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Abstract. A Dirichlet problem is considered for a singularly perturbed parabolic
reaction—diffusion equation with piecewise smooth initial-boundary conditions on a
rectangular domain. The higher-order derivative in the equation is multiplied by a
parameter ¢%; ¢ € (0, 1]. For small values of €, a boundary and an interior layer
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1. Introduction

Difficulties in solving boundary value problems for singularly perturbed
equations (equations involving a small parameter ¢ multiplying the higher-
order derivatives) with sufficiently smooth data are well known (see, e.g.,
[1, 2, 4, 8, 9, 15] and also their bibliographies). For problems of this type,
special numerical methods are required that allow us to approximate the
solutions with an error bound that is independent of the parameter ¢, i.e.,
e—uniformly convergent methods. Usually, when constructing and investigat-
ing e—uniformly convergent schemes, the data of boundary value problems
are assumed to be sufficiently smooth and satisfying additional compatibility
conditions [6] ensuring the smoothness of solutions for the studied problems.
Difficulties in approximating the solution increase when the initial or bound-
ary conditions are piecewise smooth. Boundary value problems for singularly
perturbed parabolic reaction—diffusion problems with a strong singularity —
a discontinuous initial condition — were considered in [3, 5, 11, 12, 16, 17].
In these problems, besides the fitted mesh method (meshes condensing in a
neighbourhood of the boundary layers), a specific technique was used so as
the fitted operator method [3, 11, 12], [16], or the method of the additive
splitting of singularities (in a neighbourhood of the points of discontinuities
in the initial function) [5, 17].

Special schemes for a singularly perturbed parabolic convection—diffusion
equations with only a single weak singularity — a piecewise smooth initial
condition — were considered in [7, 18, 19]. In these papers, it is assumed that
conditions on the lateral boundary of the domain are sufficiently smooth,
moreover, compatibility conditions at the corner points are fulfilled that en-
sure the solution belonging to C*t®2+2/2 in a neighbourhood of the lateral
boundary of the domain. However, investigations of special difference schemes
for singularly perturbed parabolic equations with several weak singularities
such as piecewise smooth boundary and initial conditions and/or the absence
of compatibility conditions as well (in particular, for reaction-diffusion equa-
tions) are not known in the literature. Thus, the development of e—uniformly
convergent difference schemes for a class of singularly perturbed problems
with additional singularities marked above is an actual problem.

In the present paper, we consider a Dirichlet problem on a rectangular
domain for a singularly perturbed parabolic reaction-diffusion equation with
a small parameter 2 multiplying the higher-order derivative. The first-order
derivatives with respect to x of the initial function and/or with respect to ¢
of the boundary function have jump discontinuities; compatibility conditions
at the corner points (except the continuity condition) are not assumed. When
the parameter ¢ tends to zero, boundary and interior parabolic layers arise.
Here, e-uniform convergence of special difference schemes on piecewise uniform
condensing meshes is investigated depending on nonsmoothness of various
types in the initial-boundary conditions.

It is shown that in the case of a standard problem — a problem with suffi-
ciently smooth data satisfying the compatibility condition — the known classi-
cal finite difference scheme on the special piecewise uniform mesh condensing
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in the boundary layer (we call it the basic scheme) converges e-uniformly at
the rate O(N~2 In* N 4+ Ny '), where N + 1 and Ny + 1 are the numbers of
nodes in the meshes with respect to = and to ¢, respectively. The appearance of
nonsmoothness of such types as the discontinuity of the first-order t-derivative
of the boundary function and/or the absence of compatibility conditions only
weakly influences the rate of e—uniform convergence. In this case, the basic
scheme converges at the rate O(N~2 In® N + N, ' In Np).

Nonsmoothness of such type as the discontinuity of the first-order deriva-
tive with respect to x of the initial function essentially influences the e—uniform
convergence rate. In this case, the basic scheme converges only at the rate
ON~'+ N, Y ®); a significant decrease in the order of the e—uniform conver-
gence rate takes place. For this problem, an improved scheme is constructed
— the scheme on the meshes condensing in both boundary and interior lay-
ers — that allows us to obtain discrete solutions convergent conditionally
e-uniformly at the rate O(N~2 In®> N + Ny ' In Np) under the condition that
the parameter ¢ satisfies the additional condition e = O(N~! + N 1/ %). On
the other hand, the unconditional e—uniform convergence rate of the improved
scheme is O(N~! + NJUQ), i.e., the same as it is for the basic scheme.

2. Problem Formulation and Aim of Research

2.1. Set
G=GUS, G=Dx(0,T), D={x: x€(—d,d)}. (2.1)

On G we consider the Dirichlet problem for the singularly perturbed parabolic
reaction-diffusion equation 2

{L(Q,Q)u(x,t) = f(z,t), (z,t) €@, 22)
u(z,t) = o(z,t), (z,t) €S.

Here 92 5
@ - C(Iat) _p(mat) Ea

the coefficients a(x,t), c¢(x,t), p(x,t) and the right-hand side f(x,t) are suf-

ficiently smooth on the set G, moreover,

Lig.2) = e?a(x,t)

Cl(ﬂf,t) > ag, C(x7t) > Oa p(l‘,t) > Do, (xvt) € 57 ao, po > Oa

and the parameter ¢ takes arbitrary values in the half-open interval (0, 1].
The initial-boundary function ¢(z,t) is continuous on S and is piecewise

smooth on the sets Sy and 5", Here § = SolUS*, So = So and S are the
lower and lateral parts of the boundary S, S¥ = I"x (0,T], I' = D\ D.

