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Abstract. In the present paper, for the initial boundary value problem for the
non-homogeneous nonlinear transport equation

ou ou
Fn + L f(u),

the basic principles for constructing difference schemes of any order of accuracy
O(t™), M > 1, on characteristic grids with the minimal stencil were introduced. To
construct a difference scheme the Steklov averaging idea for the right-hand side

wl -
f(u>z(7u?+f_u? / =)

was used. The case of f(u) = \u® was investigated in detail. A strict analysis of the
order of approximation, stability, and convergence in nonlinear case was made. The
performed numerical experiments justify theoretical results.

Key words: High accuracy difference scheme, nonlinear transport equation,
method of characteristics

1. Introduction

One of the main questions in constructing difference schemes for equations
of mathematical physics is an accuracy, i.e., convergence of an approximate
solution to an exact solution of an original problem. It is natural to desire
the maximum order of convergence rate for a minimum stencil of the grid. In
this connection, we note the recent papers by Tadmor [1], Goloviznin [6, 7],
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Galanin|2, 3|, and Ciegis [20] concerning construction and analysis of compu-
tational methods of high-order accuracy for hyperbolic equations.

The following question is emerged: can we construct exact difference
schemes (EDS), i.e., such schemes for that the truncation error is equal to
zero or y = u at the grid nodes? Here y is the approximate solution of the
finite-difference scheme, u is the exact solution of the given differential prob-
lem. For the ODEs corresponding results are given in the papers of Samarskii
[19] and Gavrilyuk [4].

It is much more difficult to construct EDSs for nonlinear PDEs. For certain
classes of homogeneous hyperbolic systems the EDS can be constructed on the
basis of the method of characteristics [10, 16, 18]. It is worth to note paper [17],
in which an EDS for a semilinear PDE having linear advection and an odd-
cubic reaction term were constructed. The author has used a method based
on the works by Mickens [13, 14, 15]. In [12], exact difference schemes for the
transfer equation with variable coefficients using the special Steklov averaging
on moving grids have been constructed. Unfortunately, it is impossible to
construct a similar method in the quasilinear and non-homogeneous case [5,
18].

In this paper, an initial boundary value problem for quasilinear transfer
equation with non-homogeneous and nonlinear right-hand side is solved. Using
the moving characteristic grids and minimal grid stencil difference schemes of
any order of accuracy O(t™), M > 1 are constructed, here 7 = t, 11 — t,
a discrete time step. All the theoretical aspects of difference schemes such
as the approximation, the stability and the convergence in nonlinear case
were also considered. To construct schemes with a given accuracy, we use
the mathematical apparatus presented in [11, 12]. Some numerical results
confirming that the error of the proposed finite—difference schemes is equal to
O(T™) are presented.

2. Statement of the Problem
In the domain (see Fig.1)
Qr ={(z,t): 0<x <m(t),0<t < T},

the initial-boundary value problem is considered for the transport equation

ou ou 2
- i < < 2.1
3t+u8m A, 0<z<uz(t), 0<t<T, A<0, (2.1)

u(0,t) = p(t), wu(x,0) = uop(z),
0 < ug <ulx,t) <u, ué(aj) >0 u(x,t) € CHQr). (2.2)

d
Equation (2.1) along the characteristic d—;: = u can be written in the following
form [8, 10]:
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Figure 1. Domain of the problem definition
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Selection of the domain @ of the problem with a moving right boundary is
due to the characteristic method. In this case, some nodes of the moving grid
will be located on the boundary of the domain.

=2, 0<z<uz(), A<O0, (2.3)

=u(z(t),t), x(0)=1.

3. Difference Scheme

Let us introduce the initial uniform grid on the segment [0, []

w%z{xﬁ):ih, i=0,N, hN=l, h:%}

with a constant step h > 0. The moving grid is constructed in Q as
Wy, = {(xﬁi,tn), t=-—n,N, 332(7”) =0, t, =n1, n=0,Ng, TNg = T}.
In this paper, the following notation is used:
Ty = (tn)ﬂ Ui =u (x:lﬂ tn) ;o Up; = (557};‘7 tn) :

