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Abstract. We construct the Fudik spectrum for some third order nonlinear bound-
ary value problems. This spectrum differs essentially from the known Fuéik spectra.
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1. Introduction

In this paper we study the Fucik spectra for third order equations with piece-
wise linear right sides. Investigations of the Fuéik spectra have started fifty
years ago [3]. A number of authors have studied the specific cases. Let us
mention the cases of the Dirichlet [3] and the Sturm-Liouville [5] boundary
conditions. There are some papers on higher order equations. Habets and
Gaudenzi have studied the third order problem with the boundary conditions
z(0) = 2'(0) = 0 = z(1) in [1], where many useful references on the subject can
be found. The Fucik spectrum for the fourth order equations was considered
by Kreidi [2] and Pope [4].

The paper is organized as follows. In Section 2 we present results on the
Fuéik spectrum for the third order problem with the boundary conditions
z(a) = 2'(a) = 0 = x(b) and compare them with the results for the boundary
conditions z(a) = 2z'(a) = 0 = 2/(b). In the proof we reduce the third order
problem to the second order problem with the boundary conditions includ-
ing a nonlocal (integral) condition. We construct the Fuéik spectra for these
problems. These are the main results of the work. A connection between the
spectra are discussed in Section 3.
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2. The Fucik Spectra for Some Third Order Boundary
Value Problems

Consider a boundary value problem
2" = —prt N2, u, A >0,
z(a) =0, 2'(a) =0, z(b) =0,

where we use notation

2T =max{z’,0}, 2’7 =max{-2’,0}.

DEFINITION 1. The Fuéik spectrum is a set of points (A, i) such that problem
(2.1) has nontrivial solutions.

The first result describes a decomposition of the spectrum into branches
Ffand F7 (1=0,1,2,...).

Proposition 1. The Fudik spectrum consists of the set of curves

Etr ={(\p): 2"(a) >0, the derivative 2’ (t) of a nontrivial solution of

2

the problem has exactly i zeroes in (a,b)},
F7={(\p): 2"(a) <0, the derivative z'(t) of a nontrivial solution of
the problem has ezxactly i zeroes in (a,b)}.
Now we formulate the main result of this work.

Theorem 1. The Fucik spectrum for the problem (2.1) consists of the branches
given by
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where 1 =1,2,....

Proof. Let us consider problem (2.1). We introduce the notation 2’ = y, then
problem (2.1) reduces to

Y =Pyt + Ny, A >0, (2.2)

yT = max{y,0}, y = max{—y,0},

with the boundary conditions

b

y(a) =0, /y(s)ds =0. (2.3)

a

t
Let us set 2(t) = [y(s)ds, then 2/ (t) = y(t) and equation (2.2) reduces to the
equation (2.1). It follows from conditions (2.3) that

a b

2'(a) =y(a) =0, z(a)= /y(s)ds =0, z(b)= /y(s)ds =0.

a a

That is why problems (2.1) and (2.2), (2.3) are equivalent.

In the following we consider problem (2.2), (2.3). It is clear that y(¢) must
have zeroes in (a,b). That is why F¥ = (). We will prove the theorem for the
case of F". Suppose that (A, ) € F;' and let y(t) be a respective nontrivial
solution of problem (2.2), (2.3). The solution has only one zero in (a,b) and
y'(a) > 0. Let us denote this zero by 7.

Consider a solution of problem (2.2), (2.3) in the interval (a,7) and in the
interval (7, b). We obtain that problem (2.2), (2.3) in these intervals reduces to
the linear eigenvalue problems. So in the interval (a,7) we have the problem

y' =ty
{y(a) =0, y(r) =0,

but in the interval (7,b) we have the problem y” = —p?y with boundary
condition y(7) = 0. In view of (2.3) solution y(¢) must satisfy the condition

T b

[ods=| [ts)as) (2.4)
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Since y(t) = Asin(ut — pa) (A > 0) and y(7) = 0 we obtain 7 = T + a.
I
In view of this equality it is easy to get that

T

/Z/(S)dé’ = g(l —cosp(r —a)) = —.

a

We have also -
y'(; +a) = —pA. (2.5)

Now we consider a solution of problem (2.2), (2.3) in [r, b]. Since a general

solution is given by y(t) = —Bsin(At — A% — Aa) (B > 0), we obtain

b
‘ /y(s)ds‘ = ?(1 — cos(Ab — Ag — Aa)).

