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Abstract. We show that integrals involving the log-tangent function, with respect
to any square-integrable function on

(
0, π

2

)
, can be evaluated by the harmonic series.

Consequently, several formulas and algebraic properties of the Riemann zeta function
at odd positive integers are discussed. Furthermore, we show among other things,
that the log-tangent integral with respect to the Hurwitz zeta function defines a mero-
morphic function and its values depend on the Dirichlet series ζh(s) :=

∑
n≥1 hnn

−s,

where hn =
∑n
k=1(2k − 1)−1.
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1 Introduction

The theory of the Riemann zeta function is a fascinating topic in number theory
with many beautiful results and open questions. The Riemann zeta function is
defined by

ζ(s) :=

∞∑
n=1

1

ns

for any complex complex number s in the half-plane <s > 1 and by analytic
continuation on the whole complex plane, except for the simple pole at s = 1.
The values of ζ(s) at odd positive integers still present a mystery, except for ζ(3)
which was established in [2] to be an irrational number. Moreover, Rivoal [14]
and Zudilin [17] showed, respectively, that infinitely many numbers ζ(2n + 1)

�
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(n = 1, 2, . . .) must be irrational, and that at least one of the eight numbers
ζ(2n+ 1) (n = 2, . . . , 9) must be irrational. In the same direction and in order
to study some algebraic properties of the set {ζ(2n + 1), n ∈ N}, the current
authors [8] showed recently that these numbers appear, both explicitly and
implicitly, in the value of integrals involving the log-tangent function. More
precisely, we showed that, for any square-integrable function f on (0, π/2), the
integral

L(f) :=

∫ π
2

0

f(x) log(tanx)dx

can be approximated by a finite sum involving the Riemann zeta function at
odd positive integers. In particular, for any polynomial P , we have [8, Theorem
2]

∫ π
2

0

P

(
2

π
x

)
log(tanx)dx =

b deg P+1
2 c∑

k=1

(−1)k−1

π2k−1 ck(P )ζ(2k + 1), (1.1)

where

ck(P ) =

(
1− 1

22k+1

)(
P (2k−1)(1) + P (2k−1)(0)

)
and where P (k)(x) denotes the k-th derivative of P at point x.

Besides the theory of numbers, integrals involving the log-tangent function
have various important applications in many different fields of mathematics. In
physics, logarithmic-trigonometric integrals also have some applications in the
evaluation of classical, semi-classical and quantum entropies of position and
momentum, see for example [15].

The purpose of this paper is to show that the integrals involving the log-
tangent function can be evaluated by some series regarding the harmonic num-
ber. That is, for certain square-integrable functions f on (0, π/2), we have

L(f) = −
∞∑
n=1

bn(f)
hn
n
,

where

bn(f) := 〈f, sin(4n·)〉 =
4

π

∫ π
2

0

f(x) sin(4nx)dx, n ∈ N,

hn :=

n∑
k=1

1

2k − 1
= H2n −

1

2
Hn, n ∈ N.

Here, Hn :=
∑n
k=1

1
k is the so-called harmonic number. Furthermore, by com-

bining this result with those obtained in [8], we will be able to express many
different sums involving the Riemann zeta function at odd integer in terms of
variant Euler sums,

∞∑
k=1

αk
hk
k
, (1.2)
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where (αk)∞k=1 is a real sequence. The mentioned results will appear in Sec-
tion 2. It is worth noting that Chen [6] studied the Euler series (1.2), when
(αk)∞k=1 is a power sequence, by utilizing the following generating function

∞∑
k=1

hk
k
x2k =

1

4
log2

(
1 + x

1− x

)
, |x| < 1. (1.3)

In Section 3, we provide a general study of the Dirichlet series ζh(s), or the
h-zeta function, defined by

ζh(s) :=

∞∑
n=1

hn
ns
, <s > 1.

Finally, we conclude the paper with a brief discussion of the corresponding
results and remarks.

2 Recursive formulas involving zeta numbers

It is well known that the Fourier system
{

1√
2
, cos(4nx), sin(4nx)

}∞
n=1

forms an

orthonormal basis for the Hilbert space L2(0, π/2) with respect to the inner
product

〈f, g〉 =
4

π

∫ π
2

0

f(x)g(x)dx, f, g ∈ L2
(

0,
π

2

)
.

