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Abstract. Flows behind obstacles (such as islands) are shallow if the transverse
scale of the flow is much larger than water depth. Field, laboratory and numeri-
cal data show that the flow pattern in shallow wakes exhibits a complex eddy-like
motion. Experimental and theoretical analyses provide evidence for the presence of
two-dimensional coherent structures in shallow water flows and show that the devel-
opment of shallow wakes is different from the wakes in deep water due to the follow-
ing reasons: first, the development of three-dimensional instabilities is prevented by
limited water depth and second, bottom friction acts as a stabilizing mechanism for
suppressing the transverse growth of perturbations. Several authors have used the
linear and weakly nonlinear stability theory in order to understand when shallow
flows become unstable. Two-dimensional depth-averaged Saint-Venant equations are
usually used for the analysis. One of the main assumptions in shallow water theory
is the independence of the velocity distribution on the vertical coordinate. In many
cases, however, this assumption may not be valid. This paper presents an attempt
to evaluate the influence of the assumption on the results of linear stability anal-
ysis of shallow wake flows with bottom friction. Momentum correction coefficients
1 and B2 are used in order to take into account the non-uniformity of the veloc-
ity distribution in the vertical direction. Linear stability calculations show that the
stability boundary is quite sensitive to the variation of the parameters 51 and fs.
The role of the linear and weakly nonlinear stability analysis on the formation of
two-dimensional coherent structures in shallow water flows is discussed.
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1. Introduction

Shallow wake flows are flows behind obstacles (such as islands) with the trans-
verse scale of the flow being much larger than the vertical scale (water depth).
Experiments show that development of wakes in shallow water significantly
differs from the development of wakes in deep water. This is linked to the
fact that limited water depth has a strong influence on the development of
flow instabilities. Bottom friction acts as a suppression factor for the growth
of transverse perturbations. Moreover, evolution of three-dimensional insta-
bilities is prevented due to small vertical scale. As it has been shown exper-
imentally, the flow pattern of a shallow wake flow exhibits a complex eddy-
like motion. Vortex structures observed in shallow water in many cases may
resemble flow patterns in deep water, but in shallow water case the corre-
sponding flow patterns can be observed at much larger values of the Reynolds
number. For example, photograph No. 173 by Van Dyke [3] shows formation
of eddies organized into a vortex street behind an obstacle in shallow water
although the Reynolds number for this case is 107. Note that vortex street
pattern in unbounded flows is limited to significantly smaller Reynolds num-
bers. Experimental and numerical data provide evidence for the presence of
two-dimensional coherent structures in shallow water flows which are defined
in [9] as connected large-scale fluid masses with a phase-correlated vorticity
that extend uniformly over the fluid layer (with the exception of a boundary
layer). Coherent structures observed in shallow flows are believed to be the
end product of large scale flow instability [7]. The onset and initial devel-
opment of two-dimensional coherent structures can be analyzed by means of
linear and weakly nonlinear stability theory. Shallow wake flows, in particular
flows behind islands in rivers and bays, are an object of growing interest from
environmental point of view. Complex flows created by eddies can trap pollu-
tants. Poor water circulation in a wake may lead to deposition of sediments.
These two factors can result in poor water quality on the sheltered side of an
island. Increased concentration of sediments and contaminants might affect
marine culture causing, for example, fish disease and mortality. It is believed
that the trapping of low-salinity Pearl river water in the sheltered areas led
to intense stratification and resulted in deaths of marine inhabitants in Hong
Kong in 1994 [5]. Keeping all above-said in mind it is clear that it is essential
to know factors influencing flow patterns and, as a result, water circulation
in shallow wakes. Due to this and, of course, in view of their environmental
significance, shallow wake flows have been analyzed in the literature both the-
oretically and experimentally. Chen& Jirka [1] performed experimental studies
of flows behind circular cylinders and showed that there are three different
types of flow patterns observed in shallow wakes: vortex shedding, unsteady
bubble and steady bubble. They also found that the type of flow pattern ob-
served in a wake depends on a shallow wake stability parameter S = c¢;D/H,
where ¢y is the bottom friction coefficient, D is the dimension of the obstacle
(e.g. cylinder) and H is water depth. The parameter S was introduced earlier
by Ingram&Chu [8]. The stability of shallow flows has been later studied by
many authors [2, 4, 5, 15]. The independence of the flow characteristics on
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the vertical coordinate is an assumption that is usually made in the stability
analysis of shallow flows. The assumption is linked to the fact that shallow
water equations are depth-averaged equations. There are many cases, how-
ever, when the assumption may not be valid. Changes in flow geometry, flow
regimes or roughness of the bottom boundary can lead to large deviations from
the above-mentioned assumption [18, 19]. In order to take the non-uniformity
of the velocity distribution into account, several authors have applied mo-
mentum correction coefficients [18, 19]. In particular, momentum correction
coefficients are used in [6] for linear stability analysis of shallow mixing layers.
Preliminary results on the influence of the non-uniformity of the velocity dis-
tribution on the stability of shallow wake flows under the rigid-lid assumption
are presented in [12]. In this case water depth is constant so that free surface
is assumed to be undisturbed. In the present paper the influence of averag-
ing coefficients on the stability of shallow water flows is studied in detail. In
addition, a weakly nonlinear model based on the complex Ginzburg-Landau
equation is analyzed in order to describe the evolution of the most unstable
mode above the threshold. Momentum correction coefficients (3, and (o are
used in this paper to calculate the stability boundary of the flow. The stability
domains are calculated for the classical hyperbolic secant profile [2], given by

