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1 Introduction

The problems of finding a zero point for monotone operators play an important
role in modern optimization and analysis. It can be related to many kinds of
important problems, such as convex minimization problems, equilibrium prob-
lems, variational inequality problems and others. In order to approximate the
solution to these problems, many authors have intensively studied the conver-
gence of such problems in several setting spaces. Martinet [15] first introduced
the proximal point algorithm(PPA) in a Hilbert space H; for starting x0 ∈ H,
a sequence {xn} is generated by

xn+1 = JArn(xn), ∀n ∈ N,

where JArn = (I+rnA)−1 is the resolvent operator of A with I being the identity
mapping and {rn} ⊂ (0,∞) is a regularization sequence.

Later, Rockafellar [18] has studied the proximal point algorithm which gen-
erates a sequence {xn} according to the following algorithm:

xn+1 = JArnxn + en, ∀n ∈ N,

where {en} is a sequence of errors and {rn} ⊂ (0,∞) is a sequence of regular-
ization parameters. Rockafellar proved that if A−1(0) 6= ∅, then the sequence
{xn} converges weakly to a solution of a zero point of A.

In 2000, Moudafi [16] introduced the viscosity approximation method for
finding fixed point of a nonexpansive mapping S in a Hilbert space; for given
x0 ∈ C, the sequence is defined by the following algorithm:

xn+1 = αnf(xn) + (1− αn)Sxn, ∀n ≥ 0,

where f : C → C is a contraction mapping and {αn} ⊆ (0, 1) satisfies some
condition. This sequence converges strongly to a fixed point of S.

After that, Xu [20] developed the viscosity approximation method in both
Hilbert and Banach spaces. Strong convergence theorems for zero points of
monotone operators were established in a Banach space. Moreover, many au-
thors constructed some approximation algorithms for some nonlinear varia-
tional inclusions in Hilbert spaces or Banach spaces by using the resolvent
operator technique. In [6,13,14], the PPA was extended to the case of sum of
two monotone operators.

In 2014, Eslamian [8] proposed Rockafellar’s proximal point algorithm for
finding a zero point of a finite family of monotone operators via viscosity
method in a Hilbert space. Eslamian [8] proposed the following algorithm:

xn+1 = an,0f(xn) + an,1J
T1
rn xn + an,2J

T2
rn xn + ...+ an,mJ

Tm
rn xn + en

for all n ≥ 1 where
∑m
i=0 an,i = 1 and for each i = 1, 2, ...,m, Ti, are a finite fam-

ily of monotone operators of H. If {an,i}, {en} and {rn} are positive sequences
and satisfy some conditions, then the sequence {xn} converges strongly.

Nowadays, several iterative methods have been proposed and analyzed to
find a common solution of two different fixed point problems, such as a fixed
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point problem of nonexpansive mapping, fixed point problem of variational
(inclusions) inequalities and other. However, there are a few iterative methods
for finding a common solution of two different infinite countable family of the
fixed point problems.

In this paper, motivated by [8, 16], we are interested in the problem for
finding a common solution of two different fixed point problems which are a
common element of a zero point for an infinite countable family of β-inverse
strongly accretive operators and a common fixed point of an infinite count-
able nonexpansive mappings in uniformly convex and 2−uniformly smooth Ba-
nach space. Our main result study these problems in uniformly convex and
2−uniformly smooth Banach space such as the spaces Lp, lp or Sobolev space
W p
m (where p ≥ 2), which is more general than Hilbert space. In addition,

our main theorem solves the problems for finding a common element of an
infinite family of accretive operators, which is more general than the prob-
lem of finding a common element of a finite family of monotone operators.
Consequently, the strong convergence theorem is obtained. Finally, we have
studied the convergence analysis of the proximal point algorithm. Also, some
illustrative numerical examples (using Matlab software) are presented.

2 Preliminaries

Let E be a real Banach space and E∗ be the dual space of E∗. Let 〈·, ·〉 be the
pairing between E and E∗. For all x ∈ E and x∗ ∈ E∗, let the value of x∗ at x
be denoted by 〈x, x∗〉. The normalized duality mapping J : E → 2E

∗
is defined

by
J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2, ‖x‖ = ‖x∗‖}, ∀x ∈ E.

A single-value normalized duality mapping is denoted by j, which means that a
mapping j : E → E∗ such that, for all u ∈ E, j(u) ∈ E∗ satisfies the following:

〈j(u), u〉 = ‖j(u)‖‖u‖, ‖j(u)‖ = ‖u‖.

If E = H is a Hilbert space, then J = I, where I is identity mapping. If E
is a smooth Banach space, then J is single-valued.

A Banach space E is said to satisfy Opial’s condition if for each sequence
{xn}∞n=0 in E such that {xn} converges weakly to some x in E, the inequality

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

holds for all y ∈ E with y 6= x. In fact, a Banach space with a weakly sequen-
tially continuous duality mapping has the Opial’s condition; see [9]. We known
that if E admits a weakly sequentially continuous duality mapping, then E is
smooth. It is well known that all Hilbert spaces and lp, (p > 1) satisfy Opial’s
condition, while Lp does not satisfy this condition except p = 2.

A Banach space E is called a strictly convex if it satisfies the following
condition

‖x‖ = ‖y‖ = ‖(1− λ)x+ λy‖, ∀x, y ∈ E and 0 < λ < 1 =⇒ x = y.

Math. Model. Anal., 21(1):95–118, 2016.
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Let S(E) = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. E is said to be
uniformly convex if for each ε ∈ (0, 2] there exists a constant δ = δ(ε) > 0 such

that for all x, y ∈ S(E), if ‖x − y‖ ≥ ε then

∥∥∥∥x+y2 ∥∥∥∥ ≤ 1 − δ. It is well known

that uniformly convex is strictly convex.
A Banach space E is said to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists for all x, y ∈ S(E). In this case, the norm ‖ · ‖ of E is said to be Gâteaux
differentiable norm.

The norm of E is said to be uniformly Gâteaux differentiable norm if for
each y ∈ S(E), the limit (2.1) is attained uniformly for all x ∈ S(E) and
it is said to be Freéchet differentiable if for each x ∈ S(E), the limit (2.1)
is attained uniformly for all y ∈ S(E). Moreover, it is said to be uniformly
smooth if the limit (2.1) is attained uniformly for all (x, y) ∈ S(E)× S(E). It
is well known that if the norm of E is smooth, then the duality mapping J is
single-valued and norm to weak∗ continuous on a bounded subset of E.

The modulus of smoothness of E is the function ρ : [0,∞)→ [0,∞) defined
by ρ(t) = sup{ 12 (‖x+ y‖+ ‖x− y‖)− 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ = t}. A Banach

space E is an uniformly smooth if and only if limt→0
ρ(t)
t = 0.

