗3 =
−(pcd+ abβ) +

√
(pcd+ abβ)2 − 4bcpβ(ad− λβ)

2bpβ
,

this represents the state in which the virus is present. The objective of this
paper is to study the stability of the endemic equilibrium u∗ when τ > 0, thus,
throughout this paper, we always assume that R0 > 1 holds.

Spatial patterns have attracted great attention recently. Diffusion-driven
spatial patterns, also called Turing patterns, have been extensively studied in
the modelling of many physical, chemical and biological processes [1, 3, 15, 18,
23,24,25,27]. While, not only diffusion can generate spatial patterns, but also
time delay can induce spatial patterns [6, 32, 33, 35]. For example, Zhang et
al. [35] investigated that the time delay can not only cause spatially homoge-
neous Hopf bifurcation but also give rise to spatially heterogeneous ones in a
delayed predator-prey diffusion system. Yan [32] demonstrated the stability
of the positive equilibrium and the existence of Hopf bifurcation to a delayed
predator-prey system with diffusion effects. With reference to the ordinary
differential equations of model (1.2), Wang et al. [26] showed that if the basic
reproduction ratio of system is bigger than 1, the time delay of the immune
response and the birth rate of susceptible host cells involves to a rich dy-
namics, which includes the occurrence of stable periodic solutions and chaotic
dynamical behavior. However, there is little concern with the spatial patterns
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of delayed viral infection models with diffusion. Therefore, our main aim to
explore whether time delay can drive the emergence of spatial patterns and
how initial conditions affect the spatially distribution of cells density for the
nonlinear system (1.2). Our analysis reveals that the delay may induce spa-
tial patterns when the delay passes through a sequence of critical values and
different initial conditions may lead to different shapes of patterns.

The organization of this paper is as follows. In Section 2 we analytically
investigate the stability and instability of the endemic equilibrium u∗ for sys-
tem (1.2). We show that when the delay passes through the critical value,
the inhomogeneous state of system (1.2) switches to the spatial patterns and
the existence of local Hopf bifurcation of system (1.2) is discussed. In Sec-
tion 3, by applying the normal form theory and the center manifold reduction
for functional differential equations, the conditions for determining the bifurca-
tion direction and the stability of the bifurcating periodic solution are derived.
In section 4, numerical simulations are performed to illustrate our analytical
findings. A brief discussion is given in Section 5.

2 Delay driven spatial patterns

In this section, we shall carry out the linear stability of the endemic equilibrium
u∗. Set u(x, t) = u∗ + δu∗ exp(st) exp(ik · x), where s is the eigenvalue and k
is the wave number. We have the following characteristic equation

det

 s+ d1k
2 + d+ βu∗2 βu∗1 0

−βu∗2 s+ d2k
2 pu∗2

0 −ce−sτ s+ d3k
2 + b

 = 0.

Then, the characteristic equation of system (1.2) at the endemic equilibrium
u∗ is of the form

s3 + a1s
2 + a2s+ a3 + (b1s+ b2)e−sτ = 0, (2.1)

where

a1 = b+ d+ βu∗2 + (d1 + d2 + d3)k2,
a2 = d2k

2(b+ d3k
2) + (d+ βu∗2 + d1k

2)(b+ d2k
2 + d3k

2) + β2u∗1u
∗
2,

a3 = d2k
2(d+ βu∗2 + d1k

2)(b+ d3k
2) + β2u∗1u

∗
2(b+ d3k

2),
b1 = cpu∗2, b2 = (d+ βu∗2 + d1k

2)cpu∗2.

It is well known that the endemic equilibrium u∗ is unstable if there is at least
one root with Res > 0, and is stable if Res < 0 for all s. That is to say,
the stability of solutions depends on the location of the zeros of the associated
characteristic equation. Thus, the delay destabilizes endemic equilibrium if the
critical point τ satisfies Res = 0, which is called delay driven instability.