It follows that any square-integrable function f on (0, π/2) can be expressed
as the Fourier series

f(x) =
1√
2
a0(f) +

∞∑
n=1

an(f) cos(4nx) +

∞∑
n=1

bn(f) sin(4nx), (2.1)

where a0(f) := 〈f, 1√
2
〉 , an(f) := 〈f, cos(4n·)〉 and bn(f) := 〈f, sin(4n·)〉.

Let

Hodd :=
{
f ∈ L2

(
0,
π

2

)
: f
(π

2
− x
)

= −f(x) almost everywhere
}

and

Heven :=
{
f ∈ L2

(
0,
π

2

)
: f
(π

2
− x
)

= f(x) almost everywhere
}
.

It is not hard to check that Heven is the orthogonal complement subspace of the
closed subspace Hodd in L2(0, π/2) and that the system {sin(4nx)}∞n=1 forms
an orthonormal basis for Hodd.

Recall that, for any square-integrable function f on (0, π/2),

L(f) :=

∫ π
2

0

f(x) log(tanx)dx.
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The function x 7→ log(tanx) belongs to Hodd and the operator L is a linear
functional on L2(0, π/2), so we have

L
(
L2
(

0,
π

2

))
= L (Hodd) = R.

Therefore, it suffices to study the linear functional L on the Hilbert space Hodd.
Clearly, if f ∈ Hodd, then the Fourier expansion of f is reduced to

f(x) =

∞∑
n=1

bn(f) sin(4nx).

It follows immediately that

L(f) =

∞∑
n=1

bn(f)L(sin(4n·))

for any f ∈ Hodd.

Lemma 1. For any positive integer n, we have∫ π
2

0

sin(4nx) log(tanx)dx = −hn
n
,

where hn :=
∑n
k=1 1/(2k − 1).

Proof. By using the Fourier expansion of log-tan function from [5, Th. 1],
namely

log(tanx) = −2

∞∑
k=0

cos(2(2k + 1)x)

2k + 1
, x ∈

(
0,
π

2

)
,

and the fact that∫ π
2

0

cos(2(2k + 1)x) sin(4nx)dx =
1

2

(
1

2k + 1 + 2n
− 1

2k + 1− 2n

)
,

we have∫ π
2

0

sin(4nx) log(tanx)dx = −
∞∑
k=0

1

2k + 1

(
1

2k + 1 + 2n
− 1

2k + 1− 2n

)

= − 1

2n

∞∑
k=0

(
1

2k + 1
− 1

2k + 1 + 2n

)
− 1

2n

∞∑
k=0

(
1

2k + 1
− 1

2k + 1− 2n

)
= − 1

4n

(
ψ

(
1

2
+ n

)
+ ψ

(
1

2
− n

)
− 2ψ

(
1

2

))
,

where ψ is the digamma-function defined by

ψ(x) := − 1

x
− γ +

∑
k≥1

(
1

k
− 1

x+ k

)
, x > 0
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with the Euler-Mascheroni constant γ. Since, for each n ∈ N, we have

ψ

(
n+

1

2

)
= ψ

(
1

2

)
+ 2hn and ψ

(
1

2
− n

)
= ψ

(
1

2
+ n

)
,

it follows that ∫ π
2

0

sin(4nx) log(tanx)dx = −hn
n
,

as required. ut

Now we are ready to state our main theorem.

Theorem 1. The equality

log(tanx) = − 4

π

∞∑
n=1

hn
n

sin(4nx)

holds in L2(0, π/2) and, for any f ∈ Hodd, we have

L(f) = −
∞∑
n=1

bn(f)
hn
n
,

where bn(f) := 〈f, sin(4n·)〉.

Specializing Theorem 1 for f(x) = log(tanx), we obtain

L(f) =

∫ π
2

0

log2(tanx)dx =
4

π

∞∑
n=1

h2n
n2
.

We also know that ∫ π
2

0

log2(tanx)dx =
π3

8
.

Therefore, we must have
∞∑
n=1

h2n
n2

=
π4

32
.

Note that this last formula can also be obtained by applying the Parseval’s
identity.

Now let

f(x) =


−1/2, if 0 ≤ x < π/4,

1/2, if π/4 < x ≤ π/2,
0, if x = π/4.