2R 1
Uly) =1+ 1 — R cosh?(ay)
Here R = (U, — U,)/(U. + U,) is the velocity ratio, a = sinh™ (1), U, is
the velocity on the centerline, U, is the ambient velocity. The value of the
parameter « is chosen so that the length scale of the flow is the wake half-
width [2]. The role of the amplitude evolution equations (such as the Ginzburg-
Landau model) on the formation of two-dimensional coherent structures in
shallow water flows is discussed.

2. Problem Formulation

The governing equations are derived from the Euler equations by integrating
them with respect to the vertical coordinate. The use of the inviscid Euler
equations rather than the Navier-Stokes equations is justified as the value of
Reynolds number Re is higher than 1000 for real island wakes. According to [2,
4] the stability analysis results are insensitive to the variation of Re when Re >
1000. The rigid-lid assumption has been used in order to reduce the shallow
water equations to a single equation with stream function of the flow acting
as the unknown function. Under the rigid-lid assumption the gravity-driven
free-surface flow is replaced by an equivalent pressure-driven flow between
two parallel horizontal plates. The top plate is considered to have the friction
coefficient equal to zero, while the bottom plate is considered to have friction
coefficient c; as the original channel. Ghidaoui&Kolyshkin [4] showed that the
rigid-lid assumption can be applied for the case where the ratio of inertial force
to gravity force is small. Experimental data [1] show that this assumption is
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usually satisfied for shallow wake flows. The governing equations for shallow
flow under the rigid-lid assumption are [19]:

% n g_z — 0. (2.1)
% + (261 — 1)u% + (B2 — 1)ug—z + 52”%
_% - Suvar e, (2.2)
% + (B2 — 1)1}% + ﬂzu% + (205 — 1)@2—2
:_g—z—g—zv u? 4+ v2, (2:3)

where x and y are the spatial coordinates, ¢ is the time, u and v are the
depth-averaged velocity components in the x and y directions respectively, h
is water depth, c; is the bottom friction coefficient defined by the equation [5]

% = —4log (%)

Shear stress at the boundary is modeled by the Chezy formula (see [16])

1 1
Tws = gcfpu\/ u? + 02, Ty = §cfpv\/ u? + 2,

where p is the density, 7, and 7,,, are the wall shear stresses along the = and
y directions respectively. The coefficients (1, 32, and (3 in equations (2.1)-
(2.3) are the momentum correction coefficients which have been introduced
in order to take into account non-uniformity of velocity distribution in the
vertical direction. The meaning of the momentum correction coefficients can
be explained by the following example of one-dimensional flow. Consider a
fully developed (laminar or turbulent) flow in a long cylindrical pipe. In this
case the velocity vector has only one nonzero component, v, in the longitudinal
direction. The momentum can be calculated as follows

Mlz/pv2dA,
A

where A is the cross-sectional area of the pipe. Hydraulic engineers often use
simplified models [16] where the velocity of the fluid, V, is assumed to be
constant over the cross section of the pipe. The momentum of the flow with
uniform velocity V is given by

My = pV2A.