Clearly, when τ = 0, equation (2.1) becomes

s3 + a1s
2 + (a2 + b1)s+ a3 + b2 = 0, (2.2)

since a1 > 0, a3 + b2 > 0 and a1(a2 + b1) − (a3 + b2) > 0, we have that all
roots of equation (2.2) have negative real roots. Hence, by the Routh-Hurwitz
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theorem, the endemic equilibrium u∗ of system (1.2) is asymptotically stable
when τ = 0.

Now, we discuss the effects of the delay on the stability of the endemic
equilibrium u∗. If s = iw (w > 0) is a root of equation (2.1), separating real
and imaginary parts, it follows that{

a1w
2 − a3 = b1w sinwτ + b2 coswτ,

w3 − a2w = b1w coswτ − b2 sinwτ.
(2.3)

Squaring and adding the two equations of (2.3), we derive that

w6 + (a2
1 − 2a2)w4 + (a2

2 − 2a1a3 − b21)w2 + a2
3 − b22 = 0. (2.4)

Letting z = w2 gives

z3 + (a2
1 − 2a2)z2 + (a2

2 − 2a1a3 − b21)z + a2
3 − b22 = 0. (2.5)

Due to the complexity of equations (2.5), we investigate their solutions numeri-
cally in the numerical section. We assume that (2.5) has at most three positive
roots denoted by z1, z2, z3, respectively. Then (2.4) has at most three positive
roots w1 =

√
z1, w2 =

√
z2, w3 =

√
z3. Moreover, equation (2.1) has the pure

imaginary root s = iwj(j = 1, 2, 3) when

τ = τ
(n)
j = τ

(0)
j +

2nπ

wj
, n = 0, 1, 2, · · · ,

where τ
(0)
j = 1

wj
arccos

b1(wj)4+(a1b2−a2b1)(wj)2−a3b2
b22+b21(wj)2

.

Let us denote

τ∗ = τ
(0)
j0 = min

j=1,2,3
{τ (0)
j }, w∗ = wj0. (2.6)

From above arguments, we have the following results.

Theorem 1. For system (1.2), the following statements are true:
(i) If τ = 0, then the endemic equilibrium u∗ is asymptotically stable. Hence,
spatial patterns can not be generated without the delay.
(ii) If τ > 0, then there exists a critical point τ∗ such that the endemic equilib-
rium u∗ is asymptotically stable for τ ∈ [0, τ∗) and unstable for τ ∈ (τ∗,∞).

Theorem 2. System (1.2) undergoes Hopf bifurcation at the endemic equilib-
rium u∗ when τ = τ∗.

Proof. Substituting s = σ + iw into (2.1), we have
σ3 − 3σw2 + a1σ

2 − a1w
2 + a2σ + a3 + e−στ [(b1σ + b2) cos τw

+b1w sin τw] = 0,

3σ2w − w3 + 2a1σw + a2w + e−στ [b1w cos τw − (b1σ + b2) sin τw] = 0.

Math. Model. Anal., 21(2):143–158, 2016.
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Differentiating the above equations with respect to τ , after substituting σ = 0
into it, we obtain 

X
dσ

dτ
+ Y

dw

dτ
= U,

−Y dσ
dτ

+X
dw

dτ
= V,

where

X = −3w2 + a2 + coswτ(b1 − b2τ)− b1wτ sinwτ,

Y = −2a1w + b1wτ coswτ + sinwτ(b1 − b2τ),

U = b2w sinwτ − b1w2 coswτ, V = b2w coswτ + b1w
2 sinwτ.

Substituting τ = τ∗, w = w∗ and (2.3) into the above equation, we have
dσ
dτ |τ=τ∗,w=w∗ > 0. Therefore, the transversality condition is satisfied. More-
over, (2.1) has a pair of simple purely imaginary root s = ±iw∗ at τ = τ∗.
Thus, Hopf bifurcation occurs at τ = τ∗. ut

3 Direction and stability of the Hopf bifurcation

In this section, by following the idea of Hassard [9], we shall explore the di-
rection and stability of the periodic solutions bifurcating from the positive
equilibrium u∗ when the delay passes through the critical value τ∗.

