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Abstract. Some propositions on A-boundedness for generalized Norlund method
of summability (N, P,), where P, are bounded linear operators from Banach space
X into X, are proved. Using these results we have verified some propositions on
convergence acceleration by A and several Tauberian remainder theorems for gen-
eralized Nérlund method.
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1. Introduction and Lemmas

Let X, Y be Banach spaces and £ (X,Y") be the space of all bounded linear
operators from Banach space X into Y. A sequence x = (&) (&, € X) is called
A— bounded if

Flimé&, =& A B =M (& — &) A B =0 (1),

where A = (\) is a sequence of real numbers with 0 < A\, / 0.

Let m’ be the set of all A—bounded sequences. A sequence z = (&)
is called summable (see [24] and [5]) by a generalized method A = (4,x),
Anr € L(X,Y) if y = (n,) with

M=) Ankér (1.1)
k=0

is convergent. Let u = () with 0 < pg / 0o. The transformation A is called
preserving A\-boundedness (see [6, 15, 22]) if Am’ C m3-. The transformation
A is called accelerating A\-boundedness if

Amy € mh, (1.2)
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with lim g /Ay = oco. A method A = (A,;) with A, € £(X,X) is called
regular if Acx C c¢x and lim, 7, = limg &, while cx is a set of convergent
sequences with &, € X and 7, is defined by (1.1). We denote by I and 6 the
identity and zero operator on any Banach space, respectively.

Kornfeld (see [8]) proved that any regular numerical method of summa-
bility can not accelerate universally the convergence. It is proved in [22] that
any regular triangular generalized method A can not accelerate the conver-
gence. Regardless of this fact in applied mathematics linear methods are used
to accelerate the convergence (see [19]). Such acceleration is possible in some
subsets of m’;. The present article is a sequel to the inquiries [19]—[23] and
[10]. Main results of convergence acceleration using nonlinear methods are
presented in [3].

Different mathematicians have studied various generalizations of Norlund
method, see for example [2, 4, 7, 9, 12, 16]. We denote by (N, P,) or N the
generalized Norlund method of summability defined (see [1, 11] and [21]) by

RnPn—k, (k = O7 1, ey n)7
A = 1.3
¢ {9, (k > n), (13)
where Py, R, € L(X,X), while R, is defined by
Rp> PoiC=( (C€X, neNy). (1.4)

k=0

If P, =1 (k€ Ny), then we get the method of arithmetical means H. If
a € R with —a ¢ N and P, = (Hz*l)l, then we get Cesaro method C* (see
also [18]). f « e R\ {0}, Po=al, P =(1—«)l and P, =0 (k> 1), then
we get Zweier method Z,,.

Let us define a generalized method B = (N, B,+1 — B,) using the se-
quence of operators B,, € L (X, X) satisfying the conditions B, ! € £ (X, X),

(n+ 1) |Buss — Bal = O(IBul), Bo=6, B,#6, (neN) (L5)

To prove our propositions we use next lemmas (see [11] and [22]).

Lemma 1. Matriz transformation (1.1) with X =Y is regular iff the condi-
tions

3 lim A, ¢ = A (CeX, ke Ny), (1.6)
3 lim Y Ani¢ = Ag (s € X), (1.7)
" k=0
p
sup || > Anréill = O(1) (n,p € No), (1.8)
[€k|<1 k=0

while A=1 and Ax = 6 (k € Np), are satisfied.
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Lemma 2. Let Ay, € L(X,Y), A = (Anx) and ex () = (¢,(,...) with
e X. If

in the norm, then the conditions
Aex(¢) e mf (¢ € X), (1.10)
S AR < o0, (1.11)
k
pn Y A [ Ank — Axll = O(1) (1.12)
k

are sufficient for the inclusion (1.2).

2. Convergence Preservation and Convergence
Acceleration

Proposition 1. The conditions

i [ B[ || il = 0, (k= 0,1,...,n), (2.1)
1R 1Pl = O1) (2.2)
k=0

imply that the method (N, P,) is regular.

Proof. Let us use Lemma 1 to prove the assertion of Proposition 1. Using
(1.4) we get

Ry > PoxC=1I( (C€X,neNy).
k=0
That means the condition (1.7) is satisfied. Using the properties of the norm
and (2.1) we get

| BaPaciC|| S IRl 1Pkl IS =0 (€€ X, k=0,1,....m).

