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Abstract. In this paper the numerical approximation of solutions of Liouville-
Master Equation for time-dependent distribution functions of Piecewise Determin-
istic Processes with memory is considered. These equations are linear hyperbolic
PDEs with non-constant coefficients, and boundary conditions that depend on in-
tegrals over the interior of the integration domain. We construct a finite difference
method of the first order, by a combination of the upwind method, for PDEs, and
by a direct quadrature, for the boundary condition. We analyse convergence of the
numerical solution for distribution functions evolving towards an equilibrium. Nu-
merical results for two problems, whose analytical solutions are known in closed
form, illustrate the theoretical finding.
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1. Introduction
We deal with the following system of PDEs:

OpFs(w,y,t) + As(2) 0o Fs (2,4, 1) + 0y Fis (2, y,1) = =As(y) Fs(z,y,8)  (1.1)
with Cauchy initial conditions:

Fi(x,y,t0) = Fo,s(2)d(y) (1.2)

and boundary conditions:
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S
Fs(x707t) = ZqSJ/
j=1

t—to
Fj(z,y,t) Aj (y) dy (1.3)
0
for s ={1,...,S} unknowns Fs : D — R, with
(z,y,t) € D:= (2 x [0, T — to] x [to, T]) C R?,

where 2 = [(2,, (2] C R, g,; are the elements of a stochastic matrix having
the following fundamental properties: 0 < ¢,; < 1and ) _ ¢s; = 1. The known
functions Fy s(x), As(x) and As(y) > 0, will be discussed later.

Eq. (1.1), jointly with boundary conditions, is Liouville-Master Equation !
for the probability distribution functions Fs(z,y, t) of a continuous piecewise-
deterministic process (PDP), that has been introduced by Davis [12, 13] (see
also [24]). Indeed, here we deal with a simplified version of Davis’ PDPs,
but still enough general to cover many interesting models. The definition of
PDP is more popular between researchers working on operations research and
probability calculus (see, e.g., [10]), rather than others outside these fields,
even though the latter unknowingly use it, at least in a simplified form. Before
to proceed with the discussion of the numerical solution of our problem, we
give a short introduction of the underling PDP process we are considering
here. 2

DEFINITION 1. We name X (¢), X : R — R, be a continuous PDP if:
(a) X (t) satisfies the equation:

X(t) = Ay(X), s=1,...,5, (1.4)

where A, : R — R is a function chosen randomly on a set of {4;,..., Ag}
known functions. Given Ay, we say that the dynamics is in the (determin-
istic) state s. We require that As(z) be Lipschitz continuous, so that, for
fixed s, X (t) exists, is unique and non-explosive solution.

(b) The initial condition is settled by the Cauchy problem to Eq. (1.4), i.e.
X (to) = Xo, and by the initial state s = sy of the same equation.

(c) Each state s is characterised by an its own probability density function
(PDF) ¢, : Rt — RT of “transition events™

Ve(t), with /0 ety dt = 1. (1.5)

! In general, equations for density probability of random processes are derived from
Chapman-Kolmogorov equation. As discussed in Ref. [15] the same equation turns
into a Liouville equation in absence of randomness, and into a Master Equation,
if only jump processes are involved. We use both terms in order to stress the
deterministic and the random character of the processes considered here.

2 The author acknowledges Prof. M.H.A. Davis for some explanations about the
definition of PDP.
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(d) When a transition event occurs, the dynamics switches instantaneously
from a state j (A4;) to a new state i (4;), given randomly according to the
transition probability matrix (or transition measure) {g;;}. The position
X (t) of the process is not affected when the state switches.

Assumptions (a), (¢) and (d) define the three local characteristics of the PDP.
We see that Eq. (1.4) can be integrated as an ordinary differential equa-
tion, provided that no switching event happen inside the integration interval.
Therefore, with the exceptions of switching times, the process is determin-
istic, continuous and composed of pieces of solutions of Eq. (1.4). Anyway,
the whole resulting process X (t) is not deterministic, it represents a random
sample path on a probability space. 3

The statistical description of the process is given by the unknown functions
Fy(z,y,t): each represents the probability to find the process X (¢), in the
state s, at time ¢ in a position less than x, being past the time Y since the
last switching event. Formally we write:

Fy(z,y,t) :=P(X(t) <z,y <Y <y +dy, state = s)

where P is a probability measure of a probability space for the process. If we
are interested only in the position = of the process, we can integrate over all
values of y, and the distribution function for the process, regardless the time
Yy, reads as:

t—to
Fs(x,t) == / dy Fs(z,y,t). (1.6)
0
With the further hypothesis X (t) € (2, we have:
wFS 5 7t =Y, 1.
0w yt)| =0 (17)

since there is a null probability for the process to be outside the interval f2.
Besides, the probability measure have to be conserved during the evolution,
so that:

s
li Fs(z,t) =1, Vit 1.8
wggb; (2,1) (1.8)
and
S
m1—1>H(1)a ;Ts(x,t) =0, vt (1.9)

have to be satisfied. This three last equations are boundary conditions for
(1.1), that complete the definition of the problem we approach to treat here.