A Banach space E is said to be q-uniformly smooth if for 1 < q ≤ 2 be a
fixed real number, there exists a constant c > 0 such that ρ(t) ≤ ctq for all
t > 0. In the case q = 2, E is said to be 2-uniformly smooth if there exists a
constant c > 0 such that ρ(t) ≤ ct2 for all t > 0. Typical examples of both
uniformly convex and 2-uniformly smooth Banach space are lp, Lp, (p ≥ 2),
the Sobolev space W p

m, (p ≥ 2) and all Hilbert space.
Recall that every uniformly smooth space is smooth [5]. If E is a q-uniformly

smooth, then E is uniformly smooth. Hence 2 - uniformly smooth of Banach
space is a uniformly smooth and it is uniformly Gâteaux differentiable norms.
If E is uniformly Gâteaux differentiable norms, then the duality mapping J :
E → 2E

∗
is a single-valued and J is norm to weak∗ uniformly continuous on a

bounded subset of E.
Let C be a nonempty closed convex subset of a Banach space E and D ⊂ C,

then a mapping Q : C → D is said to be sunny if Q(x+ t(x−Q(x))) = Q(x)
whenever Qx+ t(x−Q(x)) ∈ C for all x ∈ C and t ≥ 0.

A mapping Q : C → C is called a retraction if Q2 = Q. Note that if a
mapping Q is a retraction, then Qz = z for all z ∈ R(Q) where R(Q) is the
range of Q. A subset D of Q is called a sunny nonexpansive retract of C if
there exists a sunny nonexpansive retraction from C onto D.

Lemma 1. [17] Let E be a smooth Banach space and let C be a nonempty
subset of E. Let Q : E → C be a retraction and let J be the normalized duality
mapping on E. Then, the following statements are equivalent:

(i) Q is sunny and nonexpansive;
(ii) ‖Qx−Qy‖2 ≤ 〈x− y, J(Qx−Qy)〉,∀x, y ∈ E;
(iii) ‖(x− y)− (Qx−Qy)‖2 ≤ ‖x− y‖2−‖Qx−Qy‖2; (iv) 〈x−Qx, J(y−

Qx)〉 ≤ 0,∀x ∈ E, y ∈ C.
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Lemma 2. [11] Let C be a nonempty closed convex subset of a uniformly
convex and uniformly smooth Banach space E and let S be a nonexpansive
mapping of C into itself with Fix(S) 6= ∅. Then, the set Fix(S) is a sunny
nonexpansive retract of C.

In 2004, Xu [20] studied the following continuous scheme:

xt = tf(xt) + (1− t)Sxt,
where f is a k-contraction and S is nonexpansive mapping. On a uniformly
smooth Banach space, Xu [20] proved that the sequence {xt} converges strongly
to a fixed point of S. If we defines mapping Q : Πc → Fix(S), where Πc denote
the set of k-contraction, by Q(f) := limt→∞ xt, then Q(f) solves the following
variational inequality:

〈(I − f)Q(f), j(Q(f)− p)〉 ≤ 0, ∀p ∈ Fix(S).

It well known that if E = H is a Hilbert space, then a sunny nonexpansive
retraction QC is coincident with the metric projection from E onto C, that is
QC = PC . Let C be a nonempty closed convex subset of a smooth Banach
space E and let x ∈ E and let x0 ∈ C. Then we have from Lemma 1 that
x0 = QCx if and only if 〈x − x0, J(y − x0)〉 ≤ 0 for all y ∈ C, where QC is a
sunny nonexpansive retraction from E onto C.

Let C be a nonempty closed convex subset of E. Recall the following defi-
nitions:

1. Let f : C → E be an operator. Then, T is called k-contraction if there
exists a coefficient k (0 < k < 1) such that

‖fx− fy‖ ≤ k‖x− y‖, ∀x, y ∈ C.

2. Let S : C → E be an operator. Then, S is called nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

3. Let A : C → E be an operator. Then, A is called accretive if there exists
j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 > 0, ∀x, y ∈ C.

4. Let A : C → E be an operator. Then, A is called β-inverse-strongly
accretive if there exists a constant β > 0 and j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ β‖Ax−Ay‖2, ∀x, y ∈ C.

An accretive operator A is said to be maximal accretive if there is no proper
accretive extension of A. If A is an m-accretive operator then A is said to be
maximal accretive [7]. In a real Hilbert space, an accretive operator is called
monotone. Moreover, A is called maximal monotone if R(I + rA) = H. In this
paper, we use A−1(0) to denote the set of zeros of A. For an accretive operator
A, we can define a nonexpansive single-valued mapping JAr : R(I+rA)→ D(A)
by JAr = (I + rA)−1 for each r > 0, which is called the resolvent of A. It is
known that 0 ∈ A(x)⇔ x ∈ Fix(JAr ).

In the sequel to give our main results, we need the following lemmas.

Math. Model. Anal., 21(1):95–118, 2016.
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Lemma 3. [4] Let C be a closed convex subset of a strictly convex Banach
space E. Let Ti : C → C be nonexpansive mappings for each i ≥ 1 such that⋂∞
i=1 Fix(Ti) is nonempty. Let {αi} be a real number sequence in (0, 1) such

that
∑∞
i=1 αi = 1. Then, the mapping Ś on C defined by Śx =

∑∞
i=1 αiTix for

all x ∈ C is well defined. Moreover, the mapping Ś is nonexpansive mapping
and Fix(Ś) =

⋂∞
i=1 Fix(Ti).

Remark 1. For each n ≥ 1, if we set Ti = SnJ
Ai
rn then Ti is nonexpansive

mappings for all i ≥ 1. Indeed, since Sn and JAi
rn are nonexpansive mappings,

then we obtain that

‖Tix− Tiy‖ = ‖SnJAi
rn x− SnJ

Ai
rn y‖, ∀n ∈ N

≤ ‖JAi
rn x− J

Ai
rn y‖, ∀i ∈ N ≤ ‖x− y‖.

Thus, Ti = SnJ
Ai
rn is a nonexpansive mapping for each n ≥ 1.

Lemma 4. [19] Let q ∈ (1,∞), λ ∈ [0, 1] and Wq(λ) := λq(1− λ) + λ(1− λ)q.
Let E be a real q-uniformly smooth Banach space. Then, there exist constants
cq > 0 such that for all x, y ∈ E, the following inequality holds:

‖λx+ (1− λ)y‖q ≤ λ‖x‖q + (1− λ)‖y‖q −Wq(λ)cq‖x− y‖q.

Lemma 5. Let E be a 2-uniformly smooth of a real Banach space. Then, for
each xi ∈ E, αi ∈ [0, 1], i ∈ N with

∑∞
i=1 αi = 1, we have

‖
∞∑
i=1

αixi‖2 ≤
∞∑
i=1

αi‖xi‖2. (2.2)

Proof. We will prove this lemma by the mathematical induction.
(1) If k = 2, by using Lemma 4, we have

‖α1x1 + α2x2‖2 ≤ α1‖x1‖2 + (1− α1)‖x2‖2.

Hence, the conclusion holds.
(2) Suppose that the inequality (2.2) holds for k = n− 1, i.e.,

‖
n−1∑
i=1

αixi‖2 ≤
n−1∑
i=1

αi‖xi‖2.