Let vi = ui − u∗ for i = 1, 2, 3, τ = τ∗ + γ, γ ∈ R. Then system (1.2) can
be written as a functional differential equation in C = C([−1, 0], R3)

v̇(t) = Lγ(vt) + F (γ,vt), (3.1)

where v = (v1, v2, v3)T , and vt = v(t + θ), θ ∈ [−1, 0]. Lγ : C → R and
F : R× C → R are defined, respectively, by

Lγ(φ) = (τ∗ + γ)

 −d1k
2 − d− βu∗2 −βu∗1 0

βu∗2 −d2k
2 −pu∗2

0 0 −d3k
2 − b

 φ1(0)
φ2(0)
φ3(0)


+ (τ∗ + γ)

 0 0 0
0 0 0
0 c 0

 φ1(−1)
φ2(−1)
φ3(−1)

 ,

F (γ, φ) = (τ∗ + γ)

 −βφ1(0)φ2(0)
βφ1(0)φ2(0)− pφ2(0)φ3(0)
0

 ,

where φ(θ) = (φ1(θ), φ2(θ), φ3(θ))T ∈ C. By the Riesz representation theorem,
there exists a 3 × 3 matrix function ρ(θ, γ) whose components are bounded
variation for θ ∈ [−1, 0], such that

Lγ(φ) =

∫ 0

−1

dρ(θ, γ)φ(θ).
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In fact, we can choose

ρ(θ, γ) = (τ∗ + γ)

 −d1k
2 − d− βu∗2 −βu∗1 0

βu∗2 −d2k
2 −pu∗2

0 0 −d3k
2 − b

 δ(θ)

− (τ∗ + γ)

 0 0 0
0 0 0
0 c 0

 δ(θ + 1),

where δ is delta function. For φ ∈ C = C1([−1, 0], R3), define

A(γ)φ =


dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dρ(s, γ)φ(s), θ = 0,

R(γ)φ =

{
0, θ ∈ [−1, 0),
F (γ, φ), θ = 0.

(3.2)

Then system (3.1) can be written as

v̇t = A(γ)vt +R(γ)vt. (3.3)

For φ ∈ C = C1([−1, 0], R3), ϕ ∈ C∗ = C1([0, 1], (R3)∗), we define the
adjoint operator A∗ of A(0) by

A∗ϕ(s) =


−dϕ(s)

ds
, s ∈ (0, 1],∫ 0

−1
dρT (t, 0)ϕ(−t), s = 0,

and the adjoint bilinear form by

< ϕ, φ >= ϕ̄(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0

ϕ̄(ξ − θ)dρ(θ, 0)φ(ξ)dξ. (3.4)

In terms of the discussion in previous section, we see that ±iw∗τ∗ are
eigenvalues of A(0) and A∗. Next we calculate the eigenvector q(θ) of A(0)
corresponding to iw∗τ∗ and the eigenvector q∗(s) of A∗ belonging to −iw∗τ∗,
respectively. By the definition of A(0) and A∗, we can obtain

q(θ) = (1, q1, q2)T eiw
∗τ∗θ, q∗(s) = D(1, q∗1 , q

∗
2)T eiw

∗τ∗s, (3.5)

where

q1 = −d1k
2 + d+ βu∗2 + iw∗

βu∗1
, q2 =

−ce−iw∗τ∗
(d1k

2 + d+ βu∗2 + iw∗)

βu∗1(d3k2 + b+ iw∗)
,

q∗1 =
d1k

2 + d+ βu∗2 − iw∗

βu∗2
, q∗2 =

−p(d1k
2 + d+ βu∗2 − iw∗)

β(d3k2 + b− iw∗)
.