Applying the specific Steklov averaging [8, 12] the differential problem is ap-
proximated by the difference scheme

ot —ap, XS () k1 —
%:Z k+1(uzi) , M>1, i=—n,N, (3.1
k=0
9, =Y, x’,}(fn) =0, 1=0,N, n=0, Ny,
n+1 _yn.
Ohi ZUhi o zgndlyn = "n,N, n=0,No—1, (3.2)
=

u?n = Uo ({E?) ) ’U’Z(*n) = p(tn), t=0,N, n=0,No. (33)
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4. Truncation Error

The discrete problem for the error of the discrete solution

surtt — gy
n n n n n n 2 3
oz} = ap; —x,  oui =up;, —uy, dvl; = —

can be written in the following form:

k

M— 1
Zk+lz ]ﬁ—|—1—] ((Sul)kJrlj( ) szv i=—n7N7

5z =0, dx(, =0, i=0,N, n=0,N,

dug'; — A (u?cSu? + u?+15u? + 5u?5u?+1) =y, i=-n,N, n=0,Ny— 1,
duj =0, duf_, =0, i=0,N, n=0,N,.

The truncation error is expressed by the equality ] = iy, + ¢7;, where

nkJrl
+Zk+1 ’

L= u“—i—/\u”Jrl » i=-n,N, n=0Ny— L
Using equation (2.3), the following equalities hold:

dx d’x  du d3z du

ey, = — = u?, = =2 u— = 2225,

at U ar Tt R ar “
Taking into account the above equalities and substituting them into the Taylor
formula we obtain

et g da? d?a? M=1 gMgn \MpM-

gh, =t — T T 441 o T (@M
' T 2! dt2 M dt M+1
M—1
_ (/\T k+1 + ()‘T) (~n)M+1

Pt k+ 1 M+1

From here the equality follows
b = — 2T M o (o) (4.1)
0 M 41 ’ '

where ' = (z; (t;) ,t:l), by =tn +6O,7,0< 6, <1.
In [12], it was shown that for the Cauchy problem for a nonlinear ordinary
differential equation

du
dt

the difference scheme with the specific Steklov averaging

= hi(wfa(t),  fi(u) #0, >0, u(0)= wuo,
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n+1 yn

- 1 v gy 11 e
= - t)dt, °= 4.2
T (yn+1 —yn /y" fl (u)) 7 ), f2 ( ) s Y U, ( )

is exact. In our case,

filu) =M, folt) =

Consequently, from (4.2) we obtain
Pl = —ul + Al = 0. (4.3)
Taking into account (4.3), the expression for 9! can be written in the form
Uit =P + U =0 (7).

From here it follows that the initial differential problem is approximated by
the difference scheme (3.1), (3.2) with any order of M > 1.

5. Stability of the Difference Scheme

We introduce the following notation for the grid norms:

lail, = _mox fuid luRlle, = max e

Perturbing the initial and boundary conditions in (3.1), (3.2) we arrive at the
problem

= (an)k

= P @ ap, = xaptlay, i=—n,N, n=0,Nyg — 1
k=0

Thi =27, Tp_py =0, Up; =1 (27), Uy = A (ta), (5.1)

0<ug <up, <uy, ug(x)>0 i=-n,N, n=0,N,.
hi 0

DEFINITION 1. The difference scheme is uniformly stable with respect to the
initial data and the boundary condition if there exist constants M; > 0, My >
0 independent of 7 and n, such that for any n the inequality

1 1 +1 _ o+l ~0 0
s =i | I =i, < M|~ R, (52)
n
~ ~0 _ 0
+ M> max {1;,5125“ 7 (te) — e (t)] ||, — uh||60}
is valid.
Let Ax} =2}, —xp;, Aul =4y, —up,, i = —n, N, n = 0, Ng. Subtracting

from (5.1) the equations (3.1), (3.2), we arrive at the perturbation problem

n __ n
Azy'; = Au; E

Z D () (5.3)
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Aug; = M Au + \ap, Auftt i =—n N, n=0,No — 1,

Az =0, Az, =0, Aud =7, (xo) — U (x?) ,

%

Aul_y = p(tn) — p(tn), 1=0,N, n=0,Ny.

In order to get the corresponding estimates expressing the stability of the
difference scheme, it is necessary to show that u}; and uj; are bounded.

Lemma 1. Let the conditions
0 <wuo <u(z,t) <wu, 0<u<u(zt)<u (5.4)
be met, where u(x,t) is the solution of the perturbed problem

@_FN@
ot “ax

w(0,t) = u(t), u(x,0)=1ue(z), uy(x)>0.