Obviously, My # M;. Thus, when the velocity varies over the cross section of
the pipe, a momentum correction factor 5 should be used before the average
velocity V is introduced:
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/ pv2dA = BpV?2A.
A

1 v\ 2
=— =] dA.
-2/,
Note that the correction coefficient § in this example is constant. However, it
can be calculated only when the velocity distribution is known. Calculations

presented in [16] show that 3 = 2 for laminar Poiseuille flow and 8 = 1.02 for
turbulent flow of the form

Hence,

L (%)1/”, (2.4)

Vmaw a

where n = 7, y, is the distance from the wall and a is the radius of the pipe.
Similar idea is used for depth-averaged shallow water equations. The mo-
mentum correction coefficients are defined as follows:

1 z zZ2

2 1 2 1 -
B = s quZ, By = %/ uvdz, [z = ) ’UQdZ, (25)
z1 z1 Z1

where @ and v are the velocity components in the x and y directions respec-
tively. It follows from (2.5) that the coefficients (31, 32 and (3 are functions of
the spatial coordinates x and y. In addition, the coefficients (3, 82 and (3 can
be calculated only when @ and ¢ are known. Experimental data (see [16]) show
that for shallow wake flows the velocity distribution in the vertical direction
varies only in a small boundary layer near the solid boundary. As a result, the
coefficients (1, B2 and 5 are expected to be small (slightly above 1). In the
present paper we study the relative importance of the averaging coefficients
on the stability characteristics by assuming that all the coefficients are fixed
at some constant value. Introducing the stream function ¢ (z,y,t) defined by
the relations
o o

E Oz

and eliminating the pressure p we rewrite equations (2.1)—(2.3) in the following
form:

u =

(AY)e + (261 — B2) Wy ¥ay)y — Ba(Yatlyy)y + (B2 — 1)(Yathuy)e
+ Baltbathy)e — (205 = D) (Wothas)y + 51 A0 63 + 43

L (Y20 + 200ty iy + V20bes) = 0, (2.6)

+ -  J
2hy [ 2 + 2

where A is the Laplacian in two dimensions and the subscripts indicate the
derivatives with respect to the variables = and y. Suppose that the base flow

U = (U(y),0) (2.7)
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is perturbed and the perturbed solution to the equation (2.6) is assumed to
be of the form

Y=1to+er+... (2.8)

where € is a small parameter and 1o, = U. The smallness of the parameter
¢ (from a linear stability point of view) simply reflects the fact that the am-
plitude of the perturbation is assumed to be small in comparison with the
amplitude of the base flow. Substituting (2.7) and (2.8) into (2.6) and lin-
earizing the resulting equation in the neighborhood of the base flow (2.7) we
obtain

"r/)lzzt + ¢1yyt + (261 - 62)(Uy¢1ry + U¢1ryy) - ﬂQ(Uy'lr/)lzy + Uyy¢1r)

C

According to the method of normal modes (see [14]) we seek the perturbed
component 1 of the stream function in the form

v1(z,y,t) = ¢ (y)eik(m_d) + c.c. (2.10)

where k is a wavenumber and ¢ = ¢, +ic; is a complex eigenvalue, "c.c." means
"complex conjugate". Substituting (2.10) into (2.9) we obtain the linearized
stability equation and boundary conditions in the form:

1 ((261 — B2)U — ¢+ %U) + Uy (261 — 282 L)

+(k2c — BoUyy — k2 BoU — 55kU )1 = 0, (2.11)
¢1(:|:OO) = 0.

We assume that the boundary conditions are specified at infinity since outer
boundaries of real shallow flows are quite far from the obstacle and, therefore,
it is natural to solve the problem in an unbounded domain.