It follows from (3.4) that

< q∗, q > = q̄∗(0)q(0)−
∫ 0

−1

∫ θ

ξ=0

q̄∗(ξ − θ)dρ(θ, 0)q(ξ)dξ

= D̄

{
1+q1q̄

∗
1+q2q̄

∗
2+τ∗(1, q̄∗1 , q̄

∗
2)

 0 0 0
0 0 0
0 c 0

 1
q1

q2

 e−iw
∗τ∗
}

= D̄
(

1 + q1q̄
∗
1 + q2q̄

∗
2 + τ∗cq1q̄

∗
2e
−iw∗τ∗

)
.

Math. Model. Anal., 21(2):143–158, 2016.



150 J. Liu, Q. Zhang and C. Tian

We choose D̄ =
(
1 + q1q̄

∗
1 + q2q̄

∗
2 + τ∗cq1q̄

∗
2e
−iw∗τ∗)−1

, such that < q∗, q >= 1
and < q∗, q̄ >= 0, where D̄ is the conjugate imaginary.

In the following, we compute the coordinates describing center manifold C0

at γ = 0. Define

z(t) =< q∗,vt >, W (t, θ) = vt(θ)− z(t)q(θ)− z(t)q(θ), (3.6)

therefore,

vt(θ) = W (t, θ) + z(t)(1, q1, q2)T eiw
∗τ∗θ + z̄(t)(1, q̄1, q̄2)T e−iw

∗τ∗θ. (3.7)

On the center manifold C0, we have

W (t, θ) = W (z(t), z̄(t), θ) = W20
z2

2
+W11zz̄ +W02

z̄2

2
+ · · · , (3.8)

where z and z̄ are local coordinates for the center manifold C0 in the direction
of q∗ and q̄∗. Note that W is real if vt is real. We can only consider real
solutions. For the solution vt ∈ C0 when γ = 0, by (3.2)-(3.6), we have

ż(t) = iw∗τ∗z(t)+ < q∗, R(0)(W (z, z̄, θ) + 2Re{z(t)q(θ)}) >
= iw∗τ∗z(t) + q̄∗(0)F (0,W (z, z̄, 0) + 2Re{z(t)q(0)})
= iw∗τ∗z(t) + g(z, z̄),

(3.9)

where

g(z, z̄) = q̄∗(0)F (0,W (z, z̄, 0) + 2Re{z(t)q(0)})

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .

(3.10)

From (3.7) and (3.8), we obtain

v1t(0) = z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ o(|(z, z̄)|3),

v2t(0) = zq1 + z̄q̄1 +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ o(|(z, z̄)|3),

v3t(0) = zq2 + z̄q̄2 +W
(3)
20 (0)

z2

2
+W

(3)
11 (0)zz̄ +W

(3)
02 (0)

z̄2

2
+ o(|(z, z̄)|3).

By use of the definition of F (γ,vt), we have

g(z, z̄) = q̄∗(0)F (0,W (z, z̄, 0) + 2Re{z(t)q(0)})

= τ∗D̄(1, q̄∗1 , q̄
∗
2)

 −βv1t(0)v2t(0)
βv1t(0)v2t(0)− pv2t(0)v3t(0)
0


= τ∗D̄{z2[−q1β + q̄∗1(q1β − q1q2p)]

+2zz̄[−Re{q1}β + q̄∗1(Re{q1}β − Re{q1q̄2}p)]
+z̄2[−q̄1β + q̄∗1(q̄1β − q̄1q̄2p)]

+z2z̄[(q̄∗1β − β)(W
(2)
11 (0) +W

(1)
11 (0)q1 +

W
(2)
20 (0)

2
+
W

(1)
20 (0)

2
q̄1)

−q̄∗1p(W
(3)
11 (0)q1 +W

(2)
11 (0)q2 +

W
(3)
20 (0)

2
q̄1 +

W
(2)
20 (0)

2
q̄2)]}.
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By comparing coefficients with (3.10), we get

g20 = 2τ∗D̄[−q1β + q̄∗1(q1β − q1q2p)],

g11 = 2τ∗D̄[−Re{q1}β + q̄∗1(Re{q1}β − Re{q1q̄2}p)],
g02 = 2τ∗D̄[−q̄1β + q̄∗1(q̄1β − q̄1q̄2p)],

g21 = 2τ∗D̄[(q̄∗1β − β)(W
(2)
11 (0) +W

(1)
11 (0)q1 +

W
(2)
20 (0)

2
+
W

(1)
20 (0)

2
q̄1)

−q̄∗1p(W
(3)
11 (0)q1 +W

(2)
11 (0)q2 +

W
(3)
20 (0)

2
q̄1 +

W
(2)
20 (0)

2
q̄2)].