We want to show that the inequality holds for k = n. Let αn 6= 1 be chosen
in such a way that

∑∞
i=1 αi = 1. It follows from the induction hypotheses that

‖
n∑
i=1

αixi‖2 = ‖
n−1∑
i=1

αixi + αnxn‖2

= ‖(1− αn)

∑n−1
i=1 αixi

(1− αn)
+ αnxn‖2

≤ (1− αn)‖
∑n−1
i=1 αixi

(1− αn)
‖2 + αn‖xn‖2

≤
n−1∑
i=1

αi‖xi‖2 + αn‖xn‖2 ≤
n∑
i=1

αi‖xi‖2.
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This completes the proof. ut

Lemma 6. [19] Let E be a 2-uniformly smooth Banach space. Then, for any
x, y,∈ E, the following inequality holds

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉+ 2‖Ky‖2, j(x) ∈ J(x),

where K is the 2-uniformly smooth constant of E.

Lemma 7. [10] Let E be an real Banach space and J the normalized duality
map on E. Then, for any x, y,∈ E, the following inequality holds;

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉,∀j(x+ y) ∈ J(x+ y).

Lemma 8. Let C be a nonempty closed convex subset of a 2-uniformly smooth
Banach space E with the 2-uniformly smooth constant K. Let A be an β-inverse
strongly accretive operator of C into E with a constant β > 0. Then, we have

‖JAr x− JAr y‖2 ≤ ‖x− y‖2 − 2(
β

r
−K2)‖(x− JAr x)− (y − JAr y)‖2.

In particular, if r ∈ (0, β
K2 ), then JAr is a nonexpansive.

Proof. Let x, y ∈ C. By using Lemma 6, we obtain that

‖JAr x− JAr y‖2 = ‖(x− y)− (x− y) + JAr x− JAr y‖2

= ‖(x− y)− ((x− JAr x)− (y − JAr y))‖2

= ‖(x− y)− r(Ax−Ay)‖2

≤ ‖x− y‖2 − 2r〈Ax−Ay, j(x− y)〉+ 2K2r2‖Ax−Ay‖2

≤ ‖x− y‖2 − 2rβ‖Ax−Ay‖2 + 2K2r2‖Ax−Ay‖2

≤ ‖x− y‖2 − 2r(β −K2r)‖Ax−Ay‖2.

Moreover, if r ∈ (0, β
K2 ), we obtain that

‖JAr x− JAr y‖2 ≤ ‖x− y‖2 − 2r(α−K2r)‖1

r
(x− JAr x)− 1

r
(y − JAr y)‖2

≤ ‖x− y‖2 − 2r(β −K2r)
1

r2
‖(x− JAr x)− (y − JAr y)‖2

≤ ‖x− y‖2 − 2(
β

r
−K2)‖(x− JAr x)− (y − JAr y)‖2

≤ ‖x− y‖2.

Thus, if r ∈ (0, β
K2 ), then JAr is a nonexpansive mapping. ut

Lemma 9. [2] (The Resolvent Identity) For all r > 0, s > 0 and x ∈ E, then

JBr x = JBs

(
s

r
x+ (1− s

r
)JBr x

)
.

Math. Model. Anal., 21(1):95–118, 2016.
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Lemma 10. [3] (Demiclosed principle) Let C be a nonempty closed convex
subset of a uniformly convex Banach space E and S : C → C be a nonexpansive
mapping. Then I − S is demiclosed at zero, i.e., xn ⇀ x and xn − Sxn → 0
imply x = Sx.

Lemma 11. [1] Let C be a nonempty closed convex subset of a Banach space
E and let {S0, S1, S2, ...} be a sequence of mappings of C into itself. Suppose
that

∑∞
n=1 sup{‖Sn+1x − Snx‖ : x ∈ C} < ∞. Then, for each y ∈ C, {Sny}

strongly converges to some point of C. Moreover, if S is a mapping of C into
itself defined by Sy = limn→∞ Sny, ∀y ∈ C. Then, lim supn→∞{‖Sx − Snx‖ :
x ∈ C} = 0.

Lemma 12. [12] Assume that {an} is a sequence of nonnegative real numbers
satisfying the condition

an+1 ≤ (1− tn)an + tnbn + cn,∀n ≥ 0,

where {tn} is a sequence in (0, 1) such that limn→∞ tn = 0 and
∑∞
n→∞ tn =∞,

{bn} is a sequence such that lim supn→∞ bn ≤ 0 and {cn} is a positive number
sequence such that

∑∞
n→∞ cn <∞. Then, limn→∞ an = 0.

3 Main Result

Theorem 1. Let E be a uniformly convex and 2-uniformly smooth of real Ba-
nach space and let C be a nonempty closed convex subset of E which has a
weakly continuous duality mapping J from E to E∗. For any i ∈ N, let {Ai}∞i=1

be an infinite sequence of βi-inverse strongly accretive operators in E such that
β := infi≥1{βi} > 0 and

⋂∞
i=1D(Ai) ⊆ C ⊆

⋂∞
i=1R(I + rAi) for all r > 0. Let

{Sn}∞n=1 be an infinite sequence of nonexpansive mapping from C into itself
such that F := (

⋂∞
n=1 Fix(Sn))

⋂
(
⋂∞
i=1A

−1
i (0)) 6= ∅1. Let f : C → C be a

contraction mapping with the constant k ∈ (0, 1) and JAi
rn = (I + rnAi)

−1 be

a resolvent of Ai for each rn > 0. For given x1 ∈
⋂∞
i=1D(Ai), let {xn} be a

sequence defined by the following:

xn+1 = αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn + en, ∀n ≥ 1, (3.1)

where
∑∞
i=0 αn,i = 1, {αn,i} ⊂ (0, 1) for all i ≥ 0, {rn} ⊂ (0, β

K2 ) where K
is the 2-uniformly smooth constant and {en} ⊂ (0,∞). Suppose that these
sequences satisfy the following conditions:

(a) limn→∞ αn,0 = 0,
∑∞
n=1 αn,0 =∞ and

∑∞
n=1 |αn+1,0 − αn,0| <∞;

(b) for each i ≥ 1, limn→∞ αn,i = αi ∈ (0, 1);

(c)
∑∞
n=1 | rn+1 − rn |<∞ and limn→∞ rn = r > 0;

1 For example, we set Snx =
x

n+ 1
for all n ≥ 1 and Aix = ix for all i ≥ 1. Note the F 6= ∅

because 0 ∈
⋂∞

n=1 Fix(Sn) and 0 ∈
⋂∞

i=1 A
−1
i (0).
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(d)
∑∞
n=1 en <∞.

Assume that
∑∞
n=1 sup{‖Sn+1x − Snx‖ : x ∈ B} < ∞ for any bounded subset

B of C. Let S be a mapping of C into itself defined by Sx = limn→∞ Snx
for all x ∈ C such that Fix(S) =

⋂∞
n=1 Fix(Sn). Then, the sequence {xn}

strongly converges to a point p ∈ F, where p = QF f(p) and QF f is a sunny
nonexpansive retraction from E onto F .