2 Throughout the paper, the notation Liwy (M), Ghr(jey) means that these
operators (constants, grids) are defined in formula (j.k).
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The first-order derivative of ¢(x,t) with respect to ¢t has a jump discontinuity

on the set §L; and the first-order derivative of ¢(x,t) with respect to x has
a jump discontinuity on the set Sy, namely, at the point (0, 0). The function
o(z,t) is assumed to be sufficiently smooth on the closure of those parts
to the boundary S, on which the first-order derivatives are continuous. In
particular, the function ¢(z,t) is sufficiently smooth on the sets S;” and S,
©(-, 0) C C(So) N{C*(Sy ) UCK(SI)}, k > 1, where Sy = Sy USd, Sy =
SoN{z <0}, S§ =SoN{x > 0}.

The fulfillment of compatibility conditions [6] on the set of the corner

points S, = So ﬂgL are not assumed.

By a solution of problem (2.2), we mean a function u € C(G) N C%1(Q)
that satisfies the differential equation on G and the boundary condition on S.

For fixed values of the parameter ¢, the derivative (9/0x)u(x,t) is contin-
uous on G, where G~ =G \ (0, 0), it is also bounded on G, and is discon-
tinuous at the point (0,0). The derivatives (0%/0z?)u(x,t), (0/0t)u(x,t)
have a jump discontinuity at the point (0, 0) and on the set S, and also on
the set of points in §L, where the first-order derivative of the function ¢(z,?)
with respect to t has a discontinuity.

Let us discuss the behaviour of the solution for small values of the param-
eter €. Let S7 = {(z,t) :  =~(t) =0,t € [0, T]} be the characteristic of
the reduced equation that passes through the point (0, 0). When the param-
eter ¢ tends to zero, a boundary and an interior layer with the characteristic
length scale £ appears in a neighbourhood of the sets S and S respec-
tively, moreover, the interior layer is weak; see bounds (3.10) in Section 3. It
is known that solutions of classical finite difference schemes do not converge
e-uniformly (see, e.g., [2, 5]) even in the case of singularly perturbed problems
with sufficiently smooth data.

2.2. On the set G, we consider also the boundary value problem for the
singularly perturbed equation with constant coefficients

{L(Q.B) u(z,t) = f(z,t), (2,1) €G,

u(z,t) = o(z,t), (x,t) €8S. 23)

Here o2 5

L33 EE%Lw —CT Py
a, p> 0, ¢ >0, and the right-hand side f(z,t) is sufficiently smooth on the
set G; o(z,t) = .o (z,t), (z,t) € 5.

2.3. Usually, when constructing and studying difference schemes, it is as-
sumed that the problem data are sufficiently smooth, and compatibility con-
ditions are fulfilled on the set S, that ensure the inclusion v € C*2(G). It is
of interest to investigate the convergence of known difference schemes when
this inclusion is not fulfilled.

Lowering the smoothness of the solution of the boundary value problem
yields the decrease of the convergence rate of the difference schemes that are
developed for singularly perturbed problems with sufficiently smooth data. To
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recover the convergence rate of the difference scheme, it seems appropriate to
use the method of special grids that condense in neighbourhoods of both of
the boundary and interior layers.

Our aim is to construct difference schemes for the problems (2.2), (2.1)
and (2.3), (2.1) that converge e—uniformly, and to investigate their convergence
rate in the cases of nonsmoothness of various types in the initial-boundary
conditions such as the discontinuity in the first-order derivatives of the initial
function with respect to z and of the boundary function with respect to t,
and/or the absence of compatibility conditions at the corner points on the
set S,.

The investigation of the problem (2.3), (2.1) which is a model for the
problem (2.2), (2.1) allows us to avoid cumbersome technical constructions
required in the case of the problem (2.2), (2.1).

3. A Priori Estimates for the Solutions of Problem (2.3)

Here, we obtain some estimates on the solution of the boundary value problem
(2.3) and its derivatives. To derive these estimates, we apply the technique
developed in [13, 14, 15, 19], where the decomposition of the solution into its
regular ("sufficiently" smooth) and singular parts is used. We assume that

the functions f(z,t) and ¢(z,t) are sufficiently smooth on the sets G and §L,
SoF, Sy, respectively; p(z,t) € C(S).
3.1. We represent the set GG as the sum of overlapping subsets

G=U,0, j=123 (3.1)
where
G'=GYm') = {(z,t): |z] <m!, t e (0,7},
G?=G*m?) ={(x,t): r(z, ) <m? (z,t) € G},
G? =G*(m?®) = G\ {G'(m*) UG*(m?)}, m? <m!, m?,

r(z, I') is the distance from the point z to the set I', G'! and G2 are neigh-

bourhoods of the interior and boundary layers, respectively; let G ﬂ@g(b.
Sometimes for convenience, we denote by u’(z,t), j =1, 2, 3, the solution of

problem (2.3), (2.1) considered on the set G”. Using the results obtained in
[13, 14, 15], we establish the estimate
‘ akJrko

Ok Otko u(x,t)‘ <M, (z,t) € G’ k+2k <K (3.2)
Here, K is determined by the data of the problem, and K > 4.