The value of g21 is determined by W20(θ) and W11(θ), we still need to compute
them. From (3.3) and (3.6), we have

Ẇ (t, θ) = u̇t(θ)− 2Re{ż(t)q(θ)}
= A(0)W +R(0)(W + 2Re{z(t)q(θ)})− 2Re{g(z, z̄)q(θ)}
, A(0)W +H(z, z̄, θ),

where

H(z, z̄, θ) = R(0)(W + 2Re{z(t)q(θ)})− 2Re{g(z, z̄)q(θ)}.

By the definition of R(0), we get

H(z, z̄, θ) =

{
−2Re{g(z, z̄)q(θ)}, θ ∈ [−1, 0),
−2Re{g(z, z̄)q(0)}+ F (0, z, z̄), θ = 0

, H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · .

(3.11)

On the center manifold C0 near the origin, we have

Ẇ = Wz ż +Wz̄ ˙̄z = W20zż +W11z̄ż +W11z ˙̄z +W02z̄ ˙̄z + · · · .

It follows from (3.9) and (3.11) that

(A(0)− 2iw∗τ∗I)W20(θ) = −H20(θ), A(0)W11(θ) = −H11(θ). (3.12)

By (3.10) and (3.11) we have for θ ∈ [−1, 0),

H20(θ) = −g20q(θ)− ḡ20q̄(θ), H11(θ) = −g11q(θ)− ḡ11q̄(θ). (3.13)

From (3.12) and (3.13) for θ ∈ [−1, 0), we get

Ẇ20(θ) = 2iw∗τ∗W20(θ) + g20q(θ) + ḡ20q̄(θ), Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ).

A simple computation yields

W20(θ) =
ig20q(0)

τ∗w∗
eiw

∗τ∗θ +
iḡ20q̄(0)

3τ∗w∗
e−iw

∗τ∗θ + E1e
2iw∗τ∗θ,

W11(θ) = − ig11q(0)

τ∗w∗
eiw

∗τ∗θ +
iḡ11q̄(0)

τ∗w∗
e−iw

∗τ∗θ + E2,
(3.14)
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where E1, E2 ∈ R3 are bounded constant vectors.
In the following, we will compute E1 and E2. From (3.12), we have∫ 0

−1

dρ(θ, 0)W20(θ) = 2iw∗τ∗W20(0)−H20(0),∫ 0

−1

dρ(θ, 0)W11(θ) = −H11(0). (3.15)

By (3.11), we obtain

H20(0) = −g20q(0)− ḡ20q̄(0) + 2τ∗

 −q1β
q1β − q1q2p
0

 ,

H11(0) = −g11q(0)− ḡ11q̄(0) + 2τ∗

 −Re{q1}β
Re{q1}β − Re{q1q̄2}p
0

 . (3.16)

Substituting H20(0) defined by (3.16) and W20(θ) defined by (3.14) into (3.15),
and noting that

(iw∗τ∗I−
∫ 0

−1

eiw
∗τ∗θdρ(θ, 0))q(0) = 0,

(−iw∗τ∗I−
∫ 0

−1

e−iw
∗τ∗θdρ(θ, 0))q̄(0) = 0,

we derive

(2iw∗τ∗I−
∫ 0

−1

e2iw∗τ∗θdρ(θ, 0))E1 = 2τ∗

 −q1β
q1β − q1q2p
0

 .