Proof. Step 1. We want to show that {xn} is bounded. Let p ∈ F . Then
we have p ∈ Fix(Sn) for all n ≥ 1 and p ∈ A−1i (0) for all i ≥ 1. Since each
resolvent JAi

rn is a nonexpansive mapping for all i ≥ 1 and n ≥ 1, we obtain
that

‖xn+1 − p‖ = ‖αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn + en − p‖

≤ ‖αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn − p‖+ en

≤ αn,0‖f(xn)− p‖+

∞∑
i=1

αn,i‖SnJAi
rn xn − Snp‖+ en

≤ αn,0 (‖f(xn)− f(p)‖+ ‖f(p)− p‖) +

∞∑
i=1

αn,i‖JAi
rn xn − J

Ai
rn p‖+ en

≤ αn,0 (‖f(xn)− f(p)‖+ ‖f(p)− p‖) +

∞∑
i=1

αn,i‖xn − p‖+ en

≤ αn,0k‖xn − p‖+ (1− αn,0)‖xn − p‖+ αn,0‖f(p)− p‖+ en

= [αn,0k + (1− αn,0)]‖xn − p‖+ αn,0‖f(p)− p‖+ en

= [1− αn,0(1− k)]‖xn − p‖+ αn,0‖f(p)− p‖+ en

= [1− λn]‖xn − p‖+ λn
‖f(p)− p‖]

(1− k)
+ en,

where λn := αn,0(1− k). Then, it follows that

‖xn+1 − p‖ ≤ max
{
‖xn − p‖,

‖f(p)− p‖
1− k

}
+ en

≤ max
{
‖xn−1 − p‖,

‖f(p)− p‖
1− k

}
+ en−1 + en

≤ ... ≤ max
{
‖x0 − p‖,

‖f(p)− p‖
1− k

}
+

∞∑
n=1

en.

This implies that the sequence {xn} is bounded. Also, we obtain that {f(xn)},
{SnJAi

rn xn}, and {JAi
rn xn} are bounded for all i ≥ 1 because SnJ

Ai
rn and JAi

rn are
nonexpansive mappings for all i ≥ 1 and f is a contraction mapping.
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Step 2. We will show that limn→∞ ‖xn+1 − xn‖ = 0. This observes that

‖xn+2−xn+1‖ = ‖(αn+1,0f(xn+1)+

∞∑
i=1

αn+1,iSn+1J
Ai
rn+1

xn+1+en+1)

−(αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn + en)‖

≤ ‖αn+1,0f(xn+1)− αn,0f(xn)− αn+1,0f(xn) + αn+1,0f(xn)‖

+|en+1 − en|+ ‖
∞∑
i=1

αn+1,iSn+1J
Ai
rn+1

xn+1 −
∞∑
i=1

αn+1,iSnJ
Ai
rn xn

+

∞∑
i=1

αn+1,iSnJ
Ai
rn xn −

∞∑
i=1

αn,iSnJ
Ai
rn xn‖

= αn+1,0‖f(xn+1)− f(xn)‖+ | αn+1,0 − αn+1,0 | ‖f(xn)‖+ en+1 + en

+

∞∑
i=1

αn+1,i‖Sn+1J
Ai
rn+1

xn+1 − SnJAi
rn xn‖

+‖
∞∑
i=1

αn+1,iSnJ
Ai
rn xn −

∞∑
i=1

αn,iSnJ
Ai
rn xn‖

= αn+1,0k‖xn+1 − xn‖+ |αn+1,0 − αn+1,0|‖f(xn)‖+ en+1 + en

+

∞∑
i=1

αn+1,i‖Sn+1J
Ai
rn+1

xn+1 − SnJAi
rn xn‖

+‖
∞∑
i=1

αn+1,iSnJ
Ai
rn xn −

∞∑
i=1

αn,iSnJ
Ai
rn xn‖. (3.2)

For each i ≥ 1, by using Lemma 9, we have the following estimate

‖Sn+1J
Ai
rn+1

xn+1 − SnJAi
rn xn‖

= ‖Sn+1J
Ai
rn+1

xn+1 − Sn+1J
Ai
rn xn + Sn+1J

Ai
rn xn − SnJ

Ai
rn xn‖

≤ ‖JAi
rn+1

xn+1 − JAi
rn xn‖+ ‖Sn+1J

Ai
rn xn − SnJ

Ai
rn xn‖

≤ ‖JAi
rn+1

xn+1−JAi
rn+1

xn+JAi
rn+1

xn − JAi
rn xn‖+ ‖Sn+1J

Ai
rn xn − SnJ

Ai
rn xn‖

≤ ‖xn+1 − xn‖+ ‖JAi
rn (

rn
rn+1

xn − (1− rn
rn+1

)JAi
rn+1

xn)− JAi
rn xn‖

+‖Sn+1J
Ai
rn xn − SnJ

Ai
rn xn‖

≤ ‖xn+1−xn‖+ |
rn+1−rn
rn+1

| ‖JAi
rn+1

xn−xn‖+ ‖Sn+1J
Ai
rn xn−SnJ

Ai
rn xn‖.

Substituting it into the inequality (3.2), we obtain that

‖xn+2−xn+1‖ ≤ αn+1,0k‖xn+1 − xn‖+ |αn+1,0 − αn+1,0|‖f(xn)‖+en+1+en

+ ‖
∞∑
i=1

αn+1,iSnJ
Ai
rn xn −

∞∑
i=1

αn,iSnJ
Ai
rn xn‖+

∞∑
i=1

αn+1,i
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{‖xn+1−xn‖+ |
rn+1−rn
rn+1

| ‖JAi
rn+1

xn − xn‖+‖Sn+1J
Ai
rn xn−SnJ

Ai
rn xn‖}

= αn+1,0k‖xn+1 − xn‖+ |αn+1,0 − αn+1,0|‖f(xn)‖+ en+1 + en

+ ‖
∞∑
i=1

αn+1,iSnJ
Ai
rn xn −

∞∑
i=1

αn,iSnJ
Ai
rn xn‖+

∞∑
i=1

αn+1,i‖xn+1 − xn‖

+

∞∑
i=1

αn+1,i |
rn+1 − rn
rn+1

| ‖JAi
rn+1

xn − xn‖

+

∞∑
i=1

αn+1,i‖Sn+1J
Ai
rn xn − SnJ

Ai
rn xn‖

= (1−αn+1,0(1−k))‖xn+1−xn‖+|αn+1,0 − αn+1,0|‖f(xn)‖+ en+1 + en

+ ‖
∞∑
i=1

αn+1,iSnJ
Ai
rn xn −

∞∑
i=1

αn,iSnJ
Ai
rn xn‖+

∞∑
i=1

αn+1,i |
rn+1 − rn
rn+1

|

× ‖JAi
rn+1

xn − xn‖+

∞∑
i=1

αn+1,i‖Sn+1J
Ai
rn xn − SnJ

Ai
rn xn‖

= (1− αn+1,0(1− k))‖xn+1 − xn‖+ cn, (3.3)

where

cn := |αn+1,0 − αn+1,0|‖f(xn)‖+ en+1 + en

+ ‖
∞∑
i=1

αn+1,iSnJ
Ai
rn xn −

∞∑
i=1

αn,iSnJ
Ai
rn xn‖+

∞∑
i=1

αn+1,i |
rn+1 − rn
rn+1

|

× ‖JAi
rn+1

xn − xn‖+

∞∑
i=1

αn+1,i‖Sn+1J
Ai
rn xn − SnJ

Ai
rn xn‖.