3. Solution Method

It is known that for unbounded flows the spectrum consists of both a discrete
and a continuous parts [14]. As discussed in [14], for practical and compu-
tational purposes it is often possible to use simpler formulation where a dis-
cretized approximation of the continuous spectrum is used. In addition, the
analysis in [17] for the case of deep water wakes shows that the continuous
spectrum cannot give a rise to unstable single modes. Taking into account the
results of [14] and [17], only a discrete spectrum is analyzed in the present
paper. The linear stability problem (2.11) is solved by a spectral collocation
method based on the Chebyshev polynomials. Using the substitution

2
x = —arctan(y), y € (—o0, +0), z € [-1;1]
T
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the interval (-oo; +00) is mapped into the interval (—1;1). The solution ¢(x)
of the modified Rayleigh equation is sought in a form of the Chebyshev poly-
nomial series:

N—
Z (1 — 22T, (z), (3.1)

where a,, are unknown constants, and T,,(z) is the n-order Chebyshev poly-
nomial that has the form T,,(x) = cos(narccos(z)). Since (3.1) contains a
factor (1 — x?), the boundary conditions in (2.11) are satisfied automatically
for x = £1. Using the collocation method and choosing the points

j
szcos(N+1)

as the collocation points we obtain the generalized eigenvalue problem of the
form

(A= AB)a =0, (3.2)

where A and B are two complex-valued matrices and a is a vector of the form
a = (ag,a1,...,an—1)". The elements of the matrices A and B have the form

ajn = a,gn) + za%, bjn = b(r +ipt?

jn
RO ny K 2.
j’I’L % (UQJ + Uyan 2 U(l - Ij)$]n),
l) =kU(2p ﬁz)an + 2k(B1 — B2)U, yan kB2(K*U + Uyy) (1 — 23,
9= K e 10,

where

qJ(TL) = [ 22T jn +ny /1 - z AV 73] cos ( )
9 4 U
qj(_n) = _P cos* (5116]) [(2 + nQ)ﬁcjn - (3m€j \/1 - x?n)/\/l - x?J
4 . /7 m
- sin (ng) cos> (ng) [ —27;Tjp +n4/1 — x?\/l - x?n },

j=1,2,...N, n=1,2,...N.

Solving the generalized eigenvalue problem (3.2), for given ¢y and k we obtain
a set of eigenvalues ¢,,,. The imaginary parts ¢;,,, of eigenvalues ¢; = ¢ +iCim
determine linear stability of the base flow. The flow is said to be linearly
stable if the imaginary parts of all ¢,, are negative. If the imaginary part
of the eigenvalue c,, of at least one mode is positive then a perturbation
grows exponentially with time and the flow is said to be linearly unstable.
Calculations show that for sufficiently large values of the friction coefficient
cs all eigenvalues have negative imaginary parts (c¢;» < 0), so the flow is
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stable. By decreasing cy for a given k it is possible to reach the point where
at least one c¢;,,, becomes positive and the flow loses stability. The bisection
method enables us to find the value of the friction coefficient c; for which
at least one c;,, is close to zero, while all other c¢;,, are negative. This point
lies on the "border" between the stability and instability regions of the flow.
By repeating the process for different values of the wavenumber k& we are
able to build a neutral stability curve that is defined as a set of all points
in the (k, cs)-plane for which one c,, has the imaginary part equal to zero,
while imaginary parts of all other ¢,, are negative. The neutral stability curve
represents the boundary separating the stability domain (above the curve)

from the instability domain (below the curve). The critical value, c;c) of the
parameter c; is defined as the coordinate of the highest point of the curve,

or 9 = maxy(cy(k)). The cgf) parameter is very important in the linear
stability analysis. The flow is stable for all k if the value of ¢y is higher than

cgf), and flow is unstable for some £ if ¢; < c(fc).
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Figure 1. Neutral stability curves versus k for different values of momentum cor-
rection coefficients 51 and 2.

4. Computational Results

In this section the influence of momentum correction coefficients on the value
of cgcc) parameter is analyzed. The influence is evaluated by solving problem
(2.11) for different values of momentum correction coefficients §; and 2, and
comparing the critical values, cgcc), of the parameter c¢. The linear stability
results are presented for the hyperbolic secant wake profile in terms of the

stability parameter S = c¢b/h, where b is the half-width of the wake (see [5]).
The values of 5S¢ = cgcc)b/ h have been calculated for the following values of
the parameters (1, and fBo: 81 = 1.00,1.05,1.10. B> = 1.00,1.05,1.10. The
value of R of the wake profile is fixed at R = —0.5. The parameter N in (3.1)
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is directly related to the accuracy of computations. We have tried different
values of N. It was found that the value N = 50 provides sufficient degree
of accuracy and, therefore, all numerical results generated in the paper are
obtained for the case NV = 50. The stability curves obtained for various values
of momentum correction coefficients 3; and (5 are presented in Fig. 1. Each
curve represents the boundary between the stability domain (above the curve)
and the instability domain (below the curve). The ordinate of the top of the
curve corresponds to the critical value of the parameter S.