It is clear that f belongs to Hodd, so we have

f(x) =

∞∑
n=1

bn(f) sin(4nx) =
1

π

∞∑
n=1

(−1)n − 1

n
sin(4nx).
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By Theorem 1, we obtain

L(f) = − 1

π

∞∑
n=1

((−1)n − 1)
hn
n2

=
2

π

∞∑
n=0

h2n+1

(2n+ 1)2
=: G.

From [6, eq. (19) p. 5], we know that

∞∑
n=1

hn
n2

=
7

4
ζ(3). (2.2)

It now follows that

∞∑
n=1

(−1)n
hn
n2

=
7

4
ζ(3)− πG and

∞∑
n=1

h2n
n2

=
7

4
ζ(3)− π

2
G.

More generally, we have the following result.

Corollary 1. Let r ∈ [0, 1/4]. Then we have∫ rπ

0

log(tanx)dx = − 7

4π
ζ(3) +

1

π

∞∑
n=1

hn
n2

cos(4nrπ).

Proof. Let

fr(x) =


−1/2, if 0 ≤ x < rπ,

0, if rπ ≤ x ≤ (1/2− r)π,
1/2, if (1/2− r)π < x ≤ π/2.

Clearly, fr belongs to Hodd. Since, for each n ∈ N, we have

bn(f)=
4

π

∫ π
2

0

fr(x) sin(4nx)dx = − 4

π

∫ rπ

0

sin(4nx)dx =
1

π

(
cos(4nrπ)−1

n

)
,

it follows from Theorem 1 and (2.2) that

L(fr) = − 1

π

∞∑
n=1

hn
n2

(cos(4nrπ)− 1) =
1

π

∞∑
n=1

hn
n2
− 1

π

∞∑
n=1

hn
n2

cos(4nrπ)

=
7

4π
ζ(3)− 1

π

∞∑
n=1

hn
n2

cos(4nrπ).

Finally, the fact that

L(fr) = −
∫ πr

0

log(tanx)dx, r ∈
[
0,

1

4

]
completes the proof of Corollary 1. ut
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We should mention that Bradley [5] studied the transformation

T (r) :=

∫ rπ

0

log(tanx)dx,

for all r ∈ [0, 1/2]. He showed that

T (1/2− r) = T (r), r ∈ [0, 1/2] ,

which can also be deduced from our Corollary 1. Moreover, by using the
identities listed in [5, p. 172], we can obtain several values of sums of the form

∞∑
n=1

hn
n2

(∑
ri

ki cos(4nriπ)

)

for some rational numbers ri ∈ [0, 1/4] and for some integers ki. For example,
by using the identity [5, A. 23], we obtain

5T (3/20) = 5T (1/20) + 2T (1/4) ,

and we can arrive at an alternative representation of the Apéry’s constant

ζ(3) =
2

7

∞∑
n=1

hn
n2

(
5 cos

(
n
π

5

)
− 5 cos

(
n

3π

5

)
+ 2(−1)n

)
.

Another interesting Euler sum is given in the following corollary.

Corollary 2. Let m be a positive integer. Then we have

ζh(2m) = −1

2

m∑
k=1

(
22k+1 − 1

)
ζ(2m− 2k)ζ(2k + 1),

where ζh(s) :=
∑∞
n=1 hn/n

s (<s > 1) and where ζ(0) = −1/2.

Proof. From [13, eq. (1.3)], we know that, for any positive integer m, the
(2m− 1)th Bernoulli polynomial can be expanded as

B2m−1(x) =
2(−1)m(2m− 1)!

(2π)2m−1

∞∑
n=1

1

n2m−1
sin(2πnx), 0 ≤ x < 1.

In other words, we have, for all x ∈ [0, π/2),

B2m−1

(
2

π
x

)
=

2(−1)m(2m− 1)!

(2π)2m−1

∞∑
n=1

1

n2m−1
sin(4nx).

By applying Theorem 1, we obtain∫ π
2

0

B2m−1

(
2

π
x

)
log(tanx)dx =

2(−1)m−1(2m− 1)!