Since {xn}, {JAi
rn xn} and {SnJAi

rn xn} are bounded sequences for all i ≥ 1,
then we can find the positive real numbers Li and Mi such that

‖SnJAi
rn xn‖ ≤ Li ≤ max

i≥1
{Li} := L, ‖JAi

rn xn − xn‖ ≤Mi ≤ max
i≥1
{Mi} := M.

Since limn→∞ rn = r > 0, thus limn→∞
1
rn

exists and so there is a positive

real number r′ such that | 1rn | < r′ for all n ∈ N. Then, we obtain that

∞∑
n=1

(‖
∞∑
i=1

αn+1,iSnJ
Ai
rn xn −

∞∑
i=1

αn,iSnJ
Ai
rn xn‖)

≤
∞∑
n=1

(‖
∞∑
i=1

αn+1,i −
∞∑
i=1

αn,i‖‖SnJAi
rn xn‖)

≤ L
∞∑
n=1

‖
∞∑
i=1

αn+1,i −
∞∑
i=1

αn,i‖

= L

∞∑
n=1

|(1− αn+1,0)− (1− αn,0)| = L

∞∑
n=1

|αn+1,0 − αn,0| <∞ (3.4)
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and

∞∑
n=1

(

∞∑
i=1

αn+1,i |
rn+1−rn
rn+1

| ‖JAi
rn+1

xn−xn‖)≤
∞∑
n=1

(

∞∑
i=1

αn+1,ir
′
M |rn+1−rn|)

= r
′
M

∞∑
n=1

|rn+1 − rn|(
∞∑
i=1

αn+1,i) <∞. (3.5)

By the boundness of {JAi
rn xn} and our assumptions, we observe that

∞∑
n=1

(

∞∑
i=1

αn+1,i‖Sn+1J
Ai
rn xn − SnJ

Ai
rn xn‖)

≤
∞∑
n=1

(

∞∑
i=1

αn+1,i sup{‖Sn+1z − Snz‖ : z ∈ {JAi
rn xn}})

=

∞∑
n=1

sup{‖Sn+1z − Snz‖ : z ∈ {JAi
rn xn}}(

∞∑
i=1

αn+1,i) <∞. (3.6)

Since
∑∞
n=1 |αn+1,0 − αn,0| < ∞,

∑∞
n=1 en < ∞ and {f(xn)} is bounded, by

(3.4), (3.5) and (3.6), then we see that the series
∑∞
n=1 cn < ∞. By using

Lemma 12 and (3.3), we conclude that

lim
n→∞

‖xn+1 − xn‖ = 0.

Step 3. We will show that limn→∞ ‖xn − JAi
r xn‖ = 0 for each i ≥ 1 and

r > 0 where r = limn→∞ rn. By using Lemma 5 and Lemma 8, we obtain that

‖xn+1 − p‖2 = ‖αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn + en − p‖2

= ‖(αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn − p) + en‖2

= ‖αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn − p‖

2

+ 2en‖αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn − p‖+ e2n

= ‖αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn − p‖

2 + gn

= ‖αn,0(f(xn)− p) +

∞∑
i=1

αn,iSnJ
Ai
rn xn −

∞∑
i=1

αn,ip‖2 + gn

≤ αn,0‖f(xn)− p‖2 +

∞∑
i=1

αn,i‖JAi
rn xn − J

Ai
rn p‖

2 + gn
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≤ αn,0‖f(xn)− p‖2 +

∞∑
i=1

αn,i{‖xn − p‖2

− 2(
β

rn
−K2)‖(xn − JAi

rn xn)− (p− JAi
rn p)‖

2}+ gn

= αn,0‖f(xn)− p‖2 + (1− αn,0)‖xn − p‖2

−
∞∑
i=1

2αn,i(
β

rn
−K2)‖(xn − JAi

rn xn)‖2 + gn, (3.7)

where gn = 2en‖αn,0f(xn) +
∑∞
i=1 αn,iSnJ

Ai
rn xn − p‖+ e2n. Since {f(xn)} and

{SnJAi
rn xn} are bounded sequences,

∑∞
i=1 αn,i < 1 and limn→∞ en = 0, we

have limn→∞ gn = 0. From (3.7), we get that

∞∑
i=1

2αn,i(
β

rn
−K2)‖(xn − JAi

rn xn)‖2

≤ αn,0‖f(xn)− p‖2 + (1− αn,0)‖xn − p‖2 − ‖xn+1 − p‖2 + gn

≤ (1− αn,0)‖xn − p‖2 − ‖xn+1 − p‖2 + αn,0‖f(xn)− p‖2 + gn

≤ ‖xn − xn+1‖‖xn − p+ xn+1 − p‖+ αn,0‖f(xn)− p‖2 + gn. (3.8)

Let us fix i ∈ N. Since αn,i ⊂ (0, 1) for all i ∈ N and 2( βrn −K
2) > 0. Then,

by (3.8), we get that

2αn,i(
β

rn
−K2)‖xn − JAi

rn xn‖
2 ≤

∞∑
i=1

2αn,i(
β

rn
−K2)‖(xn − JAi

rn xn)‖2

≤ ‖xn − xn+1‖‖xn − p+ xn+1 − p‖+ αn,0‖f(xn)− p‖2 + gn. (3.9)

Since {xn} and {f(xn)} are bounded sequences, limn→∞ gn = 0, limn→∞ αn,0,
limn→∞ αn,i = αi for each i ≥ 1 and by (3.9), we conclude that

lim
n→∞

‖xn − JAi
rn xn‖ = 0. (3.10)

By using Lemma 9 we note that

‖xn − JAi
r xn‖ ≤ ‖xn − JAi

rn xn‖+ ‖JAi
rn xn − J

Ai
r xn‖

= ‖xn−JAi
rn xn‖+‖J

Ai
r

(
r

rn
xn+(1− r

rn
)JAi
rn xn

)
−JAi

r xn‖

≤ ‖xn − JAi
rn xn‖+ ‖

(
r

rn
xn − (1− r

rn
)JAi
rn xn

)
− xn‖

= ‖xn − JAi
rn xn‖+ | 1−

r

rn
|‖ JAi

rn xn − xn‖

≤ ‖xn − JAi
rn xn‖+ ‖JAi

rn xn − xn‖ = 2‖xn − JAi
rn xn‖. (3.11)

Hence, by (3.10), we observe that

lim
n→∞

‖xn − JAi
r xn‖ = 0. (3.12)
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Step 4. We will show that there exists a unique point p ∈ F such that

lim sup
n→∞

〈f(p)− p, j(xn − p)〉 ≤ 0, p = QF f(p).

Since {xn} is bounded, there exists a subsequence {xnm} of {xn} which
converges weakly to x̄. To prove this, we divide to 4 steps.

Step 4.1. We will show that x̄ ∈
⋂∞
i=1A

−1
i (0) 6= ∅. Note that

‖xnm
− JAi

r x̄‖ ≤ ‖xnm
− JAi

r xnm
‖+ ‖JAi

r xnm
− JAi

r x̄‖
≤ ‖xnm

− JAi
r xnm

‖+ ‖xnm
− x̄‖.