3 Here and below, m, m‘, m; (or M, M*, M;) denote sufficiently small (or large)
positive constants which do not depend on € and on the discretization parameters.
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. . . —1
3.2. Let us investigate the solution of the problem on the set G . On the
—1 . .
set G, we introduce the function

(e, t) = u(z, t) exp(at), (z,t)e€q, (3.3)

where a = cp~!. In the case of the function %(z, t), problem (2.3) considered
on the set G is transformed into the following problem for the singularly
perturbed heat equation

~

o (z, 1), (v, t) € G, (3.4a)

N N ~
Lz.4u(z, t)= {52& 922 —pa} Uz, t) =

i N{a%’ 1), (@, 1) €SI\S,
T B, ), (xt) € SIS

Here, S is the boundary of the set G!, G' = G! Usth,

O(z, t) =v(z, t) exp(at), (3.4b)

where v(x,t) is one of the functions u(z, t), f(x,t), (z,t) € 61, oz, 1), (z,t) €
STN{t=0}, u3(x,b), (x,t) €G NG5 ud(a,t) = u(x,t), (1,) €G .

We represent the solution of boundary value problem (3.4) as the sum of
the functions

A, t) = Uz, t) + W(a, t), (z,1)€qG, (3.5a)

corresponding to the decomposition
w(z, t) = Uz, t)+ W(z, t), (z,1)€qG,

where U(x,t) and W (z,t) are the regular ("sufficiently" smooth) and singular
components of the solution, respectively; W (x, t) is the interior layer function.
The function U (x,t) has e—uniformly bounded derivatives with respect to
up to the K'th order and e—uniformly bounded derivatives with respect to ¢
up to the K/2th order. The function W(z,t) is the solution of the Cauchy
problem

LW (z, t) =0, (z,t) €G>, W(z, t)=Pw(z), z€ R, t=0. (3.6)
Here, G* = R x (0,77,

= 1 = 1 8k k—1
= 2~ nN— — > - .
By (z) =2 ;:1: (k1) [W (0, 0)} z|2*1, 2 e R
k R ak R ak R
|57 20, 0)] 5 B(+0, 0) = 5= 3(=0, 0)

k

is the jump of the derivative x, t) at the point (0, 0).

W@(
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The function U (z, t) is a solution of the problem
LigyU(z, t)=f(x, t), (z, t) € G,

s = 1
Ulz, t)= 7i (z,t) AW(x, t), (z,t)€ S, t>0,
Pz, t) — Pw(x), (z,t)eSL, t=0

For the function 17(33, t), the following estimate holds:

akJrko

P 1
oarare U@ t)

‘<M, (z,t) €G ', k+2k <K, (3.7)

which is established taking into account the smoothness of the data of the
problem; see [6].
The function W (z, t) can be represented as

o0

K-1
Wz, t) =Y Wiz, t), (z,t)eG; (3.5b)
k=1
here, W\k(m, t) is a solution of problem (3.6) with @y () defined by
~ [ o

Dp(x) =271 (k)! 5aF 2(0, 0)] le|2* 1, zeR, k=1,2,..,K—1.

The functions W\k(m, t) can be written in explicit form; for example, for the
function Wi (x, t), we have the representation

Wiz, t)=2"" L% @(070)] @y (, 1), (3.5¢)

Wy (2, t) =xv(2 e a2 p /2 p 71 /?)

+2r e 22 exp(—47 e 20 pa?tTh), (1) €GT,

v(x) is the error function
v(x) =erf(z) = 27T_1/2/ exp(—a?)da, z € IR.
0

Note that the first derivative of the function V/[Z(x, t) with respect to x is
bounded on G~ and has a discontinuity at the point (0, 0); the first deriva-

tives of the functions W\k(x, t), k > 2, are continuous on G .

. . . —1
It is convenient to represent the function u(z,t), (z,t) € G~ as the sum of
the functions

wz,t) = Uz, t) + Wiz, t), (x,t)eC, (3.8a)

where U (x,t) and W *(x,t) are the regular and singular parts of the solution,
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K—-1
Ula,t) = UMz, t; ) = Uz, t) + Y Wile,t), (a,t) €T ;

: k=it1 (3.8b)
Whz,t) =Wz, t; i) = > Wila,t), (2,t)€q,
k=1

where i =1, if
0
— (0,0 0, 3.9
5 410.0)] # (39)
and i = 2, otherwise. The functions U(z,t) and Wy(z,t) correspond to the

components in representations (3.5a), (3.5b); the functions W (x,t), Wa(z,t)
are defined in (,t) € G by the relations

Wi(z,t) = ﬁ./\l (z, t) exp(—at)

0 (3.8¢)
=271 [% (0, O)] {xv(271 e~ lq /2 pl/2 mtil/Q)

427 V222 p 124172 exp ( — 47 e 27 pa? til)} exp(—at),

Wa(z,t) = W (z, t) exp(—at)

82
=471 [@ (0, O)] { [2 +2e%aptt]v(2  e™! a~ M2 pl/2 g =1/2)

427 V2 g2 pm /2 g 1/2 exp(—47'e 20 pa? til)} exp ( — at),

where W]_ (ﬁ, t)Wl(B.E’)b) (x, t), WQ (ﬁ, t)WQ(gf)b) (x, t), O = ((3.3)-

Taking into account estimates (3.7) and the explicit form of the functions
Wi (z,t), we find the following estimates on the components in representa-
tion (3.8):

ak+k0 ‘ ‘ .
‘r;katko Ul(x,t)‘ SM 14tk piti=h=2ko] = (3 1) € G, (3.10)
8k+k0 ' ' B
‘axkatko_ Wl(x,t)‘ <M [1+etFpih=2ho exp(—me ! [z])], (z,t) €G,

where k+2ko < K, p = p(z,t; €) = e [z|+tY/2, i = i(3.81), m is an arbitrary
constant.