Therefore the condition (1.6) is satisfied. If || || < 1, then using the properties
of the norm and (2.2) we get

p n n
| RaPaste|| < D MR IPa-rll gl < IR 1PN = O(1),
k=0 k=0 k=0

while n,p € Ny. So the condition (1.8) is satisfied. That means all the condi-
tions of Lemma 1 are satisfied and the assertion of Proposition 1 follows from
Lemma 1. B

As in [22] is proved that any regular triangular generalized method of summa-
bility A = (Ang), satisfying the condition >°;'_, A,, = I, can not accelerate
the convergence, we get the Corollary 1.
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Corollary 1. If the generalized method of summability (N, P,) satisfies the
conditions (2.1) and (2.2), then this method can not accelerate the conver-
gence.

Corollary 2. The conditions (1.5) and

hrrlnHBr:JllH ||ank+l _ank” =0 (kzov]-v"'vn)v (23)
1Bl 1Bria = Bil = 01) (2.4)
k=0

imply that the generalized method B is regular.
Proposition 2. The conditions (2.1), (2.2) and

pn > N IR Pk = O(1) (25)

k=0

are sufficient for the inclusion N'm%, C mh.

Proof. Let us use Lemma 2 and take A, by (1.3). Then condition (1.9)
follows from (2.1). Condition (1.4) implies condition (1.10) and conditions
(2.1) and (2.2) imply that the method (N, P,) is regular. That is why Ay = 6
and A = I. So condition (1.11) is satisfied. The condition (2.5) implies (1.12),
thus the assertion of Proposition 2 follows from Lemma 2. B

Remark 1. If the method (N, P,) is accelerating the convergence, then condi-
tion (2.5) is satisfied.

Corollary 3. Conditions (1.5), (2.3), (2.4) and
Hn Z )\El HB;Jll (Bny1-k — ank)H =0(1) (2.6)
k=0

are sufficient for the inclusion Bm?y C mf.

Remark 2. If the method B is accelerating the convergence, then condition
(2.6) is satisfied.

3. Tauberian Remainder Theorems

In [13] and [15] several Tauberian theorems for the generalized Norlund
method of summability are proved. S6rmus (see [14]) proved the first Taube-
rian theorem for the generalized methods of summability in Banach spaces. In
[20]-23] and [10] several Tauberian remainder theorems for the generalized
methods of summability are proved. The Tauberian remainder theorems in
form and content depend on the methods of the proof. We mainly use the
method which bases on the summability with the given rapidity (see [6, 18]).
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Proposition 3. If Nz € m% and the conditions

[Pell < M, (k4+1) XA =0(1), (Vke Ny),

An ||Rn| Z )\i -
k=

are satisfied, then x € m’.
Proof. We have
A77,(€77,_§):/\77,(§n_0'1))+>\ ( )_6),

while

U7(Ll) = Z R71Pn—k§k-

AS Z:O RnPn—k =1 we get

M (&0 = D) = Z R Py i — zn: RoPo-ié)
k=0 k=0

- /\an Z Pn—k (6

k=0
Therefore using Abel’s partial summation formula (see [1])

n—1 k

Zakbk— ZZ@V b1 — br) +Zau "

k=0 v=0

we get

n—1 k

M (6= 00) = 0B (DD Pacs (60— i1 — 60 +60) )

k=0 v=0
n—1 k

199

(3.1)

(3.2)

(3.3)

(3.4)

— &)

- An}% Z Z Pn UA§k+1 - )\ Rn Z Z Pn I/Aé.k

k=0 v=0 k=1v=0

and

That is why using (3.1)—(3.2) we get

VY=o amirl Y5 =0
k=1

577« - n

77.

Therefore

n k
O < M Bl YD 1P 146D -
k=1v=0
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An

£ — U;DH —0(). (3.5)

As
Nz emd & A (a,gl) —g) =0(),

then using (3.3) and (3.5), we get that the assertion of the Proposition 3 is
valid. B

Let us define the operators P\"™ (m € Np) with
PO =p, (m)—ZP’” V' (meN). (3.6)

Let us denote by '™ (m € Ny) the generalized Norlund method defined by

R%m)P(m) (k=0,1,...,n),
Ank =
0, (k>n),

where P\™, R{™ € £ (X, X), while R{"™ is defined by
R(m™ ZP(’”)C ¢ (C€X, neNy). (3.7)

If P, = I (n € Ng) the method V(™ is a generalized Cesaro method C™.
Therefore all the following results in certain sense are the generalizations of
the statements (see [18]) proved for the Cesaro method C™.