=M, O<z<mx(t), 0<t<T, A<O0,

Then for the solutions u},, uy, the estimates
0 <wuo < [upllg, <ur, 0<uo < |lupllz, <,

are fulfilled.

The proof of Lemma 1 follows from the conditions of the exact approximation:
up (Thytn) = u(x,tn), Un (Th,tn) =0 (x,t,).

Using formula (3.2), we can write that

ult. o —
uZ;H:#n, 1=-n,N, n=0,Ny—1.
1= Arup,

We rewrite the above identity in the form

1 1 1 1 — Myup (22
—n+1=—n—/\T:---=T—"/\T:—8( )
Up; Up; Up; ug (7))

Hence, the following formula holds

0
i wlm) o G
hi 1 — Atpug (29)’ ! A, =R AT
Now we will prove estimate (5.2). In view of (5.3) we can write Au"" in the
following form

~n—+1
N+ — Agn 1+ Aruy;
K2

~ i i =T"p N, =0,Ny— L
1= Arul, ! " " 0

Hence for all corresponding indexes ¢ we have the inequality
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1 —|— /\Tu,”

n+1 n
| | < 4w — ATul

< |AuP| |1+ Arapt

< [Au}| |1 +T|A|ﬂ2f1\ < AU |1+ 7 [Mug| < e | Aup] .
From here we can find

[Aum |, < e Aut g, = e max | A

—n<i<N
_ oAl max{ ‘AU?,,L) o max (A }
= TIMuz max{‘Au )| ||Au"||cn} .
Therefore,
HAUWHHGWIgeﬂMweﬂMWrmm{LAW ) }A“(n+1LHAUW%”6m4}

TIAl k
<L <et Ml max{orglléax ‘A“(fk)‘a”AUOHcO }

On the basis of the above estimate we conclude that

L (et P VR

< TPl max { max 7 (t) = ()]l — woll, b (5:5)

1<k<n-+1
Now we consider the problem for Ax"“

M- 1 _

Azt = Ax? + T AU? Z k—i— DFFIT ()T

Hence the following estimate is obtained

M—l k k
}Ax;’Hrl} < Ax;z, +T}Au,? Z k+1 —J hz)j

k=0 J:O
M—1

< |Azr +T‘Au? (A )kd’f“‘
k=0

M—1
< |Az} —|—7'd1‘Au (/\le) ’,

x>

=0

where di = max {u1,u2}. On the other hand we can write

M— M-1
1 — (Ardy) _
k1 _ 1 M-1
_ < — <
E: (A7dy) T wd, <1-—(Ard1) <cg,

because 1 — A\rdy > 1, where ¢ = 1 + (|| Tdy)™ ™
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Hence we can write
| Az < | A2} | + 7dic| Aul| .

Let denote

By = TIAldo 7 (tn) — 1 (8] 1o — wolls b -
o=e max | max | (te) = (t)] s o —uollig,

Bearing in mind inequality (5.5), we conclude that
HAx7L+1H6n+1 < ||Ax77,||6n + leng-

Iterating this inequality, we get the estimate

||Azzc"+1||6 < |[|Az"[|g, + TdicPo <

< HA%OHC —|—d10(n—|—1)7@0 ||A$O||C +d10T@0.

n+1

Hence for the solution of the perturbation problem the a priori estimate

~n+1 n+1
L, ) - Ty )

I e e
Cn+1

e “lle,

T|\|de () — T — uall=s
e e 760 - @) [0~ wlz, |59

is obtained. Inequality (5.6) expresses the stability of the difference scheme
with respect to the initial data and the boundary condition.

6. Convergence
In this section we investigate the convergence of the solution of the difference

scheme (3.1), (3.2). We consider the discrete problem for the global errors of
the discrete solution

M-1 k
k—|—1 ki o )
6:,Un ZZ k+1 (6ui)+1(UZ~)J+’¢10,Z:—’I’L7N7'I’L:07N0—1’
k=0 j= O
53:10) 53:(—77,) = 07 1= 07Na n= Oa NO) (61)

ouy, = Aéu?“éu? + A (u?“&uf + 5u?+1u?) , i=-n,N,n=0,Nyg—1
ug, oul =0, i=0,N, n=0,Np.