(2π)2m−1

∞∑
n=1

hn
n2m

. (2.3)
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On the other hand, we find from (1.1) that∫ π
2

0

B2m−1

(
2

π
x

)
log(tanx)dx = 2

m∑
k=1

(−1)k−1

π2k−1

×B(2k−1)
2m−1 (0)

(
1− 1

22k+1

)
ζ(2k + 1).

Note that

B
(2k−1)
2m−1 (0) =

(2m− 1)!

(2m− 2k)!
B2m−2k,

where B2m−2k is the (2m− 2k)-th Bernoulli number

B2m−2k = −2(2m− 2k)!(−1)m−k

(2π)2m−2k
ζ(2m− 2k).

Now we have∫ π
2

0

B2m−1

(
2

π
x

)
log(tanx)dx =

(−1)m(2m− 1)!

(2π)2m−1

m∑
k=1

(
22k+1 − 1

)
× ζ(2m− 2k)ζ(2k + 1).

Thus, by combining this last equation with (2.3), we obtain

∞∑
n=1

hn
n2m

= −1

2

m∑
k=1

(
22k+1 − 1

)
ζ(2m− 2k)ζ(2k + 1),

as required. ut

It is worth noting that Corollary 2 can be rewritten as

∞∑
n=1

hn
n2m

=

(
22m+1 − 1

4

)
ζ(2m+ 1)− 1

2

m−1∑
k=1

(
22k+1 − 1

)
× ζ(2m− 2k)ζ(2k + 1), m ≥ 2.

It is not hard to see that our Corollary 2 is a generalization of Chen’s formula
(2.2).

For some historical background of this kind of recursive formulas, it is worth
mentioning that Euler [9] proved the following formula

2

∞∑
n=1

Hn

nm
= (m+ 2)ζ(m+ 1)−

m−2∑
k=1

ζ(k + 1)ζ(m− k), m ≥ 2,

where Hn :=
∑n
k=1 1/k is the harmonic number. In addition, Georghiou and

Philippou [10] showed that

∞∑
n=1

Hn

n2m+1
=

1

2

2m∑
k=2

(−1)kζ(k)ζ(2m+ 2− k), m ∈ N.

Math. Model. Anal., 24(3):404–421, 2019.
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Another well-known recursive formula for zeta function at even positive integers
is given in [7, p. 167] as

(2n+ 1)ζ(2n) = 2

n−1∑
k=1

ζ(2k)ζ(2n− 2k), n ≥ 2.

For more relevant explicit Euler sums, the reader is advised to see [3, 4].
Next we show another explicit formulation of (1.1).

Theorem 2. For any polynomial P such that P (1− x) = −P (x), we have

∫ π
2

0

P

(
2

π
x

)
log(tanx)dx = 4

deg P+1
2∑

k=1

(−1)k

(2π)2k−1
P (2k−2)(0)ζh(2k),

where P (k)(x) denotes the k-th derivative of P at point x.

Proof. It is clear, from the functional equation of P , that P is of odd degree,
say 2m− 1 (m ∈ N). Thus, by using integration by parts, it is easy to see that∫ π

2

0

P

(
2

π
x

)
sin(4nx)dx = π

m∑
k=1

(−1)k−1

(2nπ)2k−1
P (2k−2)(0).

Since the polynomial P
(
2
π ·
)

is in Hodd, it follows that its expansion is

P

(
2

π
x

)
= 4

∞∑
n=1

(
m∑
k=1

(−1)k−1

(2nπ)2k−1
P (2k−2)(0)

)
sin(4nx)

= 4

m∑
k=1

(−1)k−1

(2π)2k−1
P (2k−2)(0)

∞∑
n=1

sin(4nx)

n2k−1
.

Finally, we apply Theorem 1 to complete the proof. ut

We note that another way to prove Theorem 2 is by employing the following
fact. Each polynomial P of degree 2m− 1 such that P (x) = −P (1− x) can be
written as

P (x) =
2(−1)m(2π)2m−1

(2m− 1)!

m∑
k=1

(−1)k−1

(2π)2k−1
P (2k−2)(0)B2k−1(x), 0 ≤ x ≤ 1.

Then we apply (2.3) to prove Theorem 2.
Next if we take P (x) = E2m−1(x) to be the (2m− 1)-th Euler polynomial,

we obtain the following inversion formula of Corollary 2.