Lemma 3. If the quantity o™ " is defined by

ot = R(™ Z P"& (me Ny) (3.8)

and the operators P\™™) and RY™ (m € Ny) are commuting, then

ol = RI N P™ol™  (n€ No,me N). (3.9)

Proof. As the operators P and RU™ are commuting, then it follows
from (3.6) and (3.7) that P,;nR;j—l =1 and

;

M=

b
Il

0
=i(RS:MZP;T;U)@:z(Rgmzplgmm)@_ w3 rde
v=0 ey = p

Therefore using (3.8) and (3.9) we get that the assertion of Lemma 3 is valid.
|
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Lemma 4. If operators P, P, and R,(lm) with n € No, m € N are com-

muting in pairs and the quantity ot s defined by (3.8), then

Ac(mHD = RV R P ST B Ag™, (3.10)

n—1+n
k=1
Proof. As operators P, P, and R,(lm) with n € Ny, m € N are commuting
in pairs, then using (3.9) and Abel’s partial summation formula we get

PéTfl)P£m+1)AU§:n+l) _ P,(LTILUP,(LWH) (0_1(1m+1) _ 07(:724{1))

n—1

n n—1
— pimHD) plm+1) (Rglm) Z P g™ _ R, Z P]gm)o_l(cm))
k=0 k=0

n—1
= PUTVPI O (RO = BRI ) 30 PMol™ 4+ ROV P ol )
k=0
n—1

(PP DR P pine b ) 3 B
k=0
+ P pOn) gl plm1) o {m

=Py B"Mo™ + PIVPM e + PV Pl

k=0
n—1 n
m m+1 m m m-+1 m
:P7(L)ZP1§ )AGI(C+)1:P1’(L )ZPIS—l )Aol(c)
k=0 k=1

n—1
R B P P Agle = R R B S P A,
k=0

(3.11)

As Rfﬁ)lP,ETfl) — Iand RS P{™ Y — I then (3.11) implies that the asser-
tion (3.10) is valid. W

Lemma 5. If operators P,,, P,11 and R,(lm) with n € No, m € N are com-
muting n pairs and

[l =0 (| ). oo s =00, o
n HP(m)
k
AR Gl eI R il DR S CIC R EREY
k=0

then we have that
A HAa;m“)H —0(1). (3.14)
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Proof. As by (3.10) we have

o] o e st
then using (3.6) and (3.12)—(3.13) we get
- 1
| A || = x| RSk [P 05 ) =
o)

n

n P(m)
(m) H Z k 01)
R — = .
k=1
That means the assertion (3.14) is valid. B

Corollary 4. If operators P,, P,,+1 and R%m) with n € Ng, m € N are com-
muting in pairs,
nA\, At = O (1) (3.15)

and the conditions (3.12), (3.13) are satisfied, then the assertion (3.14) is valid.

Remark 3. If the quantity o is defined by (3.4), then

n

Aol = Z(R PO R, 1P7(Ll_)k_1) Ay
k=1

Proposition 4. If operators P,, P,,1 and R™ with n € Ny, m € N are
commuting in pairs, N™x € m%  (m € N) and

A S| RE | a0 = 0 ), (3.16)
k=1

then N Dz € m,.

Proof. Using (3.9), (3.7) and Abel’s partial summation formula, we get

ot = oM = RIS R - R Y R o
k=0 =

~ YA (o) <o)

— R( - Z P () — o — o™ 1 o) 4 P{D )

n—1
m m—+1 m m m—+1
Z—sz)zpé )AU](C+)1_ Ry, )ZP( ' Ao k+1
k=0
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So we have

A (Ur(z7n+1) _ Jém)) _ _)\nRSZm) Z PISTfl)AUI(:ﬂ
k=1

and using (3.10) we get

n

An (O'(m+1) - aflm)) =0(1).

As
Nz e my & A\, (a,(:n"'l) - g) =0(1),
while ¢ = lim,, "V and

An (Ugm) - 5) =M (Uflm) - 0'7(Lm+1)) +An (USLm-H) - f) )

therefore we get
An (a,gm - g) —0(1).

That means the statement of the Proposition 4 is valid.

Corollary 5. If operators P,, P,+1 and R%m) with n € Ng, m € N are com-
muting in pairs, N(™xz € m}  (m € N) and conditions (3.12) - (3.13) and
(3.15) are satisfied, then N~z € my .
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