This implies that

lim sup
m→∞

‖xnm
− JAi

r x̄‖ ≤ lim sup
m→∞

‖xnm
− x̄‖. (3.13)

Since a smooth Banach space with a weakly sequential continuous duality
mapping j has the Opial’s property. Then, by using (3.13), we obtain that
JAi
r x̄ = x̄ for all i ∈ N. This is complete the proof because

JAi
r x̄ = x̄, ∀i ∈ N, ⇐⇒ x̄ ∈ Fix(JAi

r ), ∀i ∈ N
⇐⇒ x̄ ∈ A−1i (0), ∀i ∈ N

⇐⇒ x̄ ∈
∞⋂
i=1

A−1i (0).

Step 4.2. Next, we will show that x̄ ∈ Fix(S) =
⋂∞
n=1 Fix(Sn). Note that

‖SnJAi
rn xn − J

Ai
rn xn‖ ≤ ‖SnJ

Ai
rn xn − xn+1‖+ ‖xn+1 − xn‖+ ‖xn − JAi

rn xn‖.

We observe that

‖xn+1 − SnJAi
rn xn‖ = ‖αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn + en − SnJAi

rn xn‖

≤ ‖αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn − SnJ

Ai
rn xn‖+ en

= ‖αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn −

( ∞∑
i=0

αn,i

)
SnJ

Ai
rn xn‖+ en

= ‖αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn − (αn,0 +

∞∑
i=1

αn,i)SnJ
Ai
rn xn‖+ en

≤ αn,0‖f(xn)− SnJAi
rn xn‖+ en.

Since {f(xn)} and {SnJAi
rn xn} are bounded sequences, by condition (a) and

(d), we obtain that

lim
n→∞

‖SnJAi
rn xn − xn‖ = 0. (3.14)
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Note that

‖Sxn − xn‖ ≤ ‖Sxn − SJAi
rn xn‖+ ‖SJAi

rn xn − SnJ
Ai
rn xn‖+ ‖SnJAi

rn xn − xn‖
≤ ‖xn − JAi

rn xn‖+ ‖SJAi
rn xn − SnJ

Ai
rn xn‖+ ‖SnJAi

rn xn − xn‖.

By using Lemma 11, (3.12) and (3.14), we obtain that

lim
n→∞

‖Sxn − xn‖ = 0.

Since xnm ⇀ x̄, by Lemma 10, we have x̄ ∈ Fix(S) =
⋂∞
n=1 Fix(Sn).

Step 4.3. We will show that there exists a unique point p ∈ F and p =
QF f(p). Indeed, since F := (

⋂∞
n=1 Fix(Sn))

⋂
(
⋂∞
i=1A

−1
i (0)) 6= ∅ is closed and

convex. By using Lemma 2, we obtain that the set F is a sunny nonexpansive
retract from E onto F , i.e., QF is well defined. We see that QF f is contraction
of C into itself. In fact, since QF is a nonexpansive mapping,

‖QF (f)(x)−QF (f)(y)‖ ≤ ‖f(x)− f(y)‖ ≤ k‖x− y‖,

where k ∈ (0, 1). By Banach contraction principle, there exists a unique element
p ∈ F such that p = QF f(p). That is x̄ = p = QF f(p) ∈ F .

Step 4.4. We will show that lim supn→∞〈f(p)− p, j(xn − p)〉 ≤ 0.

Choose a subsequence {xnm
} of {xn} such that

lim sup
n→∞

〈f(p)− p, j(xn − p)〉 = lim
n→∞

〈f(p)− p, j(xnm − p)〉.

Since {xn} is bounded, there exists a subsequence {xnmj
} of {xnm

} which

xnmj
⇀ x̄. Without loss of generality, we can assume that xnm

⇀ x̄. It follows

that

lim sup
n→∞

〈f(p)− p, j(xn − p)〉 = lim
m→∞

〈f(p)− p, j(xnm
− p)〉

= 〈f(p)− p, j(x̄− p)〉 ≤ 0.

Step 5. Finally, we will show that xn → p.

By using Lemma 7 and Lemma 5, we have

‖xn+1 − p‖2 = ‖αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn + en − p‖2

≤ ‖
∞∑
i=1

αn,iSnJ
Ai
rn xn −

∞∑
i=1

αn,ip+ en‖2 + 2αn,0〈f(xn)− p, j(xn+1 − p)〉

≤ ‖
∞∑
i=1

αn,iSnJ
Ai
rn xn −

∞∑
i=1

αn,ip‖2 + 2αn,0〈f(xn)− p, j(xn+1 − p)〉

+ 2en‖
∞∑
i=1

αn,iSnJ
Ai
rn xn −

∞∑
i=1

αn,ip‖+ e2n
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≤ ‖
∞∑
i=1

αn,i(SnJ
Ai
rn xn − p)‖

2 + hn + 2αn,0〈f(xn)− p, j(xn+1 − p)〉

≤ (1− αn,0)2‖xn − p‖2 + hn + 2αn,0〈f(xn)− f(p), j(xn+1 − p)〉
+2αn,0〈f(p)− p, j(xn+1 − p)〉

≤ (1− αn,0)2‖xn − p‖2 + hn + 2αn,0‖f(xn)− f(p)‖‖xn+1 − p‖
+2αn,0〈f(p)− p, j(xn+1 − p)〉

≤ (1− αn,0)2‖xn − p‖2 + hn + 2αn,0k‖xn − p‖‖xn+1 − p‖
+2αn,0〈f(p)− p, j(xn+1 − p)〉

≤ (1− αn,0)2‖xn − p‖2 + hn + αn,0k{‖xn − p‖2 + ‖xn+1 − p‖2}
+2αn,0〈f(p)− p, j(xn+1 − p)〉,

where hn = 2en‖
∑∞
i=1 αn,iSnJ

Ai
rn xn −

∑∞
i=1 αn,ip‖+ e2n. This implies that

‖xn+1 − p‖2 ≤
(1− αn,0)2 + αn,0k

1− αn,0k
‖xn − p‖2

+
2αn,0

1− αn,0k
〈f(p)− p, j(xn+1 − p)〉+

hn
(1− αn,0k)

=
1− 2αn,0 + αn,0k

1− αn,0k
‖xn − p‖2 +

α2
n,0

1− αn,0k
‖xn − p‖2

+
2αn,0

1− αn,0k
〈f(p)− p, j(xn+1 − p)〉+

hn
(1− αn,0k)

≤ (1− 2(1− k)αn,0
1− αn,0k

)‖xn − p‖2 +
2(1− k)αn,0

1− αn,0k
(
αn,0M

2(1− k)

+
1

1− k
〈f(p)− p, j(xn+1 − p)〉) +

hn
(1− αn,0k)

≤ (1− tn)‖xn − p‖2 + tnbn + c′n,

where M̃ = sup{‖xn − p‖2 : n ≥ 0}, tn =
2(1−k)αn,0

1−αn,0k
, bn =

αn,0M̃
2(1−k) + 1

1−k 〈f(p)−
p, j(xn+1− p〉, and c′n = hn

(1−αn,0)
. By assumptions, we see that limn→∞ tn = 0,∑∞

n=1 tn =∞ and
∑∞
n=1 c

′
n <∞. By step 4.4, so we have lim supn→∞ bn ≤ 0.