Solving the above linear equation for E1, we have

E1 = 2

 2iw∗ + d1k
2 + d+ βu∗2 βu∗1 0

−βu∗2 2iw∗ + d2k
2 pu∗2

0 −ce−2iw∗τ∗
2iw∗ + d3k

2 + b

−1

×

 −q1β
q1β − q1q2p
0

 .

Similarly, from (3.14)-(3.16), we obtain

E2=2

 d1k
2+d+βu∗2 βu∗1 0

−βu∗2 d2k
2 pu∗2

0 −c d3k
2+b

−1 −Re{q1}β
Re{q1}β−Re{q1q̄2}p
0

 .

Substituting E1 and E2 into (3.14), we can calculate W20(θ) and W11(θ). Fur-
thermore, g21 can be determined. Therefore, all gij have been expressed in
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terms of parameters, and we can compute the following values:

c1(0) =
i

2τ∗w∗
(g11g20 − 2|g11|2 −

|g02|2

3
) +

g21

2
,

µ2 = − Re{c1(0)}
Re{s′(τ∗)}

, β2 = 2Re{c1(0)},

T2 = − Im{c1(0)}+ µ2Im{s′(τ∗)}
τ∗w∗

,

where µ2 determines the directions of the Hopf bifurcation, β2 determines the
stability of the bifurcating periodic solutions on the center manifold, and T2

determines the period of the bifurcating periodic solutions. Thus based on
these values, we have the following conclusion.

Theorem 3. At the threshold value τ∗, where τ∗ is denoted by (2.6). if µ2 >
0 (< 0), the direction of the Hopf bifurcation is forward (backward), that is, the
bifurcating periodic solutions exist for τ > τ∗ (τ < τ∗); if β2 < 0 (> 0), the
bifurcating periodic solutions are orbitally asymptotically stable (unstable); and
the period increases (decreases), if T2 > 0 (< 0).

4 Numerical results

In this section, we give some numerical results based on the formulae in Sec-
tion 2 and Section 3. The domain of (1.2) is confined to a square domain Ω =
[0, L]×[0, L] ⊂ R2 with L = 100. The wave number for this two-dimensional do-
main is thereby k = 2π(m/L, n/L), |k| = k = 2π

√
(m/L)2 + (n/L)2, m, n =

0, 1, · · · .
In order to the numerical simulations, we take the following values: λ =

1000, d = 0.1, β = 0.002, a = 5, p = 0.05, c = 0.2, b = 0.3, d1 = d2 = d3 =
0.1. For this particular choice, the positive uniform equilibrium is given by
(u∗1, u

∗
2, u
∗
3) = (3838, 80.2776, 53.5184).

According to (2.5)-(2.6), we obtain that (2.5) has the only positive root
z1 = 1.9425 and w = 1.3937, thus, the bifurcation threshold τ∗ = 0.3605. By
use of Theorem 2, the endemic equilibrium u∗ is asymptotically stable when
τ < τ∗, and unstable when τ > τ∗.

To check the stability and direction of the Hopf bifurcations, we compute the
first Lyapunov number c1(0) according to Theorem 3. For τ∗ = 0.3605, direct
calculation gives that c1(0) = −861.92 − 19.01i, that is, β2 > 0, which means
that the bifurcation periodic solution from the spatially uniform equilibrium is
stable, leading to spatially homogeneous distributions.

It is well-known that for a purely spatial homogeneous initial distribution,
the system always sustains homogeneous and the spatial pattern does not gen-
erate. So we take the initial conditions with an inhomogeneous spatial pertur-
bation. Our simulations indicate that the spiral pattern emerges. Moreover,
the number of the spiral pattern depends on the number of the defect-point
of the initial data. We recall that the defect-point (xc, yc) of the initial data
means that (xc, yc) satisfied that u1(xc, yc)|t=0 = u∗1, u2(xc, yc)|t=0 = u∗2 and
u3(xc, yc)|t=0 = u∗3.
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Here we present the results of two computer experiments differing in the
form of the initial conditions.

