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Abstract. We investigate Navier-Stokes (NS) and the continuity equations in Carte-
sian coordinates and Eulerian description for the two dimensional incompressible non-
Newtonian fluids. Due to the non-Newtonian viscosity we consider the Ladyzenskaya
model with a non-linear velocity dependent stress tensor. The key idea is the multi-
dimensional generalization of the well-known self-similar Ansatz, which has already
been used for non-compressible and compressible viscous flow studies. Geometrical in-
terpretations of the trial function are also discussed. Our recent results are compared
to the former Newtonian ones.
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1 Introduction

Dynamical analysis of viscous fluids is a never-ending crucial problem. A large
part of real fluids do not strictly follow Newton’s law and are aptly called non-
Newtonian fluids. In most cases, fluids can be described by more complicated
governing rules, which means that the viscosity has some additional density,
velocity or temperature dependence or even all of them. General introductions
to the physics of non-Newtonian fluid can be found in [2,12]. In the following,
we will examine the properties of a Ladyzenskaya type non-Newtonian fluid
[3, 21]. Additional temperature or density dependent viscosities will not be
considered in the recent study. There are numerous analytical studies available
for non-Newtonian flows, which shows some similarity to our recent problem [7,
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8,15,16,17,20,23]. The heat transfer in the boundary layer of a non-Newtonian
Ostwald-de Waele power law fluid was investigated with self-similar Ansatz
from one of us in details as well [11]. We use the two-dimensional generalization
of the well-known self-similar Ansatz [4, 22, 25], which was already used to
investigate the three dimensional non-compressible Newtonian NS [5] and the
compressible Newtonian NS [6] equations. We compare our results to the former
Newtonian cases. In the last part of our manuscript we present a series solution
for the ordinary differential equation (ODE), which was obtained with the help
of the self-similar Ansatz.

2 Theoretical background

The Ladyzenskaya [21] model of non-Newtonian fluid dynamics can be formu-
lated in the most general vectorial form of

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − p

∂xi
+
∂Γij
∂xj

+ ρai,

∂uj
∂xj

= 0,

Γij
Def
= (µ0 + µ1|E(∇u)|r)Eij(∇u),

Eij(∇u)
Def
=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.1)

where ρ,ui, p,ai, µ0, µ1, r are the density, the two dimensional velocity field, the
pressure, the external force, the dynamical viscosity, the consistency index and
the flow behavior index. The last one is a dimensionless parameter of the flow.
(To avoid further misunderstanding, we use a for external field instead of the
letter g, which is reserved for a self-similar solution.) The Eij is the Newtonian
linear stress tensor, where x(x,y) are the Cartesian coordinates. The Einstein
summation is used for the j subscript. In our next model, the exponent should
be r > −1. This general description incorporates the following five different
fluid models: Newtonian for µ0 > 0, µ1 = 0, Rabinowitsch for µ0, µ1 > 0,
r = 2, Ellis for µ0 , µ1 > 0, r > 0, Ostwald-de Waele for µ0 = 0, µ1 > 0,
r > −1, Bingham for µ0, µ1 > 0, r = −1. For µ0 = 0 if r < 0 then a fluid is
called a pseudo-plastic fluid, if r > 0 it is a dilatant fluid [12].

In pseudoplastic or shear thinning fluid, the apparent viscosity decreases
with increased stress. Examples are: nail polish, whipped cream, ketchup, mo-
lasses, syrups, latex paint, ice, blood, some silicone oils, some silicone coatings
and paper pulp in water. For the paper pulp, the numerical Ostwald-de Waele
parameters are µ1 = 0.418, r = −0.425 [12]. Parameters of a film foam with
carbon dioxides are µ1 = 0.15, r = −0.52 [14].

In dilatant or shear thickening fluid, the apparent viscosity increases with
increased stress. Typical examples are suspensions of corn starch in water
(sometimes called oobleck) or sand in water.

We set the external force to zero in our investigation ai = 0. In two dimen-
sions, the absolute value of the stress tensor reads:

|E| = [u2x + v2y + 1/2(uy + vx)2]1/2,
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where the u(u, v) coordinate notation is used from now on. For a better trans-
parency - instead of the the usual partial derivation notation - we apply sub-
scripts for partial derivations. (Note, that in three dimensions the absolute
value of the stress tensor would be much complicated containing six terms
instead of three.)