Therefore, by using Lemma 12, we obtain that the sequence {xn} strongly
converges to p = QF f(p). This completes the proof. ut

Remark 2. We given some examples concerning of the sequence {αn,0} and
{αn,i} that satisfy the control condition of Theorem 1 as follows:

(1) if αn,0 :=
1

n
and αn,i :=

(
1− 1

n

) 1

2i
, n ≥ 1.

It easy to see that

lim
n→∞

αn,0 = lim
n→∞

1

n
= 0,

∞∑
n=1

αn,0 =

∞∑
n=1

1

n
=∞,
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∞∑
n=1

∣∣αn+1,0 − αn,0
∣∣ =

∞∑
n=1

∣∣∣ 1

n+ 1
− 1

n

∣∣∣ ≤ ∞∑
n=1

1

n2
<∞.

For each i ≥ 1, we have

lim
n→∞

αn,i = lim
n→∞

(
1− 1

n

) 1

2i
=

1

2i
∈ (0, 1).

Since
∑∞
i=1

1

2i
= 1, then

∞∑
i=0

αn,i = αn,0 +

∞∑
i=1

αn,i =
1

n
+

∞∑
i=1

(
1− 1

n

) 1

2i

=
1

n
+
(

1− 1

n

) ∞∑
i=1

1

2i
= 1.

(2) if αn,0 :=
1

n+ 1
and αn,i := (1− 1

n+ 1
)

1

2i
, n ≥ 1.

(3) if αn,0 :=
1√
n

and αn,i := (1− 1√
n

)
1

2i
, n ≥ 1, i ≥ 1.

(4) if αn,0 :=
1

np
and αn,i := (1− 1

np
)

1

2i
, n ≥ 1, i ≥ 1, p ≤ 1.

By setting Sn ≡ I for all n ∈ N in Theorem 1, we obtain the following
Corollary:

Corollary 1. Let E be a uniformly convex and 2-uniformly smooth of real Ba-
nach space and let C be a nonempty closed convex subset of E which has
a weakly continuous duality mapping J from E to E∗. For any i ∈ N, let
{Ai}∞i=1 be an infinite sequence of βi-inverse strongly accretive operators in E

such that β := infi≥1{βi} > 0 and
⋂∞
i=1D(Ai) ⊂ C ⊂

⋂∞
i=1R(I + rAi) for all

r > 0. Let f : C → C be a contraction mapping with a constant k ∈ (0, 1) and
JAi
rn = (I + rnAi)

−1 be a resolvent of Ai for rn > 0. For given x1 ∈ C, let {xn}
be a sequence defined by the following:

xn+1 = αn,0f(xn) +

∞∑
i=1

αn,iJ
Ai
rn xn + en, ∀n ∈ N,

where
∑∞
i=0 αn,i = 1, {αi} ⊂ (0, 1) for all i ≥ 0, {rn} ⊂ (0, β

K2 ) where K is the
2-uniformly smooth constant, and {en} ⊂ (0,∞). Suppose that the following
conditions hold:

(a) limn→∞ αn,0 = 0,
∑∞
n=1 αn,0 =∞ and

∑∞
n=1 |αn+1,0 − αn,0| <∞;

(b) for each i ≥ 1, limn→∞ αn,i = αi ∈ (0, 1);

(c)
∑∞
n=1 | rn+1 − rn |<∞ and limn→∞ rn = r > 0;

(d)
∑∞
n=1 en <∞.
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Then, the sequence {xn} strongly converges to a point p ∈ F, where p =
QF f(x).

If we put JAi
rn ≡ I for all i ∈ N, n ∈ N in Theorem 1, we obtain the following

Corollary:

Corollary 2. Let E be a uniformly convex and 2-uniformly smooth of real Ba-
nach space and let C be a nonempty closed convex subset of E which has
a weakly continuous duality mapping j from E to E∗. For any n ∈ N, let
{Sn}∞n=1 be an infinite sequence of nonexpansive mapping from C onto itself
such that F :=

⋂∞
n=1 Fix(Sn) 6= ∅. Let f : C → C be a contraction mapping

with a constant k ∈ (0, 1). For given x1 ∈ C, let {xn} be a sequence defined
by the following:

xn+1 = αnf(xn) + (1− αn)Snxn + en, ∀n ≥ 1.

If sequence {αn} ⊂ (0, 1) and {en} ⊂ (0,∞) are satisfy the following conditions:

(a) limn→∞ αn = 0,
∑∞
n=1 αn =∞ and

∑∞
n=1 |αn+1 − αn| <∞;

(b)
∑∞
n=1 en <∞.

Assume that
∑∞
n=1 sup{‖Sn+1x − Snx‖ : x ∈ B} < ∞ for any bounded

subset B of C. Let S be a mapping of C into itself defined by Sx = limn→∞ Snx
for all x ∈ C and suppose that Fix(S) =

⋂∞
n=1 Fix(Sn). Then, the sequence

{xn} converges strongly to a point p ∈ F, where p = QF f(x) and QF f(x) is
sunny nonexpansive retraction from E onto F .

It is well known that in a Hilbert space, the 2-uniformly smooth constant
K = 1. If we set E = H in Theorem 1, we obtain the following Corollary:

Corollary 3. Let C be a nonempty close convex subset of a Hilbert space H.
For any i ∈ N, let {Ai}∞i=1 be an infinite sequence of βi-inverse strongly ac-

cretive operators in H such that β := infi≥1{βi} > 0 and
⋂∞
i=1D(Ai) ⊆ C ⊆⋂∞

i=1R(I+rAi) for all r > 0. Let {Sn}∞n=1 be an infinite sequence of nonexpan-
sive mapping from C onto itself such that F :=

⋂∞
n=1 Fix(Sn)

⋂⋂∞
i=1A

−1
i (0) 6=

∅. Let f : C → C be a contraction mapping with a constant k ∈ (0, 1) and
JAi
rn = (I+rnAi)

−1 be a resolvent of Ai for rn > 0. For given x1 ∈
⋂∞
i=1D(Ai),

let {xn} be a sequence defined by the following:

xn+1 = αn,0f(xn) +

∞∑
i=1

αn,iSnJ
Ai
rn xn + en, ∀n ≥ 1,

where
∑∞
i=0 αn,i = 1 and sequence {αn,i} ⊂ (0, 1) for i ≥ 0. If sequence

{rn} ⊂ (0, β), and {en} ⊂ (0,∞) are satisfy the following conditions:

(a) limn→∞ αn,0 = 0,
∑∞
n=1 αn,0 =∞ and

∑∞
n=1 |αn+1,0 − αn,0| <∞;

(b) for each i ≥ 1, limn→∞ αn,i = αi ∈ (0, 1);

(c)
∑∞
n=1 | rn+1 − rn |<∞ and limn→∞ rn = r > 0;
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(d)
∑∞
n=1 en <∞.