Corollary 3. For any positive integer m, we have

ζ(2m+ 1) =
8

π2

1

22m+1 − 1

m∑
k=1

ζh(2k)
(
22m−2k+2 − 1

)
ζ(2m− 2k + 2).
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Proof. By applying Theorem 2 to the Euler polynomial E2m−1, we obtain∫ π
2

0

E2m−1

(
2

π
x

)
log(tanx)dx = 4

m∑
k=1

(−1)k

(2π)2k−1
ζh(2k)E

(2k−2)
2m−1 (0).

For each 1 ≤ k ≤ m, we have

E
(2k−2)
2m−1 (0) =

(2m− 1)!

(2m− 2k + 1)!
E2m−2k+1(0)

=
4(2m− 1)!(−1)m−k+1

π2m−2k+2

(
1− 1

22m−2k+2

)
ζ(2m− 2k + 2).

It follows that

L

(
E2m−1

(
2

π
·
))

=
16(−1)m−1(2m− 1)!

(2π)2m+1

m∑
k=1

ζh(2k)
(
22m−2k+2 − 1

)
× ζ(2m− 2k + 2). (2.4)

On the other hand, by (1.1) (see [8, Th. 1]), we have∫ π
2

0

E2m−1

(
2

π
x

)
log(tanx)dx =

2(−1)m−1(2m− 1)!

π2m−1

(
1− 1

22m+1

)
ζ(2m+ 1).

Combining this equation with (2.4), we complete the proof of Corollary 3. ut

It is well known that ζ(2n) = rnπ
2n (n ∈ N0), where

rn =
(−1)n+1B2n22n−1

(2n)!

is a rational number. However, no such representation in terms of π is known
for the zeta function at odd arguments. It is conjectured that the number
ζ(2n+1)/π2n+1 is transcendental for every integer n ∈ N. In view of Corollary 2
and Corollary 3, we can deduce that the numbers ζ(2n+ 1) and ζh(2m), where
n and m are positive integers, have the “same” algebraic properties. This
means that if A denotes the set of all algebraic numbers in [0, 1], we have
ζ(2n + 1)/π2n+1 ∈ A for all n ∈ N if and only if ζh(2m)/π2m+1 ∈ A for all
m ∈ N. In addition, if we let

αn :=
ζ(2n+ 1)

π2n+1
and βn :=

ζh(2n)

π2n+1
, n ≥ 1,

then we have, by Corollary 2,

βn = −1

2

n∑
k=1

(
22k+1 − 1

)
rn−kαk, n ∈ N

and, by Corollary 3,

αn =
8

22n+1 − 1

n∑
k=1

(
22n−2k+2 − 1

)
rn−k+1βk, n ≥ 1.

Math. Model. Anal., 24(3):404–421, 2019.
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Furthermore, for any integer n ≥ 2, we have the following recursive formula

n−1∑
k=1

(
4
(
22n−2k+1 − 1

)
rn−k+1βk −

(
22k+1 − 1

)
rn−kαk

)
= 0.

Now, by (2.3) and the fact that

zexz

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
, |z| < 2π,

we have∫ π
2

0

e2xz log(tanx)dx =
eπz − 1

πz

∞∑
n=1

(πz)n

n!

∫ π
2

0

Bn

(
2

π
x

)
log(tanx)dx

=
eπz − 1

πz

∞∑
n=1

(−1)n−1

4n−1
ζh(2n)z2n−1

for all |z| < 2. We compare this last equation with [8, p. 11] to obtain

∞∑
n=1

(−1)n−1
(

1− 1

22n+1

)
ζ(2n+ 1)z2n−1 =

1

π
tanh

(π
2
z
) ∞∑
n=1

(−1)n−1

4n−1

× ζh(2n)z2n−2

for all |z| < 1, Therefore, if we put z = i2x/π, we have

tanx =
S(x)

C(x)
, |x| < π

2
, (2.5)

where

S(x) :=
1

4

∞∑
n=1

(
22n+1 − 1

)
αnx

2n−1 and C(x) :=

∞∑
n=1

βnx
2n−2.

Note that we can also deduce Corollary 2 and Corollary 3 directly from (2.5).