3.3. Consider the solution of problem (2.3), (2.1) on the set G’. The solu-
tion can be represented as the sum of the functions

w(z,t) = Uz, t) + V(e,t), (x,t)eC, (3.11)

where U(x,t) and V(z,t) are the regular and singular components of the
solution. The function U(z,t) is the restriction of the function U *(z,t),

(z,t) € 52*, to the set G . Here, U*(x,t) is a solution of the problem
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* % 2%
{L(g,g) U*(x,t) = f*(x,t), (x,t) € G, (312)
U*(z,t) = p*(x,t), (x,t) € S,
where G~ = G2* U S2*. The domain G2* is an extension of the domain
G'? beyond the boundary S*. The right-hand side of equation (3.12) is a
smooth continuation of the function f(z,t). The function ¢ *(x,t) is smooth
on each piecewise smooth parts of the set S2*, and it coincides with the
functions ¢(z,t) and u3(x,t) on the sets S2N Sy and S? N G3, respectively;

G” = G2 U S2. The function V(x,¢) is a solution of the problem

Les Vie, =0, (z,t) € G2,
V(a:,t):{‘p(x’t) ~U(x,t), (1) € ST
0, (mvt)GSQ\SL.

For simplicity, we assume that compatibility conditions are fulfilled on the

set S, = Sp N §L that ensures the local smoothness of the solution for fixed
values of ¢ [6]; we suppose also that the following inclusion holds on the set

@6, i.e., the —neighbourhood of the set S,:
we CHaral/AG%Y 1>2 ae(0,1), (3.13)

where ¢ is a sufficiently small constant. In that case, for the functions Uz, t),
V(x,t), we have the estimates for (x,t) € 52, k+2ko < K:

8k+ko

‘W U(x’t)‘ < M, (3.14a)
ok+ko

WV(%U' < MeFexp(—metr(z, I)). (3.14b)

Here, m is an arbitrary number in the interval (0, mg), where
mo = a2V, (3.15)

For example, in order to ensure the inclusion (3.13) for | = 4, it suffices to
require that the following compatibility conditions are satisfied (compatibility
conditions on the derivatives up to the second order with respect to ¢ [6]):

o(z®,t) = p(z,t +0), (3.16)

20 2\ ot )= p 2 (et 4+0) = flat

4.2 0 2 O 2 + 2 0
eta @—26 acw—i—c ez ,t) —p ﬁcp(a:,t—k())

ol eip 2V pen. @oes
= Eaax2 C pat Z,l), Z, * 9

where 2t = 2% (2), 2% (2) = —d + 0 for 2 = —d, ¥ (z) =d — 0 for z = d.
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Theorem 1. In the boundary value problem (2.3), (2.1), assume that [ €
Clb/2(G), o € C(S)N{CH(Sy)UCh(SH)uCh2@E, 1y = 1+ a,
Il = K, a € (0,1), and that the condition (3.13) is satisfied for the solu-
tion of this problem. Then the solution of the boundary value problem and its

components in representations (3.8), (3.11) satisfy the estimates (3.2), (3.10),
{(3.14),3.15)}.

Remark 1. For small values of the parameter ¢, z-derivatives of the solution
to problem (2.3), (2.1) vary sharply in a neighbourhood of the characteristic
S7, moreover, in the nearest neighbourhood of S (for |x| = o(1)), the first
derivative with respect to = is bounded whereas the higher derivatives with
respect to x grow unboundedly for |z| = O(et'/?), et'/? — 0, and they
become bounded for e~!'¢t=1/2|z| — oo, et'/2 = O(1). The interior layer,
i.e., the transient parabolic layer, is a solution of the boundary value problem
in a neighbourhood of S7, out of which the derivatives with respect to = are
bounded. The interior layer generated by the piecewise smooth initial function
is weak.
From estimates (3.11), the next estimate follows

0 _
5 u(a:,t)} <M [ a| + Y27 for ez + /2 <m,

0
i.e., the derivative — u(z,t) is not bounded in a neighbourhood of the point

(0,0). Thus, the singularity of the solution that is generated by the discon-
tinuity in the first derivative of the function ¢ (x,t) with respect to = at the
point (0,0) turns out to be essentially stronger than its singularity generated
by the discontinuity in the first derivative of the function ¢ (z,t) with respect
toton SE. O

3.4. In the case of problem (2.2), (2.1), the function W !(z,t) in the rep-
resentation of its solution on G in the form (3.8a) is defined by the relation

Wiz, t) =Y Wilz,t), (@) e€C, i=igay. (3.17a)
k=1

The functions Wi (z, t), Wa(x, t) that are defined by relations (3.8c) are so-
lutions of the problems

0? 0
Lo Wita: ) = {2 a0(t) 55 = o) = m(0) 1 | Wae, ) =0,
(z,t) e G=,
[0
Wi(z, 0) =2 E ©(0,0)| |z|, =€ R, (3.17b)

Ligam Wal(z, t) = Fi(z, t), (v, t) € G™,
a2

Wg(ﬁ, 0) = 4_1 @ 2]

(0,0)} zlz|, =€ R.
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Here G = G(%‘fG),

2
Fi(z,t)=—x {62 a (t) % —c1(t) —pi(t) %} Wiz, t), (z,t)e G,

0
t) = t t) = — 4
UO( ) U(Ov )7 Ul( ) Oz ’U(Ov )7
where v(z, t) is one of the functions a(z, t), ..., p(z, t).
In the case of problem (2.2), (2.1), we have the following result, which is
similar to Theorem 1 (see [19]).