Assume that
∑∞
n=1 sup{‖Sn+1x − Snx‖ : x ∈ B} < ∞ for any bounded

subset B of C. Let S be a mapping of C into itself defined by Sx = limn→∞ Snx
for all x ∈ C and suppose that Fix(S) =

⋂∞
n=1 Fix(Sn). Then, the sequence

{xn} strongly converges to a point p ∈ F and p = PF f(x) and PCf(x) is a
metric projection from H onto F .

Remark 3. We note that Theorem 1 improves and extends in the following
aspects:

(a) Our result can be extend [8, Theorem 3.1] from a Hilbert space to a uni-
formly convex and 2-uniformly smooth Banach space.

(b) Our result can be extend from solving the problems of finding a common
element of a finite sequence of monotone operators [8, Theorem 3.1] to
solving the problems of finding a common element of an infinite family of
inverse-strongly accretive operators.

(c) The iterative scheme (3.1) in Theorem 1 is different from Theorem 3.1 in [8]
because the JAi

rn is replace by the composite mapping SnJ
Ai
rn .

4 Numerical examples

Let us show numerical example to demonstrate the performance and conver-
gence of our main result as follows.

Example 1. Let E = R and C = [−1, 000, 1, 000]. Define an infinite sequence
of mappings Sn : C → C and operators Ai : R→ R by

Sn(x) =
x− 1

n+ 1
+ 1 for all n ∈ N

and

Ai(x) =
i

i+ 1
(x− 1) for all i ∈ N.

It is not hard to see that Sn are nonexpansive mappings for all n ∈ N such
that

∞∑
n=1

sup{‖Sn+1x− Snx‖ : x ∈ B} <∞

for any bounded subset B of C and Ai are βi-inverse strongly accretive opera-

tors where βi = 1 +
1

i
for all i ∈ N. So β := infi≥1{βi} = 1 > 0. Moreover, we

see that the resolvent of each Ai is

JAi
rn (x) = (I + rnAi)

−1(x) =
(1 + i)x+ rni

1 + i+ rni
for rn > 0.

Note that the resolvent JAi
rn are nonexpansive mappings for fixed i ∈ N.

Math. Model. Anal., 21(1):95–118, 2016.
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By the definition of Sn and Ai, we observe that 1 ∈ F . The Theorem 1
certifies that the sequence xn in Algorithm 1 converses to the point in F. That
is xn → 1.

Suppose that a contraction mapping f : C → C is defined by

f(x) =
x+ 1

2
for all x ∈ C

and two sequences are defined by

αn,i =


1

n+ 1
, i = 0,(

1− 1

n+ 1

) 1

2i
, i ≥ 1,

{rn} =
{n+ 1

2n

}
, n ≥ 0, i ≥ 1.

It is easy to see that these sequences satisfy all of conditions in Theorem 1.
Now, the following algorithm is presented for finding a proximal point x ∈ F
as in Theorem 1.

Algorithm 1 Proximal point algorithm via viscosity approximation method

Step 1. Choose x0 ∈ C arbitrarily and let n = 0.
Step 2. Compute the series value given by

yn =

∞∑
i=1

αn,iSnJ
Ai
rn xn.

Step 3. Update xn+1 = αn,0f(xn) + yn.
Step 4. Put n := n+ 1 and return to Step 1.

In this experiment, we first test the effect of initial points on solution by
choosing three initial points x0 = 50, 10,−20. The behavior of xn for Algorithm
1 is indicated in Figure 1.
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Figure 1. Behavior of xn for the different initial point x0 = 50, 10,−20.

This shows that for different initial points, each sequence xn converges to
the same solution, i.e., 1 ∈ F as solution of the example.
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Next, we would examine the effect of αn,i to rate of convergence and solution
by setting three different sequences as follows;

αn,i =


1

n+ 1
, i = 0

(1− 1

n+ 1
)

1

2i
, i ≥ 1

,

α
′

n,i =


1

n+ 1
, i = 0

(1− 1

n+ 1
)

2

3i
, i ≥ 1

,

α
′′

n,i =


1

3n+ 1
, i = 0

(1− 1

3n+ 1
)

1

2i
, i ≥ 1

with the same initial point x0 = 30 and f(x) = (x+ 1)/2. By Algorithm 1, xn
converges to 1 and the behavior of xn is showed in Figure 2.
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Figure 2. Behavior of xn for the different sequences αn,i, α
′
n,i and α

′′
n,i.

Moreover, Figure 3 shows that by using Algorithm 1, the sequence xn also
converges to 1 for the different contraction functions f(x) = 0.2(x+1), 0.5(x+1)
and 0.8(x + 1) with the same initial point x = −10, αn,0 = 1

n+1 and αn,i =

(1− 1
n+1 ) 1

2i . The presented results show that f(x) = 0.5(x+ 1) has the fastest
rate of convergence.

The figures 1–3 show that the sequence xn converge to the same value for
the differences of initial points, sequences αn,i and contraction functions. The
values of the sequence xn on the test of the figures 1–3 are shown on Table 1.
We note that the differences of initial points and parameter sequences αn,i do
not significant indicate the rates of convergence. However, the constants of
contraction functions have likely effect on the rates of convergence.
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Figure 3. Behavior of xn for the different contraction functions
f(x) = 0.2(x+ 1), 0.5(x+ 1) and 0.8(x+ 1).

Table 1. The values of the sequence xn on the test.

n

f(x) = (x+ 1)/2

αn,0 = 1
n+1

αn,i = (1− 1
n+1

) 1
2i

different x0

f(x) = (x+ 1)/2

x0 = 30

different α

αn,0 = 1/(n+ 1)

αn,i = (1− 1
n+1

) 1
2i

x0 = −10

different f(x)

50 10 -20 αn,i α
′
n,i α

′′
n,i

2(x+1)
10

5(x+1)
10

8(x+1)
10

1 28.52 6.055 -10.79 17.29 17.54 18.18 -3.828 -5.178 -6.528
2 11.89 3.001 -3.668 7.447 7.633 7.289 -0.628 -1.445 -2.533
3 4.301 1.606 -0.415 2.953 3.035 2.658 0.479 0.259 -0.185
4 1.809 1.149 0.653 1.479 1.505 1.341 0.784 0.819 0.759
5 1.166 1.031 0.929 1.098 1.105 1.058 0.866 0.963 1.039
6 1.029 1.005 0.987 1.017 1.019 1.008 0.896 0.993 1.094
7 1.005 1.001 0.998 1.003 1.003 1.001 0.913 0.999 1.093
8 1.001 1.00 1.000 1.000 1.000 1.000 0.924 1.000 1.083
9 1.000 1.000 1.000 1.000 1.000 1.000 0.933 1.000 1.073
10 1.000 1.000 1.000 1.000 1.000 1.000 0.940 1.000 1.065
11 1.000 1.000 1.000 1.000 1.000 1.000 0.945 1.000 1.058
12 1.000 1.000 1.000 1.000 1.000 1.000 0.950 1.000 1.053
...

...
...

...
...

...
...

...
...

...
47 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.012
48 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
49 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.003
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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