Clearly, the integral
∫ π/2
0

e2xz log(tanx)dx exists for any complex number
z. Moreover, we have∫ π

2

0

e2xz log(tanx)dx =
eπz − 1

π

∞∑
n=1

hn
n2 + ( z2 )2

, z ∈ C. (2.6)

The case that z = 2ik (k ∈ Z) is included as z tends to 2ik; that is,∫ π
2

0

e4ikx log(tanx)dx = lim
z→2ik

(
eπz − 1

π

) ∞∑
n=1

hn
n2 + ( z2 )2

= −i
h|k|

k
.

The proof of (2.6) is based on the expansion of the function x 7→ exp(2xz) as
in (2.1); namely,

exp(2xz)

eπz − 1
=

√
2

πz
+

z

2π

∞∑
n=1

cos(4nx)

n2 + ( z2 )2
− 1

π

∞∑
n=1

n sin(4nx)

n2 + ( z2 )2
.
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Then Theorem 1 helps complete the proof of (2.6). On the other hand, the
authors showed in [8, p. 11] that

∫ π
2

0

e2xz log(tanx)dx =
eπz + 1

4z

(
ψ

(
1 + iz

2

)
+ ψ

(
1− iz

2

)
− 2ψ

(
1

2

))
=
eπz + 1

2z

(
ψ

(
1 + iz

2

)
− ψ

(
1

2

)
− iπ

2
tanh

(π
2
z
))

,

where ψ is the digamma function. Therefore, we obtain the following identity

π

2z

(
ψ

(
1 + iz

2

)
− ψ

(
1

2

)
− iπ

2
tanh

(π
2
z
))

= tanh
(π

2
z
) ∞∑
n=1

hn
n2 + ( z2 )2

.

3 Analytic continuation of ζh(s)

Let s=σ+it (σ, t ∈ R) be a complex number, we define the h-zeta function by

ζh(s) :=

∞∑
n=1

hn
ns
,

where hn :=
∑n
k=1 1/(2k− 1). Since hn = 1

2 log(4n) + 1
2γ+O(1/n2) as n tends

to ∞, we know that ζh is analytic in the half-plane σ > 1. On the other hand,
it follows from the generating function (1.3) that, for any real x > 0,

∞∑
n=1

hn
n
e−nx =

1

4
log2

(
tanh

x

4

)
.

Thus, for all σ > 1, we have

∫ ∞
0

log2(tanhx)xs−2dx = 4

∫ ∞
0

∞∑
n=1

hn
n
e−4nxxs−2dx

= 42−s
∫ ∞
0

∞∑
n=1

hn
ns
e−xxs−2dx = 42−sζh(s)Γ (s− 1).

That is, for all σ > 1, we have

ζh(s) =
4s−2

Γ (s− 1)

∫ ∞
0

log2(tanhx)xs−2dx.

Since

log2(tanhx) ∼ 4e−4x, as x→∞
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and

log2(tanhx) =

(
log x+

∞∑
n=1

(
1− 22n−1

n

)(
22nB2n

(2n)!

)
x2n

)2

=

(
log x+ 2

∞∑
n=1

(−1)n

n

(
22n−1 − 1

)
rnx

2n

)2

= log2 x+ 4 log x

∞∑
n=1

wnx
2n + 4

∞∑
n=2

cnx
2n

for all |x| < π, where

wn =
(−1)n

n

(
22n−1 − 1

)
rn, n ∈ N

and where

cn = (−1)n
n−1∑
k=1

(
22k−1 − 1

) (
22n−2k−1 − 1

)
k(n− k)

rkrn−k, n = 2, 3, . . . ,

it follows that the integral ∫ ∞
0

log2(tanhx)xs−2dx

is absolutely convergent for all σ > 1. Moreover, we have∫ 1

0

log2(tanhx)xs−2dx =
2

(s− 1)3
− 4

∞∑
n=1

wn
(s+ 2n− 1)2

+ 4

∞∑
n=2

cn
s+ 2n− 1

,

for all σ > 1. Therefore,

ζh(s) =
4s−2

Γ (s)

2

(s− 1)2
− 4s−1

Γ (s− 1)

∞∑
n=1

wn
(s+ 2n− 1)2

+
4s−1

Γ (s− 1)

∞∑
n=2

cn
s+ 2n− 1

+
4s−2K(s)

Γ (s− 1)
,

where

K(s) :=

∫ ∞
1

log2(tanhx)xs−2dx.