12
B,=1.10
10t

A%
=)

B,=105

B,=1.00

By

Figure 2. The percentage difference A between the values of the S¢ for depth-
averaged equations (81 = 1, J2 = 1) and equations with correction factors (51 >
1,82 > 1).

Fig. 2 presents results of the comparison of the S¢ parameter calculated for
different values of momentum correction coefficients 31 and (3. The results are
compared to the values of S¢ that are calculated for 5; = 1 and B2 = 1. The
case #1 = 1 and 2 = 1 corresponds to the approach when the velocity non-
uniformity across the vertical coordinate is not taken into account. As it can
be seen, for some combinations of the values of 3; and (2 the relative error
can reach 10%. The real and imaginary parts of the eigenfunction, ¢(z) =
¢r(x) +i¢i(z), are shown in Fig. 3 and Fig. 4 for R=—0.9 and 8; = > = 1.
Unfortunately, the values of coefficients 5 and (3 for real island wakes are
not known. However as the error in determining the S¢ parameter may grow
with increased values of 81 (the stability boundary can be underestimated
with increase of 1) it might be important to know the values of 3; and [,
for the analyzed shallow flows.

5. Discussion

Tt is shown in [11] that if the value of the friction coefficient is slightly smaller

than the critical value cgf) then in the vicinity of the critical point (., c;c)),
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Figure 3. The real part of an eigenfunction obtained at 51 = 1, f2 = 1 and
R=-0.9.
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Figure 4. The imaginary part of an eigenfunction obtained at f; = 1, 82 = 1 and
R=-0.9.

where k. is the critical wavenumber, the evolution of the most unstable mode
is governed by the complex Ginzburg-Landau equation of the form

0A %A

— =0A+5— —pulAP*A 1

5 = oA+ 055 —HlAPA, GRY
where 7 and £ are "slow" time and longitudinal coordinate, respectively, A is
the amplitude of the least stable mode and

o = o, +i0y, 5:6T+5l7 N:Nr+lﬂz

are complex coefficients. Equation (5.1) is derived in [11] by means of weakly
nonlinear theory and explicit formulas for the calculation of the coefficients
o, § and p are presented. The coefficients of the Ginzburg-Landau equation
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are calculated in [10] for different values of 5 and (2. The constant u, is
referred to as the Landau constant in the literature. Calculations performed
in [10] showed that for all cases considered the Landau constant is found to
be positive. Physically this means that nonlinearities tend to saturate the in-
stability. In other words, the Ginzburg-Landau model with p, > 0 shows the
existence of another equilibrium state if ¢ is slightly smaller than S (that
is, if the assumptions of the weakly nonlinear theory are satisfied). Note, how-
ever, that the Ginzburg-Landau equation should produce meaningful results
when the flow is convectively unstable (see [5]). As pointed out by [9], linear
(and weakly nonlinear) analyses represent one of the three directions in which
two-dimensional coherent structures in shallow water flows are analyzed, that
is, stability analysis, experimental investigation, and numerical simulation.
In addition, a combination of stability analyses with experimental investiga-
tions is found to be quite successful [13] in describing the evolution of shallow
mixing layers. The results obtained in the present paper in combination with
weakly nonlinear analyses [10, 11] suggest the following approach to the anal-
ysis of onset and initial development of coherent structures in shallow flows.
For given 81 and 3 solve the linear stability problem (2.11) and find the criti-
cal values of the parameters of the problem. Next, calculate the coefficients of
the Ginzburg-Landau equation (5.1) using the results from [10, 11]. Finally,
use the Ginzburg-Landau model to analyze further development of the most
unstable mode. The Ginzburg-Landau equation (5.1) is much simpler than
the original system which is a definite advantage for numerical simulation.
However, a full spatio-temporal analysis of wake flows is required (that is, nu-
merical solution of nonlinear shallow water equations is needed) for complete
verification of the Ginzburg-Landau model.
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