The function A(y), named hazard function (or hazard rate), is related to
the statistics of the PDF switching times (1.5) by:

_ ")
As(y) : T nlrydr

3 For our purposes, we do not need to specify what the abstract probability space
is.

(1.10)
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It represents the probability per unit of time that a transition event will occur,
i.e. a transition rate, having past the time y since the last event. The explicit
dependence of A on y makes both the statistics of the switching events and
the process X (t) be non-Markovian, so that y plays the role of memory.

The main aim of this article is to solve Eq. (1.1), jointly to all the above
mentioned boundary conditions, by a finite difference scheme of the first order
and prove convergence of the numerical solution. We note that numerical
methods for solving linear hyperbolic PDEs with non-constant coefficient, such
as (1.1), are well known in literature |2, 3, 4, 9, 14, 20, 32|, but what makes this
problem a little special is the non local boundary condition (1.3): the value of
the unknowns Fy, on the boundary y = 0, depends on an integration of the F
over the interior of the domain. This means that the numerical scheme for Eq.
(1.1) have to be supported by one for (1.3), so that conditions for convergence
of the numerical solution have to be investigated again. As a result we found
a Courant-Friedrichs-Lewy (CFL) condition for ensuring linear convergence.

The secondary, but not of minor importance, aim of this article is to pro-
vide a connection bridge between PDPs as known by experts of the field and,
as above mentioned, the same processes as known by others, who apply them
to modelling in several areas of science and engineering. Here we give a sample
of quotas, for which PDPs can be concerned by others, grouped in two cat-
egories: diffusive processes and systems having an equilibrium. We mention:
anomalous diffusion [6], reaction-diffusion [17], scattering of radiation [1§],
biological dispersal [28], for the former category, and non-Maxwellian equilib-
riums [2, 3, 32, 9, 20, 14], diagnostic techniques for semiconductor lasers [19],
filtered telegraph signals [19, 30], harmonic oscillators [23], ecological systems
[22], for the latter. Many of the models involved in such references, concern
the application of a two-state noise to a dynamical equation. *

The common end of all these researches, consists in extracting statistical
properties from processes governed by that equation. Generally, an approxi-
mation method can be applied to the original model: such as by the projector
technique [3, 25, 34], by a “coarse-grain” technique, (see, e.g., [16]), an asymp-
totic analysis (see, e.g., [6]). However, not always these techniques provide a
satisfactory description. In some cases an exact analytical result can obtained
as in Refs. [19, 26, 30|, and more recently by the characteristic functional
method [8]. Obviously, computations can also be performed by Monte Carlo’s
simulations, but, at the best of our knowledge, few or nothing has been devoted
to a direct calculation of the time-dependent distribution function including
an explicit memory variable. Concerning this, we remark that the main alter-
native is based on the inclusion of supplementary variables [11, 13], that turns
PDP into Markovian, i.e. a memoryless process.

In the next section we provide an example that emphasizes the connection
between PDPs and models with dichotomic noise, and a conjecture that en-
sures the existence of a stationary solution of Eq. (1.1). In Sect. 3 we establish
the numerical scheme. We introduce definitions in Sect. 4 and in Sect. 5 give

* For more related citations, the reader can search the following key words: di-
chotomic/binary noise/process, random telegraph process, colored noise.
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some theoretical results about the related convergence. In Sect. 6 we present
numerical results to two problems for which an analytical stationary solution
is known in closed form, and verify the stated convergence properties.