Since K is a regular function, ζh(s) has an analytic continuation to the whole
complex plane, except at the pole s = 1 of order 2 and at simple poles s = 1−2n
(n ∈ N). Moreover, the residue of ζh(s) at s = 1 equals − 1

2ψ( 1
2 ) = log 2 + γ

2 ,
where γ := limn→∞(Hn − log n) = 0.57721 . . . denotes the Euler-Mascheroni
constant. For each positive integer n, the residue of ζh(s) at s = 1 − 2n is

equal to −wn(2n)!42n = − 1
4nB2n( 1

2 ). Similar to the Riemann zeta function, ζh(s)
vanishes at the negative even integers.
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It is interesting to mention that the h-zeta function is closely related to the
Hurwitz zeta function. Their first connection is that, for all σ > 1,

ζh(s) =

∞∑
n=1

ζ(s, n)

2n− 1
.

Recall that the Hurwitz zeta function is defined for all σ > 1 and for all x > 0
by

ζ(s, x) =

∞∑
n=0

1

(n+ x)s
,

and it can be extended by analytic continuation to the whole complex plane,
except at the simple pole s = 1 with residue 1. Also, it is well known that [16, p.
269], for all σ < 0,

ζ(s, x) =
2Γ (1− s)
(2π)1−s

(
sin
(π

2
s
) ∞∑
n=1

cos(2πnx)

n1−s
+ cos

(π
2
s
) ∞∑
n=1

sin(2πnx)

n1−s

)
.

Hence, by Theorem 1, we have, for all σ < 0,∫ π
2

0

ζ

(
s,

2

π
x

)
log(tanx)dx = −2Γ (1− s)

(2π)1−s
cos
(π

2
s
)
ζh(2− s).

However, the right-hand side of the equality above exists for all σ < 1. There-
fore, for each σ > 1, we have

ζh(s) =
(2π)s−1

2Γ (s− 1) cos(π2 s)

∫ π
2

0

ζ

(
2− s, 2

π
x

)
log(tanx)dx. (3.1)

Note that the case when s = 2n+ 1 (n ∈ N) can be treated as

ζh(2n+ 1) =
(−1)n22nπ2n−1

(2n− 1)!

∫ π
2

0

ζ ′
(

1− 2n,
2

π
x

)
log(tanx)dx. (3.2)

Note also that (3.2) can also be shown by applying Theorem 1 with [1, Propo-
sition 2]. In fact, for any positive integer n,∫ π

2

0

ζ ′
(
−n, 2

π
x

)
log(tanx)dx = −

∫ π
2

0

ζ ′
(
−n, 1− 2

π
x

)
log(tanx)dx,

so we have∫ π
2

0

ζ ′
(
−n, 2

π
x

)
log(tanx)dx =

1

2

∫ π
2

0

(
ζ ′
(
−n, 2

π
x

)
− ζ ′

(
−n, 1− 2

π
x

))
× log(tanx)dx.

It now follows from [1, Proposition 2] and Theorem 1 that, for odd integers,∫ π
2

0

ζ ′
(

1− 2n,
2

π
x

)
log(tanx)dx = i

(−1)n(2n− 1)!

2(2π)2n−1

×
∫ π

2

0

Li2n
(
e4ix

)
log(tanx)dx =

(−1)n(2n− 1)!

2(2π)2n−1

∞∑
k=1

hk
k2n+1

.
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It is worth remarking that ζh(s) can be extended analytically by using (3.1).
Indeed, let z be a complex number such that z 6= 1. For each 0 < x < 1, we
write

ζ(z, x) = x−z + ζ∗(z, x).

Then it follows from (3.1) that the integral∫ π
2

0

ζ

(
z,

2

π
x

)
log(tanx)dx

exists for all <z < 1. From [11, 1.518, eq. 3, p. 53], we have

log(tanx) = log x+ 2

∞∑
k=1

22k−1 − 1

k
ζ(2k)

(x
π

)2k
, x ∈

(
0,
π

2

)
,

so, by using integration by parts, we obtain, for all <z < 1,∫ π
2

0

(
2

π
x

)−z
log(tanx)dx =− π

2

1

(1− z)2
+
π

2

log(π2 )

1− z
+
π

2

∞∑
k=1

(
1− 1

22k−1

)
× ζ(2k)

k(2k + 1− z)
.