79

In Section 3, we proved that the error of the approximation for the solution u},
is equal to zero, i.e. |[du"t!||5 ,, = 0. Thus we can rewrite the first equation

(6.1) in the following form:

St =62 + 199, i=-n,N, n=0,Ng— 1. (6.2)
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Equation (4.1) yields the following estimate

M
(AT) dM-‘rl <

(/\T)M (an)MJrl
M+1°

|zl | < |62 | + 7 1@

< |ox}|+ T

Tdéw+1

M
(/\T) gM+1
0 M+1

On the basis of this relation we obtain the following inequality:

M+1 M+1
< 000, + NIy T (7

n+1
627 SUn

n+1

which expresses the convergence of the difference scheme with order O(7™).

7. Numerical Experiments

In this section, we present the numerical results to confirm that the error
of the method is of order O (r™). We consider problem (2.1), (2.2) with
=2, T=1,

1

- = =2—e "
T u@0) =uo () =2

u(0,t) = pu(t)
Then the function u(z,t) = (2 —e™*)/(2t + 1) satisfies problem (2.1), (2.2).

From the equation for characteristic

d_x_u_ 2 _ e "
d — (2t+1) 2t+1

we can find the explicit form for the characteristics
z(t) =In(c(2t +1) +0.5),

where the constant c is defined by

e — 0.5, for nodes 29, i=0,N,
Cc = 1
2 (2t + 1)

, for nodes a:?_n), n =1, Np.

From here it follows that

In (e (2t +1) — t) , for nodes 29, i=0,N,
zi(t) = ) ) (7.1)
In (5mr (2t +1) + 5) , for nodes 2", n =1, No.

Equality (7.1) expresses the characteristic curves of equation (2.1).
In the numerical experiments, we consider only the global error for dz,
because we have proved in Section 4 that du} = 0. Let us use the following
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notation of the norm zV = [6z||z . To show that the error of the method is
O(T™), we will use the solutions of the difference scheme constructed on the
following meshes:

Whr = {(m?}:i;tn)a 1= _n7N7 IZ( = Oa tn = nr, n= 07N05 TNO = T}a

—n)

th/Z = {(x?]z;atnl)a 1= _nlaNa x?}:%,nl) = 01 tn1 = n17/2u

ny =0,2Ng, 7/2No1 = T, Noi = 2N0},
wh-r/4 = {(mZz?ath)a 1= —MNg, N, ng,nz) = Oa tn2 = 7127'/4,
Nng = 0,4N0, 7'/4N02 = T, N02 = 2N01}.

To estimate the maximum errors, we use solutions computed on two different
discrete grids

1
N _ no_ ,.2n
D" = oM 1, RAX |Thi — T

— 1 (z,t)emn-, ’

where x}; € Wy, )} € Uy /2. The value of DN/2 ig defined similarly on Whr/2
and Wy, /4. The numerical orders of convergence are calculated by

pY =log, (DN/z/DN) .

The results of the numerical experiment for various values of the parameter
M are presented in Table 1 and Figure 2.

Table 1. Results for M =1, M =3, M =5and M =9

T 0,1 0,05 0,025 0,0125
zn (1) 5.1072 2,6-1072 1,3-1072 6,4-107°
DM (1) 481072 2,58 1072 1,29 - 1072 6,3-1073
PN (1) 0,98 1 1 1
Zn(3) 4,3-1074 5.107° 6-107° 7,5-1077
DM (3) 4.9-107* 5,6-107° 6,4-107° 7,7-1077
PN (3) 3,1 3,1 3 3

Zn(5) 6,9-107° 1,9-1077 5,6-107° 1,7-1071°

DM (5) 7.6-107¢ 2,2-1078 6,1-107° 1,74-1071°
PN (5) 5,2 5,1 5 5
Zn(9) 3,7-107° 5,6-10712 9,4-10715

DV (9) 4.8-107° 7,0-10712 1,1-107%

PN (9) 9,4 9,2 9,1

The presented results confirm the theoretical results that the difference
solution 7 ; converges to the exact solution of the initial problem with order
M>1.
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.

M =3

Figure 2. Exact z; (t) and approximate z}; values of characteristics.