2. Explanatory Example

Let us consider a dissipative process X (t) subject to a noised input &(t),
described by the equation:

dX
o = X)), (2.1)

If £(t) is taken as the random telegraph signal, Eq. (2.1) acts as filter, and X ()
is referred as filtered random telegraph process [18, 30]. The same equation is
elsewhere referred as Langevin equation [2, 9] subject to a dichotomous noise.
&(t) alternately takes on values =1, with an exponential (or Poisson) statistics
for the transition events (1.5): ¥)(7) = pwe "7, where p~! is the expectation
time between transitions. The process X (¢) results composed of pieces of in-
creasing and decreasing exponentials. The statistical properties of the process
X (t) can be found by the associated probability density distributions p* (z, t),
governed by a Liouville-Master Equation [2, 19, 24, 33]:

{ opt — (x = 1)0ept = (L — p)p* + pp~, 22)
Bp~ — (x+1)0p~ = ppt + (1 — p)p~ '

Now let us see the same process from the point of view of PDPs. The expo-
nential statistics for 1(¢) makes the process of transitions be Markovian and
the hazard function constant: A(t) = p. Eq. (1.1) turns into:

WFy(x,y,t) + As(2) 02 Fs(2,y,t) + Oy Fo(x,y,1) = —p Fo(w, y, 1)
By integrating this equation over all the values of y, we get:
OcFs(x,t) + As(x) 0p Fs(x,t) — Fs(x,0,t) = —pp Fs(x, t),

having used the property Fi(x,y,t) = 0 if y > 0, since the process is memo-
ryless. From Eq.(1.3) we have:

CEOt NZQS]/dyF xy7 ILLZqSJ

and inserting it into the previous equation we get:

S
O F, (33 t) + As ( )8z-7:s(mat) = :U'Z(QSJ' - 5sj)fj(mvt)

j=1

If S = 2, with the known functions:
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Aj(z) =(1—x), Ax(x)=—-(1+ux), (2.3)
and transition measure:
1 =¢22=0, q2=¢an =1, (2.4)

provided that p*(x,t) = 0,F1 2(z,t), we obtain just the equation (2.2). This
shows the connection between PDPs and processes driven by dichotomous
noise.

2.1. Remarks on equilibrium solutions

In what follows we focus our attention on solutions F'(z,y,t) having an equi-
librium, but we presume that the numerical scheme can be extended to dif-
fusion processes too. Conditions for the existence of equilibrium solution can
be conjectured by using simple dynamical arguments [5, 26]. If all dynamical
equations (1.4) own only attraction points and all these are contained into
the intersection of the basin of attraction of each, then a process starting
from this region will never escape. Hence, there should exist a region {2 where
the process is confined and a stationary distribution Feq(z) = lim; o0 F(z,1)
exists.

3. The Finite-Difference Scheme

In this section we show the numerical scheme to solve Egs. (1.1) and (1.3)
based on a finite difference method of first order. For the sake of simplicity
we take to = 0 and the domain of F; becomes D := {2 x [0,T] x [0,T]}.
It is convenient to perform the numerical integration along the characteristic
lines £ =t — y. With this new variable, we define the unknowns ¢s(x,y, &) =
os(x,y,t —y) := Fs(x,y,t), so that Eq. (1.1) transforms as:

AS(QI) 8I¢S(x7ya§) + 6y¢5('x7ya§) = _/\S(y)d)s('xﬁgag) (31)

This equation is valid for 0 < £ < t and 0 < y < t. The initial condition is
given on

Os(2,y,§)le=—y = Fo.s(2)6(y). (3.2)
With the new variable we get

¢S(m507§)|§:t = Fs(ﬂf,07t),

and the boundary condition Eq. (1.3) becomes:

S t
0:(0.0.0 =Yg | dn leey M)y, (3.3)
1=1 0

We will assume that similar conditions of Eqgs. (1.7), (1.8) and (1.9) are sat-
isfied for ¢s(x,y, &), and a stationary solution exists.
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On the domain D, we introduce a uniform mesh:

k=0,...,Ng

Tk, ';tn 3.4
(k- 4> tn) {j,nzo,...,N, N =T/At, 34

with step size Ax and Ay = At, so that we define the discrete known functions
as Ay := Ai(zy) and \; := \(y;), and the discrete solution:

lF,?j, n=0,...,N, j<n

as an approximation of Fj(zx,y;,t,) at the mesh points.
The change of variable £ = t — y corresponds to the following discrete
mapping on the mesh:

(k,j,m) = (k, j, i) ) R (3.5)

i=n—j

therefore we get the following relation:
Fi(wk, yj,tn) = du(h, yj, tn — y5) = Sz, y5, &) = "By = 817 = o4,

between the discrete solutions. Here the index ¢ identifies the set of mesh
points lying on the characteristics lines.

The numerical scheme is obtained by discretizing both equations (3.1) and
(3.3). We apply upwind discretization to the first equation, and get:

i i Ay i i i
l¢k,j+1 = l¢kj - lAkA_x ( l¢k+u,j - l¢k+u717j) - l)\j l¢ijy7 (3-6)

i=0,...,N,

where v = 1 if ‘A <0, and v = 0 if ‘A;, > 0. The boundary condition (1.7)
is included by requiring that '¢f; = '¢i; and '¢%, | ; = o, ;.