Introducing the following compact notation

L = µ0 + µ1|E|r

our complete two dimensional NS system for incompressible fluids can be for-
mulated much clearer:

ux + vy = 0, (2.2)

ut + uux + vuy = −px/ρ+ Lxux + Luxx +
Ly
2

(uy + vx) +
L

2
(uyy + vxy),

vt + uvx + vvy = −py/ρ+ Lyvy + Lvyy +
Lx
2

(uy + vx) +
L

2
(vxx + uxy),

which is our starting point for the next investigation.
We apply the generalized physically relevant self-similar Ansatz to sys-

tem (2.2). The original form of the one-dimensional self-similar Ansatz is given
in [4, 22,25]

T (x, t) = t−αf
( x
tβ

)
:= t−αf(ω), (2.3)

where T (x, t) can be an arbitrary variable of a partial differential equation
(PDE) and t means time and x means spatial dependence. The similarity ex-
ponents α and β are of primary physical importance since α represents the rate
of decay of the magnitude T (x, t), while β is the rate of spread (or contraction
if β < 0 ) of the space distribution for t > 0. The most powerful result of
this Ansatz is the fundamental or Gaussian solution of the Fourier heat con-
duction equation (or for Fick’s diffusion equation) with α = β = 1/2. This
transformation is based on the assumption that a self-similar solution exists,
i.e., every physical parameter preserves its shape during the expansion. Self-
similar solutions usually describe the asymptotic behavior of an unbounded or
a far-field problem; the time t and the space coordinate x appear only in the
combination of f(x/tβ). It means that the existence of self-similar variables
implies the lack of characteristic length and time scales. These solutions are
usually not unique and do not take into account the initial stage of the physical
expansion process. These kind of solutions describe the intermediate asymp-
totic of a problem: they hold when the precise initial conditions are no longer
important, but before the system has reached its final steady state. They are
much simpler than the full solutions and so easier to understand and study
in different regions of parameter space. A final reason for studying them is
that they are solutions of a system of ODE and hence do not suffer the extra
inherent numerical problems of the full partial differential equations. In some
cases self-similar solutions help to understand diffusion-like properties or the
existence of compact supports of the solution. These analytic solutions can be
compared to numerical simulations as well.

Math. Model. Anal., 21(1):83–94, 2016.
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At first we introduce the two dimensional generalization of the self-similar
Ansatz, (2.3) which might have the form of

T (x, y, t) = t−αf

(
F (x, y)

tβ

)
,

where F (x, y) could be understood as an implicit parametrization of a one-
dimensional space curve with continuous first and second derivatives. In our
former studies [5,6], we explain that for the non-linearity in the Navier-Stokes
equation unfortunately only the F (x, y) = x+y+c function is valid in Cartesian
coordinates. It basically comes from the symmetry properties of the system
like ux = uy. Other locally orthogonal coordinate systems have not been
investigated yet.

Every two dimensional flow problem can be reformulated with the help of
the stream function Ψ via u = Ψy and v = −Ψx, which automatically fulfills
the continuity equation. The system of (2.2) is now reduced to the following
two PDEs

Ψyt + ΨyΨyx − ΨxΨyy = −px
ρ

+ (LΨyx)x +

[
L

2
(Ψyy − Ψxx)

]
y

,

−Ψxt − ΨyΨxx + ΨxΨxy = −py
ρ

+

[
L

2
(Ψyy − Ψxx)

]
x

− (LΨyx)y

with L = µ0 + µ1

[
2Ψ2

xy + 1
2 (Ψyy − Ψxx)2

]r/2
.

Next, we search the solution of this PDE system such as:

Ψ = t−αf(η), p = t−εh(η), η = t−β(x+ y),

where all the exponents α, β, γ are real numbers. (Solutions with integer expo-
nents are called self-similar solutions of the first kind and they can be obtained
from dimensional argumentation as well.)

Unfortunately, the constraints, which should fix the values of the exponents
become contradictory, therefore no unambiguous ODE can be formulated. This
means that the PDE and the stream function does not have self-similar solu-
tions. In other words the stream function has no diffusive property. This is a
very instructive example of the applicability of the trial function of (2.3).