Theorem 2. In the boundary value problem (2.2), (2.1), assume that a, ¢, p,
feCh@), o e C(S)NCH (S7)UCH (STIUCHAS ), 1y = 1+a, | =
K, a€(0,1), and that the condition (3.13) is satisfied for the solution of this
problem. Then the solution of the boundary value problem and its components
in representations (3.8a), (3.17), (3.11), satisfy the estimates (3.2), (3.10),
(3.14); the constant m in (3.14b) is an arbitrary one in the interval (0, myg),

where
mo = min [ail/z(x, t) 2 (x, t)]. (3.18)
G
Remark 2. In the case when condition (3.13) in Theorem 2 is violated, the

=2 . .
component V(z, t), (x, t) € G, satisfies the estimate

‘ akJrko

ERE V(gc,t)‘ <Me F[14p2F 2k ] exp (—me ' r(z, ), (3.19)
where m € (0, mg), mo = moz.1s), p = p(x,t; ) =e Lr(x, I') + /2.
This statement is valid also for Theorem 1 provided that mo = mg(3.15)-

4. Classical Approximations of Problem (2.3), (2.1) on
Uniform Grids

Let us construct a difference scheme based on the classical approximation
of the boundary value problem (2.3), (2.1) when initial and boundary func-
tions are piecewise smooth, and they are only continuous on S, (in this case,
estimates (3.2), (3.10), (3.14a), {(3.19), (3.15)} take place). We study the con-
vergence of this scheme for not too small values of the parameter ¢ compared
to the step—size of the uniform mesh with respect to x. The technique used
to construct and investigate these schemes is similar to that used in [19] for
the parabolic convection—diffusion equation (see also [2, 8, 13, 14, 15, 19]).

4.1. On the set 5(2_1), we introduce the rectangular grid
G =Dj, X @y = X Wo, (4.1)

where @ and @; are meshes on the intervals [—d, d] and [0, T'], respectively.
The mesh @ has an arbitrary distribution of nodes satisfying only the condition
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h < MN~!, where h = max; h?, h' = '+ — 2t 2%, 2"t € @. The mesh @y
is uniform with the step—size ho = T'N, ! Here, N +1 and Ny + 1 are the
numbers of nodes in the meshes W and @y, respectively.

We approximate boundary value problem (2.3) by the finite difference
scheme [10]

Aoy z(z,t) = f(z,t), (z,t) € Gp,
(4.2)
z(x,t) = p(x,t), (x,t) € Sp.

Here A0 = e2adzz — ¢ — pdy,
Szz2(,t) 2zz(w,t) = 2(h" + A1) 6, 2(2, ) — dz2(w, b)),

(x,t) = (2°,t) € G}, is the second difference derivative on a nonuniform mesh,
0,2(x,t) and dzz(x,t), 0f z(x, t) are the first (forward and backward) difference
derivatives,

Sp2(z,t) = (hi)71 (2(z1,t) — 2(2, 1)),
0zz(x,t) = (hi_l)_l (z(2,t) — 2(a" ", 1)),
srz(z,t) =7 (2(2',t) — 2(a’, t — 7).

Difference scheme (4.2), (4.1) is e—uniformly monotone (see [10]). The fol-
lowing version of the comparison theorem holds.

Theorem 3. Let the functions z'(x,t), 2%(x,t), (x,t) € G, satisfy the condi-
tions

Az (z,t) < AZ%(x,t), (x,t) € Gh, 2'(x,t) > 2%(x,t), (x,t) € Sp.
Then z'(x,t) > 22(x,t), (x,t) € Gh.
Consider scheme (4.2) on the uniform grid
G, =W X Wo. (4.3)

Let, for the initial function ¢(x,t), condition (3.9) be satisfied. Using a priori
estimates (3.2), (3.10) for ¢ = 1, (3.14) for the solutions of problem (2.3) and
the majorant function technique from [10], and using reasoning similar to that
employed in [13, 14, 15, 19], we find the estimate
lu(z,t) — z(z,t)| <M [N""+ (e+ N"H)"2N > In(M; + e N)
+eNy PN I No],  (3,t) € G (4.4)

Here we used the majorant function w(x,t) satisfying the condition

) 52 L 64
Aw(z,t) < —M{amln [ IﬂIrleaﬁX ‘—8;102 u(z,t)|, N Iileag( ‘—8;104 u(a:,t)H
(7,0) ¢ 5 (7,0) €5
(z,t)7#(0,0) (,t)7#(0,0)

. 0 _ 02 _
+ min [ Eleag( ‘E u(, t)‘, Ny* Iileag( ‘@ u(, t)H }, (z,t) € G.
(@, )¢5 (5, V€S

(z,£)#(0,0) (w,t)7#(0,0)
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Thus, scheme (4.2), (4.3) converges under the condition N ~! = o(¢); for fixed

values of the parameter ¢, the scheme converges at the rate O(N ! + N, 1 2).