For the second equation, we substitute integral with a quadrature scheme:
s i ' o
Yo =My Y qud wl? BT Dy i, (3.7)
=1  j=0

where wy) > 0 is a sequence of weights.
The integration proceeds as follows. Given the initial condition

o = d1(a1,0,0) = Fy(x1,0,0),
Eq. (3.6) allows us to calculate all the ‘¢! ; starting from j =1 up to N, for
the fixed characteristic line ¢ = 0. In general given the values on the boundary
j =0: ¢} 4, we can find all ¢} starting from j =1 up to N — i, for a fixed
characteristic line i (see curved arrows of Fig. (1)). But the starting values
'¢},; for upwind are unknown and have to be estimated by using the boundary
integration (3.7) (see vertical dot-dashed arrows of Fig. (1)). This is a system

of equations for the unknowns ‘¢! ;. When all * i; are known, the discrete
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n (t)

Figure 1. Representation of the integration scheme on the regular mesh of the (¢, y)
plane. Full curved arrows: upwind step of Eq. (3.6). Dot-dashed vertical arrows:
quadrature of Eq. (3.7).

distribution function can be retrieved by  'F}'; = '¢};li=n—;, and also the
discrete counterpart of (1.6):

Fro= S0 Ay, (3.8)
§=0

(n)

can be estimated by a quadrature formula of weights v;

4. Preliminary Definitions

4.1. Global errors and convergence

We are interested in how well '¢}, 'F’; and 'F}' approximate the corre-
sponding analytical solutions. We consider the global pointwise error:

‘e i = ou(@r, 5, &) — Bl (4.1)

for the transformed solution. The same value defines the global error for lF,?’ j
under the discrete mapping (3.5).

In order to prove convergence, we introduce norms for measuring errors.
For spatial z; and memory variable y; the co—norm is used. The discrete
1-norm for the states s of the system is the natural choice, because of the
conservation of the probability of Eq. (1.8). For convenience of notation we
define the global error for the state [ at time ¢; and time memory y; as:

lEJi» = mliix| le};’j| (4.2)

and the global error regardless states as:
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5
1B = 'EL (4.3)
=1
We say that lF,Zf’j converges to Fj(zy,y;,tn) in the norm || - | if:
| EY|| = max ||E;H1 — 0, as Az, Ay — 0. (4.4)
J

The global error for the distribution function (3.8) is defined as:

n

tn
B = Flap, tn) — Ff = / dy > Fi(we,y,ta) — Ay Yo > R
0 l l

§=0
and the associated convergence is stated by:

1B 0o = max |EP| =0, as Az, Ay — 0. (4.5)

4.2. Local truncation error and quadrature error

As usual [21, 27], the local truncation error is defined by inserting the true
solution ¢;(z,y, &) into the discrete scheme of Eq. (3.6), i.e.:
i x7i+A7i_ TkyYiySi
Ely = Oy yi; Dl yio o) + M) (e, yis &)
¢u(zk + VAT, y;, &) — di(zk + (v — 1) Az, 3, &)
Ax

+A;(zr) . (4.6)
By evaluating the remainder term of the Taylor’s expansion with respect to

‘6.;, we get:

) 1
= §A$ (a2 di(zh, s, &) — [Au(z) |02 (e, 15, &)

where o := Ay/Ax, and 7, n; are unknown points.
The quadrature error committed from (3.7) for the evaluation of the
boundary integral (3.3) is defined as:

'R, := Mit; AyP 0] (¢, 71y, &) Ai(ily)) (4.7)

where M; are some constants that can depend on ¢, and 7; are unknown points
of the local integration interval. 3 defines the order of repeated quadrature
formulas (3.7).
The quadrature error committed from (3.8) for the evaluation of (1.6) is
defined as: . . o
'Ry = Myt AP0 Fy (2,5, ),

where, as for the previous error, M., are some values that can depend on n,
and 7); are unknown points. 3 defines the order of (3.8).
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5. Analysis of Convergence

In this section we show first a lemma for convergence of the numerical solu-
tion l¢}'€j for the transformed equation (3.6), then prove a theorem for the
convergence order of the numerical solution F}' to the distribution function
F(zk,tn). The proofs are based on classical arguments by finding bounds for
global errors.