Let’s return to the original system of (2.2) and try the ansatz of

u = t−αf(η), v = t−δg(η), p = t−εh(η), η =
x+ y

tβ
,

where all the exponents are real number again and f, g, h are called the shape
functions. The next step is to determine the exponents. From the continuity
equation we simple get arbitrary β and δ = α relations. The two-dimensional
NS dictates additional constraints. We skip the trivial case of µ0 6= 0, µ1 = 0,
which was examined in our former paper as the Newtonian fluid [5]. Finally,
we get

µ0 = 0, µ1 6= 0, α = δ = (1 + r)/2, β = (1− r)/2, ε = r + 1. (2.4)
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Note, that r remains free, which describes various fluids with diverse physical
properties, this meets our expectations. For the Newtonian NS equation, there
is no such free parameter and in our former investigation we got fixed exponents
with a value of 1/2. For a physically relevant solutions, which is spreading
and decaying in time all the exponents equations (2.4) have to be positive
determining the −1 < r < 1 range. This can be understood as a kind of
restricted Ostwald-de Waele-type fluid. After some algebra a second order
non-autonomous non-linear ODE remains

µ1(1 + r)f ′′[2f ′]r/2 +
(1− r)

2
ηf ′ +

(1 + r)

2
f = 0, (2.5)

where prime means derivation with respect to η. Note that for the numerical
value r = 0 we get back the ODE of the Newtonian NS equation for two
dimensions. In three dimensions the ODE reads:

9µ0f
′′ − 3(η + c)f ′ +

3

2
f(η)− c

2
+ a = 0.

Its solutions are the Kummer functions KU and KM [1]

f = c1KU

(
−1

4
,

1

2
,

(η + c)2

6µ0

)
+ c2KM

(
−1

4
,

1

2
,

(η + c)2

6µ0

)
+
c

3
− 2a

3
, (2.6)

where c1 and c2 are integration constants, c is the mass flow rate, and a is the
external field. These functions have no compact support. The corresponding
velocity component however, decays for large time like v ∼ 1/t for t → ∞,
which makes these results physically reasonable. A detailed analysis of (2.6)
was presented in [5]. A similar investigation was performed for compressible
Newtonian fluids in [6], where the results are given by the Whitakker functions,
which have strong connections to the Kummer functions as well.

Unfortunately, we found no analytic solution or integrating factor for (2.5)
at any arbitrary values of r. For sake of completeness, we mention that with
the application of the symmetry properties of the Ansatz uxx = uxy = uyy =
−vxx = −vxy = −vyy the following closed form can be derived for the pressure
field

h = ρ(µ12r/2+1f ′r+1 + fη − c̃1f) + c̃2,

where c̃1 and c̃2 are the usual integration constants.

3 Phase Plane Analysis

Applying the transition theorem, a second order ODE is always equivalent to
a first order ODE system. Let us substitute f ′ = l, f ′′ = l′, then rewrite (2.5)

f ′ = l,

l′ = −
(

(1− r)
2

ηl +
(1 + r)

2
f

)
/
(
µ1(1 + r)2r/2lr

)
,

where prime still means derivation with respect to η. This ODE system is
still non-autonomous and there is no general theory to investigate such phase
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portraits. However, we can divide the second equation of this system by the
first one to get a new ODE, where the former independent variable η becomes
a free real parameter

dl

df
= −

(
(1− r)

2
ηl +

(1 + r)

2
f

)
/
(
µ1(1 + r)2r/2lr+1

)
. (3.1)

In this way we can gain insight into the dynamical properities of the investigated
ODE.

Figure 1. The phase portrait diagram of (3.1) for η = 0.03, r = −0.425 and µ1 = 0.18.
The two different kind of trajectories: one with compact support (solid line), and the other

one with compact range (dashed line).

Figure 1 shows the phase portrait diagram of equation (3.1) for water pulp
the material parameters are r = −0.425 and µ1 = 0.18. We consider η = 0.03
as the ”general time variable” to be positive as well. With the knowledge of
the exponent range −1 < r < +1, two general properties of the phase space
can be understood by analyzing equation (3.1).

Firstly, the derivative df/dl is zero at zero nominator values, which means
l = −(1 + r)/(1− r)f/η. This one is a straight line passing through the origin
with gradient of 0 < (1 + r)/(1 − r) < ∞ for −1 < r < +1. On Figure 1, the
numerical value of the gradient is −0.403/η = −13.5.

Secondly, the derivative df/dl or the direction field is not defined for any
negative l values because the power function l−(r+1) in the denominator is not
defined for negative l arguments. We can not extract a non-integer root from
a negative number. The denominator is always positive.

These properties explain that there are two kinds of possible trajectories or
solutions exist in the phase space. One type has a compact support, and the
other has a finite range. We may consider the x axis as the velocity f ∼ v(η)
and y axis as the f ′ ∼ a(η) acceleration for a fixed scaled time η = const.
It also means that the possible velocity and accelerations for a general time
cannot be completely independent from each other. We cannot say that the
velocity field or the acccelation field have a compact support but the ratio of
them are compact as clearly presented on Figure 1. The factors of the second
derivative f ′′ show some similarity to the porous media equation, where the
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diffusion coefficient has an exponent also [24]. This is the essential original
responsibility for the solution with compact support. This is our main result.