In the first case, the initial distribution of species is given in the following
form:

u1(x, y, t) = u∗1 − ε1(x− 0.1y − 50), (4.1)

u2(x, y, t) = u∗2 − ε2(y − 50), u3(x, y, t) = u∗3,

where ε1 = 2× 10−6, ε2 = 3× 10−6. In this case, the initial data contains only
one defect-point (xc, yc) = (55, 50). Snapshots of u1 are shown in Figure 1
(spatial patterns of u2 and u3 are qualitatively similar except for the early
stages of the process when the influence of the initial condition dominates).
One spiral emerges around the defect-point (Figure 1(A)). The spiral grows
gradually in (Figure 1(B),(C)). Eventually, the regular spatial spiral prevails
over the whole domain (Figure 1(D)).
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Figure 1. Example spatial patterns (snapshots of one spiral wave at different time for
(A) t=400, (B) t=600, (C) t=800, (D) t=1000).

In the second case, the initial distribution of species is given in the following
form:

u1(x, y, t) = u∗1 − ε1(x− 20)(x− 80)− ε2(y − 30)(y − 70), (4.2)

u2(x, y, t) = u∗2 − ε3(y − 45)− ε4(y − 50), u3(x, y, t) = u∗3,

where ε1 = 2 × 10−5, ε2 = 6 × 10−5, ε3 = 3 × 10−3, ε4 = 6 × 10−3. In this
case, the initial data contains two defect-points (xc, yc) = (95.735, 48.333) and
(xc, yc) = (4.262, 48.333).

Spatial patterns of u1 are shown in Figure 2. Two spiral emerges around
the defect-point (Figure 2(A)). The spiral grows gradually in (Figure 2(B),(C)).
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Figure 2. Example spatial patterns (snapshots of two spiral wave at different time for
(A) t=400, (B) t=600, (C) t=800, (D) t=1000).

Eventually, the regular spatial spiral prevails over the whole domain (Fig-
ure 2(D)).

The Hopf bifurcation theorem (Theorem 3) claims that the bifurcating pe-
riodic solutions are orbitally asymptotically stable if Re{c1(0)} < 0. Figure 3
illustrates the dynamical behavior of the spatio-temporal model in local place.
We find that the emerging oscillations are periodic with respect to time.
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Figure 3. Dynamical behavior of the spatio-temporal model in local place. The left
figure corresponds to the one spiral wave pattern. The right figure corresponds to the two

spiral wave pattern.

5 Discussions

In this paper, we utilize a reaction diffusion equations to model a viral infection
model with delayed immune response. By the bifurcation theory, we have shown
that the endemic equilibrium u∗ is locally asymptotically stable when the delay
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is absent, while in the case of appearance of delay the spatial pattern occurs.
Here the time delay is used as a bifurcation parameter. Through analyzing
the characteristic equation of the endemic equilibrium u∗, we have obtained
that the stability switches and Hopf bifurcation occurs when the delay passes
through the critical value. In non-spatial model (1.1) Wang et al. [26] proposed
that the combined effect of the strength of the lytic component, the time delay
of the immune response and the birth rate of susceptible host cells is to create
a rich dynamics, which includes the occurrence of stable periodic solutions and
chaotic dynamical behavior and without considering the influence of initial
conditions. However, we study that how the emerging spatial patterns are
sensitive to initial data in spatial model (1.2). Here we present the results of
two computer experiments differing in the form of the initial conditions (4.1)
and (4.2). Note that the appearance of the spirals is not induced by the initial
conditions. The center of each spiral is situated in a critical point (xc, yc)
satisfied that u1(xc, yc)|t=0 = u∗1, u2(xc, yc)|t=0 = u∗2 and u3(xc, yc)|t=0 = u∗3.
The distributions (4.1) and (4.2) contain one and two such points; for other
initial conditions, the number of spirals may be different. The formation of a
spiral structure in the spatial distribution of virus-immune dynamics may shed
new light on some old problems.
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