Let a priori estimates (3.2), (3.10), (3.14a), {(3.19), (3.15)} be fulfilled for
K =4, and let the component Wi (z,t) in representation (3.8) vanishes, i.e.,

Wi(z,t) =0, (2,t)eG . (4.5)

In that case, the following relation holds:

[a% ©(0, 0)} =0, (4.6)

i.e., the derivative (0/0x) p(z,t) is continuous on Sy. For scheme (4.2), (4.3),
taking into account the a priori estimates (i = 2 in (3.10)), we obtain the
estimate for (z,t) € Gy:

lu(z,t) — z(z, )| < M [(e+ N~ 2N~ In(M; + e N) + Ny " In Ny, (4.7)

the finite difference scheme converges for fixed values of the parameter ¢ at
the rate O(N~2In N + Ny ' In Np).
But if the component V(x,t) in representation (3.11) vanishes, i.e.,

Ve, t) =0, (z,t) G, (4.8)
(the fulfillment of condition (4.5) is not assumed), we have the estimate
lu(z,t) = z(z,t)] < M [NV No '+ Ny V2], (2,t) € Gy (4.9)

Thus, under condition (4.8), scheme (4.2), (4.3) converges e—uniformly at the
rate O(N~! + N, '/?).

In that case when both conditions (4.5) and (4.8) are fulfilled (we denote
this case by {(4.5), (4.8)}), the following estimate holds for (z,t) € G:

lu(z,t) — 2(2,t)| < M[N"2In(M; +eN) + Ny ' + 2Ny ' In No|,  (4.10)

ie. scheme (4.2),(4.3) converges c—uniformly at the rate O(N—2 InN +
Ny InN).
The following theorem takes place.

Theorem 4.1. Let the estimates (3.2), (3.10), (3.14a), {(3.19), (3.15)} with
K = 4 be satisfied for the solution of problem (2.3), (2.1) and its components in
representation (3.8), (3.11). Then the difference scheme (4.2), (4.3) converges
under the condition N~! = o(c). Under condition (4.8), the scheme (4.2),
(4.3) converges e-uniformly. The discrete solutions satisfy the estimate (4.4);
and, in the case of conditions (4.5), (4.8) and {(4.5), (4.8)}, they satisfy the
estimates (4.7), (4.9) and (4.10), respectively.

Remark 3. From estimates (4.4), (4.7) it follows that the discontinuity of the
first-order derivative with respect to x of the initial function leads to a de-
crease of the convergence rate of the scheme (4.2), (4.3) for fixed values of the
parameter €. Under this, the convergence order decreases two times up to a
logarithmic factor.
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4.2. Let us give estimates for solutions of the difference scheme (4.2), (4.3)
in the case when the first-order derivative with respect to ¢ of the function
¢(z,t) has a jump discontinuity on the set S*, and when weakened compat-
ibility conditions are given on the set S, compared with the condition (3.17)
required usually to ensure the inclusion u € C*2(G).

Let the boundary function o(z,t) be sufficiently smooth on the sets Sy

and ?L, and let a compatibility condition be satisfied on the set S, for the
data ¢(x,t), (z,t) € S and f(z,t), (x,t) € G that ensures only the continuity
of the derivative (0/9t)u(x,t) on S, (i.e., a compatibility condition for the
first-order derivative with respect to ¢ is satisfied; see [6])

o(x®,t) = ¢(z,t +0), (4.11)

02 0
{EQCL@ _C} @(xi,t)—pgw(x,t—&—o) = f(xvt)’ (xvt) €S, a* = x(i3.16)'

We call problem (2.3), (2.1) with such data the standard problem. The deriva-
tive (0%/0t?) u(x,t) on S, for the standard problem, in general, is discontin-
uous; u ¢ C*2(G). In this case, for the solution of difference scheme (4.2),
(4.3), we obtain the following estimate that is similar to estimate (4.7):

lu(z,t) —z(z, )| S M [e+ NN 2+ Ny, (z,t) € G (4.12)
Thus — even under the weakened condition (4.11) — the estimate of the con-
vergence rate is the same as it is under the condition (3.17).

Let the boundary function be sufficiently smooth on the set Sy, and be

. . =L . .
piecewise smooth on the set S, and assume that the first-order derivative
with respect to ¢ of the function o(x, t) has a discontinuity at the point
(330, t()) S SL, to € (0, T], i.e.,

[% (o, to)} #0, (zo, to) € S*, (4.13)

and let only the continuity condition be imposed for the function ¢(z, t) on
the set S,:

oxtt) = o(x,t +0), (x,t) €S., a*= xém) (). (4.14)

The fulfillment of a compatibility condition for the first-order derivative with
respect to ¢ is not assumed; in this case, the derivative (0/0¢) u(z,t) on the set
S., in general, is discontinuous [6]. Then, for the discrete solution, we obtain
estimate (4.7), i.e., the same one as (4.12) up to logarithmic factors.