4 Approximate Solutions

4.1 Direct numerical integration

Using Wolfram Mathematica R© 10 numerical experiments were made for the
Cauchy problem equation (2.5) with f(0) = 0 and f ′(0) = s > 0 and 0 < r < 1.
It turned out that in all cases there exists an η0 > 0 such that f(η) = 0 for
η ≥ η0. Note, that at the maximum point η1 of f(η) is not differentiable which
makes the numerics rather involved. By this reason in the next subsection we
approximate using series f(η) untill η1 only.

4.2 Series expansion

Our objective is to show the existence of analytic solutions to the differential
equation (2.5) and to determine the approximate local solution f(η). We use
the shooting method and give the conditions at η = 0 with initial conditions

f(0) = A, f ′(0) = B. (4.1)

We will consider (2.5) as a system of certain differential equations, namely,
the special Briot-Bouquet differential equations. For this type of differential
equations we refer to the book by E. Hille [18]. In order to establish the
existence of a power series representation of f(η) about η = 0 we apply the
following theorem.

Briot-Bouquet Theorem [13]: Let us assume that for the system of equations
ξ
dz1
dξ

= u1
(
ξ, z1(ξ), z2(ξ)

)
ξ
dz2
dξ

= u2
(
ξ, z1(ξ), z2(ξ)

)
,

(4.2)

where functions u1 and u2 are holomorphic functions of ξ, z1(ξ), and z2(ξ) near
the origin, moreover

u1(0, 0, 0) = 0, u2(0, 0, 0) = 0,

then a holomorphic solution of (4.2) satisfying the initial conditions z1(0) = 0,
z2(0) = 0 exists if none of the eigenvalues of the matrix ∂u1

∂z1

∣∣∣
(0,0,0)

∂u1

∂z2

∣∣∣
(0,0,0)

∂u2

∂z1

∣∣∣
(0,0,0)

∂u2

∂z2

∣∣∣
(0,0,0)

 (4.3)

is a positive integer.
Briot-Bouquet theorem ensures the existence of formal solutions

z1 =
∑∞

k=0
akξ

k, z2 =
∑∞

k=0
bkξ

k

Math. Model. Anal., 21(1):83–94, 2016.
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for system (4.2), and also the convergence of formal solutions.
This theorem has been successfully applied to the determination of local

analytic solutions of different nonlinear initial value problems [9], [10].
Let us consider the initial value problem (2.5), (4.1) and take its solution in
the form

f(η) = ηαQ
(
ηβ
)
, η ∈ (0, ηc) ,

where function Q ∈ C2(0, ηc) for some positive value ηc. Substituting

f(η) = ηαQ
(
ηβ
)

into (2.5) one can get

K
1

η

{
β
[
(β + 1) ηβQ′ + βη2βQ′′

]} (
Q+ βηβQ′

) r
2

+
1− r

2
η
(
Q+ βηβQ′

)
+

1 + r

2
ηQ = 0 (4.4)

for α = 1. Let us introduce the new variable ξ such as ξ = ηβ and function Q
as follows

Q(ξ) = a0 + a1ξ + z(ξ),

where a0, a1 are real constants, and z ∈ C2(0, ηβc ), z(0) = 0, z′(0) = 0. We
make difference between two cases: A = 0 and A 6= 0.

If A = 0 then Q fulfills the following properties Q(0) = a0, Q
′(0) = a1,

Q′′(ξ) = z′′(ξ). From the initial condition f ′(0) = Q(0) and we have a0 = B.
Applying the Briot-Bouquet theorem, (4.4) yields

ξz′′ (ξ) = − 1

β

[
(β + 1)Q′ + ξ

2
β−1

Q+ 1−r
2 βξQ′

Kβ (Q+ βξQ′)
r
2

]
(4.5)

with K = µ1(1 + r)2
r
2 . Therefore, β = 2. We restate the second order differ-

ential equation in (4.4) as a system of two equations{
u1(ξ, z1(ξ), z2(ξ)) = ξ z′1(ξ)

u2(ξ, z1(ξ), z2(ξ)) = ξ z′2(ξ)

by choosing

z1(ξ) = z(ξ), z2(ξ) = z′(ξ) with z1 (0) = 0, z2 (0) = 0,

u1(ξ, z1(ξ), z2(ξ)) = ξ z2,

u2(ξ, z1(ξ), z2(ξ)) = ξ z′2 = −1

2

[
3 (a1+z2) +

a0+(2−r)a1ξ+z1+(1−r)ξz2
2K (a0 + 3a1ξ + z1 + 2ξz2)

r
2

]
.