However, the right-hand side of the equality above converges absolutely for any
complex number z not equal to odd positive integers (i.e. z 6= 1, 3, 5, . . .), and
this defines an analytic continuation of the function

z 7→
∫ π

2

0

(
2

π
x

)−z
log(tanx)dx.

On the other hand, the function ζ∗(z, x) is defined on the half-plane <z > 1 by

ζ∗(z, x) :=

∞∑
n=1

1

(n+ x)z
=

1

Γ (z)

∫ ∞
0

e−yyz−1

1− e−y
e−xydy, 0 < x < 1.

It follows that, for all <z > 1,∫ π
2

0

ζ∗
(
z,

2

π
x

)
log(tanx)dx =

1

Γ (z)

∫ ∞
0

e−yyz−1

1− e−y

∫ π
2

0

e−
2
π xy log(tanx)dxdy.

Then, by (2.6), we obtain∫ π
2

0

ζ∗
(
z,

2

π
x

)
log(tanx)dx = − 1

π

1

Γ (z)

∫ ∞
0

w(y)e−yyz−1dy (3.3)

for all <z > 1, where

w(y) =

∞∑
n=1

hn
n2 + (y/2π)2

.
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Note that the right-hand side integral in (3.3) is absolutely convergent for all
<z ≥ 1. Consequently, the function

G(z) :=

∫ π
2

0

ζ

(
z,

2

π
x

)
log(tanx)dx

can be continued analytically to the half-plane <z ≥ 1, except at the poles
z = 2n− 1 (n ∈ N), by

G(z) =− π

2

1

(1− z)2
+
π

2

log(π2 )

1− z
+
π

2

∞∑
k=1

(
1− 1

22k−1

)
ζ(2k)

k(2k + 1− z)

− 1

π

1

Γ (z)

∫ ∞
0

w(y)e−yyz−1dy.

Finally, we can define the h-zeta function on the whole complex plane by

ζh(s) :=


∑∞
n=1

hn
ns , for σ > 1,

−2s−1πs−2 sin
(
π
2 s
)
Γ (2− s)G(2− s), for σ ≤ 1,

s 6= 1− 2n, n ∈ N0.

4 Conclusions

The value distribution of the h-zeta function can be an interesting topic to
pursue. Besides, it is important to study the algebraic aspects of the numbers
ζ(2n + 1) as we have shown in Corollary 2 and Corollary 3 that the h-zeta
function appears in several integrals involving the Riemann zeta function and
the Hurwitz zeta function.

For the sake of completeness, we present the following interesting example.
For each σ > 1, let

H(s) := −
∫ ∞
0

log(tanhx)xs−2dx.

Using integration by parts, we find that

H(s) =
4

s− 1

∫ ∞
0

e−2xxs−1

1− e−4x
dx,

which implies that, for all σ > 1,

H(s) = 41−sΓ (s− 1)ζ

(
s,

1

2

)
.

On the other hand, the analogue of the Parseval’s formula for the Mellin trans-
forms (see for example [12, p. 484]) yields

1

2π

∫
<s=σ

|H(s)|2 |ds| =
∫ ∞
0

log2(tanhx)x2σ−3dx

Math. Model. Anal., 24(3):404–421, 2019.



420 L. Elaissaoui and Z. El-Abidine Guennoun

for all σ > 1, which is equivalent to

1

8π

∫
<s=σ

∣∣∣∣Γ (s− 1)ζ

(
s,

1

2

)∣∣∣∣2 |ds| = Γ (2σ − 2)ζh(2σ − 1)

for all σ > 1. In particular, when σ = 3
2 , we have

ζ(3) =
1

7

∫ ∞
0

9− 4
√

2 cos(t log 2)

cosh(πt)

∣∣∣∣ζ (3

2
+ it

)∣∣∣∣2 dt.

We have seen that the h-zeta function vanishes at s = −2n (n = 0, 1, 2, . . .)
and that ζh(2n) is closely related to the numbers ζ(2n + 1) (n ∈ N). Hence,
it is natural to ask if ζh(s) satisfies certain functional equation. Maybe, by
answering this question, one can find the expression of h-zeta function, as a
complex-valued function, in terms of the Riemann zeta function.
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