5. A Difference Scheme for Problem (2.3), (2.1)
on Piecewise Uniform Meshes

Let us consider the behaviour of solutions to difference scheme (4.2), (4.1)
when piecewise uniform meshes are used, and various types of nonsmoothness
in the initial-boundary function ¢(z,t) take place.
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5.1. On the set G, we construct the grid condensing in a neighbourhood

of the boundary layer; this grid is similar to that constructed in [2, 8, 13, 14,
15, 19]

Gr =Dy xwWy=w"* x T, (5.1a)

where Wy = Wy(4.1), @* = @*(0) is a piecewise uniform mesh on [—d, d], and
o is a parameter depending on ¢ and N. We choose o so as to satisfy the
condition
o =0(N,e)=min[3, 2m e In N], (5.1b)

where (3 is an arbitrary number in the interval (0, d), m € (0, mqs.15)). The
interval [—d, d] is divided into three parts: [—d, —d + o], [-d + 7, d — 0]
and [d — o, d]; in each part, the mesh step-size is constant and is equal to
hY) = 2do 3~ N~! on the intervals [~d, —d + o], [d — 0, d] and to h(?) =
2d(d—o)(d—3)"' N~! on the interval [~d + 0, d — 0], 0 = 0(5.1)-

We call the difference scheme (4.2) on piecewise uniform mesh (5.1) the
basic scheme for problem (2.3), (2.1).

5.2. In that case when the function ¢(x,t) satisfies the condition (3.9), and
taking into account a priori estimates of the boundary value problem (2.3),
we obtain the following estimate for the solution of the basic scheme:

| u(z, t)—2(z,t) |[< M {Nﬁl —|—8N0_1/2 + Ny * lnNo] , (x,t) € Gp; (5.2a)
and the following e-uniform estimate also holds:
|u(a,t) — 2(z,t) |< M [N—l + Ngl/z] . (2,1) € Gn. (5.2b)

In that case when the initial function ¢(z,t) satisfies condition (4.6), we have
the estimate

| u(z,t) — 2(z,t) <M [N 2 N+ Ny ' InNo|, (2,t) € Ghr. (5.3

Theorem 4. Let the hypotheses of Theorem 4.1 be fulfilled. Then, the solution
of the basic difference scheme (4.2), (5.1) converges e-uniformly. The discrete
solutions satisfy estimate (5.2); and, under condition (4.6), they satisfy esti-
mate (5.3).

5.3. We expose estimates of the discrete solutions in the case of a discon-
tinuity in the first derivative of the function o(z,t), (z,t) € ST, with respect
to t, and under weakened compatibility conditions given on the set S..

For the standard problem (see Subsection 4.2), we have the estimate
|u(z,t) — z(z,t) <K M [N2In® N+ Ny '], (2,t) € Gy (5.4)

But if the initial-boundary function ¢(z,t) is smooth on Sy, and is piecewise
smooth on §" (for the function ¢(x, t), condition (4.13) holds), moreover, for
the function ¢(z, t) on the set S,, the continuity condition (4.14) be imposed
only, then we obtain the estimate (5.3) for the discrete solution, i.e., the
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estimate (5.4) up to the logarithmic factor with respect to Ny. Thus, the
absence of compatibility conditions on S, (except the continuity of ¢(z, t)
on S.), and also discontinuities of the derivatives (9/0t) p(x,t) on St do
not significantly worsen the estimate (5.4); estimates (5.3) and (5.4) differ
only by logarithmic factors acting to N=2 and N, L

From comparison of the estimates (5.2) and (5.4), it follows that the dis-
continuity of the first-order derivative with respect to = of the initial function
leads to an essential decrease of the convergence rate for the special scheme
(4.2), (5.1). When the initial function is piecewise smooth, and it satisfies the

condition [a% ©(0, 0)} # 0, then, the order of the e-uniform convergence rate
of the scheme decreases two times up to the logarithmic factor acting to N.

5.4. Let condition (3.9) hold for the function ¢(x,t). Under the hypotheses
of Theorem 4.1, the use of meshes that condense in both boundary and interior
layers allows us to improve the scheme convergence for small values of the
parameter €.

Let us consider scheme (4.2) on the mesh

G =" x Wy, (5.5a)

that condense in neighbourhoods of the sets S Land S7, i.e., in neighbourhoods
of the boundary and interior layers. In G,(5.54), @Wo = Wo(4.1), @ =@ " (0)
is a piecewise uniform mesh; we choose the value o satisfying the condition

o=min[B, 2m e InN], (5.5b)

where m = ms.1), § is an arbitrary number in the interval (0, 271d). The
mesh @** is constructed to be symmetric with respect to the middle of the
interval [—d, d]. The interval [0d] is divided into three parts: [0, o], [0, d — 0]
and [d— o, d]. In each part, the mesh step-size is constant and equal to rD =
2do 371 N~ on the intervals [0, o], [d— 0, d] and to h?) =2d(d—20) (d—
23)"! N~! on the interval [0, d — o].

We call scheme (4.2), (5.5) the improved difference scheme for problem
(2.3), (2.1). When the hypotheses of Theorem 4.1 are fulfilled, for the improved
difference scheme, we obtain the estimate

| u(z,t) — z(z,t) |[< M [N? In? N 4+ & N~ minfe In N, 1]
+ N Ny +e Ny 2], (2,) € Gr; (5.6

this estimate is obtained similarly to (4.4). For small values of the parameter
g, the convergence rate of the improved difference scheme (4.2), (5.5) is better
than that for the scheme (4.2), (4.3), however, for fixed values of the parameter
g, the convergence rate of these schemes is the same.