In order to satisfy the conditions

u1(0, 0, 0, 0) = 0, u2(0, 0, 0, 0) = 0

in the Briot-Boquet theorem the following connection is obtained

a1 = −a1−
r
2

0 /(6K).
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Therefore, the eigenvalues of matrix (4.3) at (0, 0, 0) are 0. Since all eigen-
values are non-positive, referring to the Briot-Bouquet theorem we obtain the
existence of unique analytic solutions z1 and z2 near zero. Thus, there exists a
formal solution

f(η) = η

∞∑
k=0

akη
2k,

where the first two coefficients are already known. For the determination of
coefficients ak, k > 2, we shall use the J.C.P. Miller formula [19]:[

L∑
k=0

ckx
k

]r/2
=

r
2L∑
k=0

dk(r)xk,

where d0(r) = 1 for c0 = 1, and

dk(r) =
1

k

k−1∑
j=0

[
r

2
(k − j)− j]dj(r)ck−j , k ≥ 1. (4.6)

Applying (4.6) we get recursion formula for the determination of ak. Comparing
the proper coefficients of η, one can have the values of ak for some k; e.g.,

a2 =
2− r

120K2
a1−r0 − 1

80K2
a2−r0 .

The coefficients are obtained by this method for the power series approximation
as

f (η) = a0η + a1η
3 + a2η

5 + . . . .

Similarly, we can obtain series approximate solution for A 6= 0. Here we
obtain that α = 0 and Q(0) = A = a0, Q

′(0) = B = a1 for f(η) = Q(ηβ). The
differential equation (2.5) yields

Kβηγ
[
(β − 1)Q′ + βηβQ′′

]
β
r
2Q′

r
2 +

1− r
2

βηβQ′ +
1 + r

2
Q = 0,

where γ = β− 2 + (β − 1) r2 . The system of Briot-Bouquet equations is formu-
lated as follows {

u1(ξ, z1(ξ), z2(ξ)) = ξ z′1(ξ)

u2(ξ, z1(ξ), z2(ξ)) = ξ z′2(ξ)
,

where

ξz′′ (ξ) =
1− β
β

Q′ − 1− r
2K

ξ1−
γ
β
Q′

1− r
2

β1+ r
2
− 1 + r

2K

Q

β2+ r
2Q′

r
2
ξ−

γ
β .

The conditions in the Briot-Bouquet theorem can be satisfied for arbitrary
A and B if γ = −β, i.e., β = 1. Then we get that

u2(ξ, z1(ξ), z2(ξ)) = −1− r
2K

ξ2(a1 + z2)1−
r
2 − 1 + r

2K
ξ
a0 + a1ξ + z1

(a1 + z2)
r
2
.
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The method of calculation of the coefficients in the power series is similar to
case A = 0. Equating the like powers one gets the coefficients

a2 = −1 + r

4K

a0

a
r
2
1

, a3 = − (1 + r)
2
r

48K2

a20
ar1
− a

1− r2
1

6K
, . . . .

Figure 2 presents the series solution of (2.5) for different values of r when A = 0
and B = 1.

Figure 2. Approximate series solutions of f(η) to equation (2.5) and for different values
of r when A = 0 and B = 1. The red curve is for r = −0.425.

Figure 3 presents the series solution of (2.5) for different values of r when
A = 1 and B = 0. Note, the red curve on both figures presents the solution for
r = −0.425, which was presented in the phase plane analysis as well. Unfortu-
natelly, our phase plane and the series expansion results cannot be compared
directly.

Figure 3. Approximat series solutions of f(η) to equation (2.5) and for different values of
r when A = 1 and B = 0. Note the red curve is for r = −0.425.
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5 Conclusions

We applied a two-dimensional generalization of the self-similar Ansatz for the
Ladyzhenskaya-type non-Newtonian NS equation. We analyzed the final highly
non-linear ODE in the phase plane and gave an approximate series expansion
solutions as well.
Our main result is that the velocity field of the fluid - in contrast to our former
Newtonian result - has a compact support, which is the major difference.
We can explain it with the following everyday example: Let’s consider two pots
in the kitchen, one is filled with water and the other is filled with chocolate
cream. Start to stir both with a wooden spoon in the middle, after a while
the whole mass of the water becomes to move due to the Newtonian viscosity,
however the chocolate cream far from the spoon remains stopped even after a
long time.
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