We have also that -
y’(; +a) = —)AB. (2.6)

AB
It follows from (2.5) and (2.6) that A = o In view of the last equality and
(2.4) we obtain that

2;\—23 = %(1 — cos(Ab — )\% — Aa)).

Dividing it by B and multiplying by u, we obtain that

2\ p N weos(A(b—a) — %’T)
woooA A

= 0. (2.7)

Considering the solution of problem (2.2), (2.3) it is easy to prove that a <
Teb<Zly g This result and (2.7) prove the theorem for the case of F;".

[ [
The proof for other branches is analogous. B
Corollary 1. The spectrum of problem (2.2), (2.3) is given by formulas from
Theorem 1.
Now let us consider the spectrum of the problem

" = —pPft 4+ N2, op, A >0,
(2.8)
z(a) =0, 2'(a) =0, 2'(b) =0.

A decomposition of the Fucik spectrum for problem (2.8) into branches F;"
and F;” (1 =1,2,...) is the same as that for problem (2.1).
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Theorem 2. The Fucik spectrum for (2.8) consists of the following branches:
+ T -_ T
FO _{(Avb_a)}v FO {(b_anu)}a

moaT

th‘fl:{(AaH): E+7:b_a}’ F;g:{(/\,ﬂ);

F2_i—1:{()‘a,u)5 %+i;=b—a}, Fz_i:{()\,,u): i—ﬂ—k(i—i_l)ﬂzb_a}’

where i = 1,2,....

Proof. Consider problem (2.8). We introduce the following notation 2/ = y.
Then problem (2.8) reduces to the Fuc¢ik problem

"o__ 2, 4+ 2 _
= - + Xy, pu,A>0,
{y 12y Yo, w 29)

y(a) =0, y(b)=0.

t
Set z(t) = [ y(s)ds, then 2/(t) = y(t) and equation (2.9) reduces to equation
(2.1). In view of the conditions of problem (2.9), we obtain that

a

F(a) =0, yla)=0, #'(B) =0, y(b) =0, z(a) = /y(s) ds = 0.

a

Notice that problem (2.9) is the classical Fu€ik problem, which was investi-
gated in [3]. The proof of this theorem is given in [3]. B

Corollary 2. The spectrum of the problem (2.9) is given by formulas from
Theorem 2.

A visualization of the spectrum of problems (2.1) and (2.8) in the case of
a=0,b=11is given in Fig. 1 and Fig. 2.

At the end of this section we would like to give some properties of the
spectra of problems (2.1) and (2.8):

e branches of spectrum for problem (2.1) are finite, while branches of spec-
trum for problem (2.8) are infinite;

e all positive branches F;" constitute a continuous curve, which is located
above the bisectrix, similarly all negative branches F;” constitute a con-
tinuous curve, which is located below the bisectrix for problem (2.1);

e the curves Fy, | and Fi have a common point which is eigenvalue of
the corresponding linear problem, the curves Fy and Fj, 41 have a com-
mon point which is not eigenvalue of the respective linear problem for the
associated problem (2.1).



232 N. Sergejeva

1

6m """ :
[ um—. ."\... . SR
4qprTEf
3

V2 ek i

T 9 3r Ar 5x 67 )

Figure 1. The Fucik spectrum for Figure 2. The Fucik spectrum for
problem (2.1). problem (2.8).

3. Connection Between the Spectra

Consider the boundary value problem

" = —pPat + N2, op, A >0,
{ g g (3.1)

z(a) =2'(a) =0, ax()+(1—-a)z’(b)=0, «ec]|0,1].

Theorem 3. The Fudik spectrum for problem (3.1) consists of the branches
given by
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+ Asin (,u(b—a) - ? —|—m') — aAsin (,u(b—a) - % —i—m’) =0,

(it — D)

+i—7r<b—a Z.—7T—i-i—ﬂ->b—a}
A Tu A ’
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Remark 1. If o = 0 we obtain problem (2.1). In case of & = 1 we have problem
(2.8).

The branches Fli to F5i of the spectrum for problem (3.1) are presented
in Fig. 3 for several values of « in the case of a =0, b = 1.

Figure 3. The Fucik spectrum for problem (3.1) for some values of a.
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