6. A Difference Scheme for Problem (2.2), (2.1)

We consider the problem (2.2), (2.1), assuming that initial-boundary condi-
tions of this problem are the same as those for the problem (2.3), (2.1). The
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construction and investigation of a difference scheme for problem (2.2), (2.1)
is carried out similarly to those in Sections 4, 5.

6.1. The problem (2.2), (2.1) is approximated by the finite difference
scheme [10]
Aeay z(z,t) = f(z,t), (x,t) € Gy,
(6.1)
Z(Qf,t) = Qa(xat% (l‘,t) € Sh-

Here @h = éh(zl.l)a
Ay = e2 a(x,t) 0zz — c(x,t) — p(x,t) 57.

For solutions of the difference scheme (6.1) on uniform mesh (4.3), the
same estimates are valid as for the scheme (4.2), (4.3) (see Subsection 4.1).

When constructing an e-uniform convergent scheme, we use the piecewise
uniform mesh

Gp = ah(5.1a) (0), o= 0(5.1b) (m), (6.2)

where m is an arbitrary constant in the interval (0, mo), mo = mg(s.15). We
call the difference scheme (6.1) on piecewise uniform mesh (6.2) the basic
scheme for problem (2.2), (2.1).

For the basic scheme (6.1), (6.2), e-uniform estimates are valid that are
similar to those for the basic scheme (4.2), (5.1) for problem (2.3), (2.1).

Theorem 5. Let the solution of problem (2.2), (2.1) and its components in
representations (3.8a), (3.17), (3.11) satisfy estimates (3.2), (3.10), (3.14a),
{(3.19), (3.18)} for K = 4. Then, the basic difference scheme (6.1), (6.2)
converges e-uniformly, whereas the scheme (6.1) on the uniform mesh (4.3)
converges under the condition N~! = o(e). For solutions of the basic differ-
ence scheme (6.1), (6.2) (scheme (6.1), (4.3)), estimates (5.2) (the estimate
(4.4)) are valid, and, in the case of condition (4.6) (conditions (4.6), (4.8)
and {(4.6), (4.8)}), the estimate (5.3) holds (estimates (4.7), (4.9) and (4.10)
hold, respectively).

6.2. In the case of difference schemes (6.1), (4.3) and (6.1), (6.2), results
are valid that are similar to those obtained in Subsections 4.2, 5.3 and 5.4. In
particular, under condition (3.9), for solutions of the basic difference scheme
(6.1), (6.2) estimate (5.2b) holds; in the case of condition (4.6), we have es-
timate (5.3). In estimates (5.2b), (5.3), the function u(z,t) is the solution of
problem (2.2), (2.1).

Let the boundary function o(z,t) be sufficiently smooth on the sets Sy
and §L, and let the compatibility conditions be given on the set S, :

@(xi, t) = p(x,t +0), (6.3)

2
{52 alz, t) % —e(z, t)} oz, t) —p(a, t) % o(z,t+0) = f(z,1), (z,t) €S,
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where 2% = x(i&w) (). We call problem (2.2), (2.1) with such data the stan-

dard problem. The solution of the basic difference scheme (6.1), (6.2), in the
case of the standard problem, satisfies the estimate (5.4).

Let the condition (3.9) be satisfied for the function ¢(z,t). Consider
scheme (6.1) on the mesh condensing in neighbourhoods of boundary and
interior layers:

Gn = Gus.52)(0), 0 =0(5)(m), (6.4)

where m is an arbitrary constant in the interval (0, mg), mo = mq3.1s). Dif-
ference scheme (6.1), (6.4) is the improved difference scheme for the problem
(2.2), (2.1).

For the solution of the improved difference scheme, estimate (5.6) holds.
From this estimate, it follows that, under the condition

e< M[N~'+ N, 3, (6.5a)
the following estimate takes place:
| u(z,t) — 2(z,t) <K M [N2In> N+ Ny ' InNo|, (2,t) € Gp. (6.5b)

Where the e—uniform convergence is attained only when the value of the
parameter ¢ is bounded by a function of N and/or Ny, we say that the scheme
converges conditionally e—uniformly; otherwise, we say that the scheme con-
verges unconditionally e—uniformly (or, shortly, e—uniformly).

Thus, the use of meshes (6.4) instead of (6.2), in general, does not improve
the unconditional e-uniform convergence rate of scheme (6.1). However, under
condition (6.5a), scheme (6.1), (6.4) converges conditionally e-uniformly at the
rate O(N~2 In* N + Ny ' In Ny), i.e., with the rate that is considerably better
than that for basic scheme (6.1), (6.2).

Remark 4. Grid approximations to singularly perturbed parabolic convection-
diffusion equations in the presence of a discontinuity of the first derivative of
the initial function with respect to = have been considered in [7, 19]; approx-
imations to solutions and their first derivatives (in [7]), and the derivatives
(OFFFo Joxk otk ) u(w, t), k + 2ko < 2 (in [19]) have been studied in a neigh-
bourhood of the moving interior layer. Theoretical investigations [7, 19], and
numerical experiments [7] have been shown that discrete solutions on the mesh
that is uniform in a neighbourhood of the interior layer, converge e-uniformly
at the rate O(N~Y/2 + N, '/%). The observable (in [7, 19]) decrease of the
convergence rate with respect to = compared to the estimate (5.2b) is caused
by the presence of the convective term in the differential equation.
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