Remark 1. Analogously we can construct difference schemes of any order of
accuracy for the more general equation

ou ou

St g = h@t) fa(w, f20)#0, (2)

which along the characteristic z = x (t), satisfying dx/dt = u, can be written

in the form J
Sl =A@t hw.

dt |ae _,
dt
Following [12], we can show that for the characteristic grid

ot o, T Pl MMy,
T Mo @i T3t Ay T M atM

(7.3)

the difference scheme
n+1 uzj' 1 dn

_an trnil _
u:%/ fl(xi(sm)dé(m/un i) ' ()

hi

exactly approximates the differential equation (7.2). To apply formula (7.3)
having the order of accuracy O(7™), M > 1, we should express the derivatives
d*z/dt*, a0 =1,2,..., M as the values of functions f; and f5 by using equation
(7.2)

d’x  du d3z 9 df1 df1

dtQ dt fl (‘/'E( )7 )f2(u)7 dt3 fQ(U) f1f2u+ 8t +u8$ 9
Remark 2. One of the most interesting points in constructing high-accuracy
difference schemes for equation (7.2) is the case where integrals from the right-
hand side of (7.4) cannot be computed exactly. In this case, we recommend
to apply the Euler—Maclaurin formula based on trapezoid rule
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/ " fe)de ~ hl(% + 3 forim + f%)
xo i—1
J .
+ Z (=)™ aph2™ {f(Zm 1) fézm_l)}. (7.5)
m=1

The approximation error of this formula is O (h%M”'Z), hi = M For
M; = 6 the accuracy of this quadrature formula equals to O(h}‘l). In paper
[9], the simple technique is proposed for calculation of coefficients a,,

My

oM 1 2 oMy —2m+ 1)

independent of the step h; and of function f(z). Application of formula (7.5)
to problem (2.1)—(2.2) leads to the following difference scheme:

n+1 n M-1 (AT)k

Thi  — Thi n \k+1 .
1 . > = — = NS
- E ] (ur;) s, M>1, 4 n, N, n =0, No;(7.6)
0

Upy  — Upy 1
M = )\N + 7.7
1{<2( N j:1 (e +Jh1) 2(“21')2) 7

N Z (—1)™ amh%ml{(m)@m—l) B ( i )2)(2m—1)}}—17

(uhy;

i=-n,N,n=0,Nyg—1;
u?n = Uo (3:?) ) U’Z(*n) = :u(tn)v i=0,N, n =0, No. (78)

The truncation error of difference scheme (7.6)—(7.8) has the order O(7™
(r/ V1)),

In Tables 2-5 the results of numerical calculations by this difference scheme
are presented for Ny = 10, My = 3. Here || - ||¢ = maxo<n<n, || - |lc.

Table 2. M =1

T 0,1 0,05 0,025 0,0125

lzn — 2|l 5.1072 2,6-1072 1,3-1072 6,4-107°
lun —ull,  5,2-107'%  2,3.107'8 7,6-1071° 7,6-1071°

Comparing these results with results presented in Table 1, we see a high
performance of the proposed methods.
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Table 3. M =3

T 0,1 0,05 0,025 0,0125

Th — T 4,3-1074 5.107° 6-10°° 7,5-1077
C
lun —ull,  5,2-107'% 23.100"®  7,6-100" 7,6-107"

Table 4. M =5

T 0,1 0,05 0,025 0,0125

Th — T 6,9-10° 1,9-1077 5,6-107° 1,7-1071°
C
Up — U 5,2-10716 2,3-10718 7,6-1071°
C

Table 5. M =9

T 0,1 0,05 0,025

lzn — 2|l 3,7-107° 5,6-107'2  9,4.107%
lun —ull,  5,2-107'%  2,3-107'®  7,6-107"7

T 7 7 7 7
ISy
il S,

WIPIIIEIP)

[

Figure 3. Exact z;(¢) and approximate x}; values of the characteristics.

Remark 3. Instead of the domain Q, with moving right boundary (see Fig.1),
we may use the rectangle

Qr ={(z,t):0<2x<[,0<t<T}.

However, in this case, the nodes of the computational moving mesh will be
placed outside the domain. The exact and approximate values of the moving
mesh (characteristics) are presented in Fig. 3. These results were obtained by
using scheme (3.1)—(3.2) with 7 =0,1 and M = 3.
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