Lemma 1. Let ¢;(x,y,&) € C*P2(D) be a solution of Eq. (3.1) under the
boundary conditions (3.2), with = max{3,2}, max; | A;(z)|lc < M, and

max; | A(Y)|loo < Ly, for x € 2 and | € {1,...,S}. Let (zk,y;.tn) be an
uniform mesh on D defined in (3.4), of step sizes Ax and Ay = At. Let l¢}'€j
be the numerical solution resulting from the scheme as defined in Egs. (3.6)
and (3.7), under the transformed mesh of Eq. (3.5). If the Courant-Friedrichs-

Lewy (CFL) condition
M -1
is satisfied then:

1. Given the error |[E}||1 at boundary y = 0, the error |[E¢ |1 computed at
time step t;1, along the characteristic &;, is bounded by:

1Bl < 1B61h (1 — LuAy)™ +mAy|[ €1, (5.2)

where ||E¢|1 = O(Az), Vi.
2. If Ay~! > max;(w(”) max; \(0), there exist constants La, K, such that
the error computed at time t; along the boundary y = 0 is bounded by:

) _ _ t?
I EoIl < [[R][x exp (Kt;) + ||r9||1K%1 exp ((K — La)ti) (5.3)

where ||R||1 = O(Az?) and ||E||; := max; |£¢]1 = O(Ax).

This lemma states that the numerical solution ‘¢¢ ; converges to analytical
with a linear order. Errors calculated for ¢ are the same as for F. Being
interested in finding the probability regardless of memory and state at fixed
time t,,, we search an estimate for the error |E"| s as defined in Eq. (4.5).

Theorem 1. Let the hypothesis of the Lemma 1 be satisfied, then for the
problem of Eq. (1.1) the numerical solution (3.8), obtained as discussed in
Sec. 3, converges to analytical solution of (1.6) in the sense (4.5), with order

O(Ax).

Proof. We substitute the integration of Eq. (1.6) over the memory state with

a sequence of quadrature formulas of weights vj(-"):

n

tn A
/ dy > Fiwr,y,tn) = AyZU§’L) D Filarysta)+ > 'BE, (5.4)
0 1 1 1

j=0
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so that:

157 e = max |2y 3 0" 3 Filaes i)+ Ri—2y 0™ S W |
J ! ! J l

Let 9 := max; |UJ(-“)| and R" := 3", max; | 'R}/, from the triangle in-
equality:

I1E™| oo < 6(”)Ayzzm]§><|ﬂ(xk,yj,tn) — 'Fri 1+ R,
P

by using the discrete mapping (3.5) and the definition of the error (4.3), we
get:

1B oo < 0™ Ay Y IEF 11+ R™
j=0

By inserting Eq. (5.2) we find:

1B oo < 0™ Ay Y (I1EG (1 = LuAy)’ + jAy|ElL) + R"

j=0
and
~ ~ —m _(n)) & t% pn
1B oo < 5™ Ay Y IES [1(1 = Ludy)" ™™ + 0™ €5 + R,
m=0

where ||€||1 := max; |€"77]|;. This inequality relates the searched probability
error to errors along the boundary ;7 = 0. Now we insert the second result
of the previous lemma stated by Eq. (5.3) and find the order of the error for
vanishing Ay. From the summation we get:

n

. _ _ tQ
A L e )
1=0

that is of order:

eftn 1
(K + L,)Ay

2 (K—Lg)t
tne( 2)tn

R |
1%l CES Yy

+EhK 5

Finally, we get an order of convergence for the error:

5 _ Kty)—1 -
En - < 5(n) R exp( n R

187 5 0 Rl, ELE =L

2 exp((K — Lg)ty)

_ t _t?
+o™ LK +ﬁ(")||5||13”. (5.5)
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6. Computational Results

In what follows we present results of the numerical scheme, applied to the
examples considered in [29]. For quadrature of Egs. (3.7) and (3.8), we adopt
the rectangle scheme:

) ) 0 forj=0
wj(-” - UJ@ — i>0, (6.1)
1 forj>0

whose quadrature error (4.7) is:

X 1
'Rj, = 5t:4yd, (&1 (wn. 1y, &) M (7)-

Note that despite the low order (8 = 1) of approximation for quadrature,
the global error of the numerical solution is not degraded, because the same
order apply to upwind. The choice w((f) = 0 makes the equation (3.7) be
explicit. This can be consistent, because for vanishing Ay the contribution
to integral is also vanishing for a limited };,0. For the explicit scheme the
computational cost can be evaluated as follows: at time step 7 all upwinds
take 2N Si operations, the boundary quadrature takes N;S?i. By summing
over ¢ we get:

Computational Cost ~ Nj,S?N2.

The Cauchy problem for starting the numerical integration is set, according
to Eq. (1.2), as follows:

0, k<0,
1/(SAy), k>0,

for all s = 1,...,S. This choice is an approximation of (1.2) with Fp 4(x) =
H(x), where H(z) is the Heaviside function. Such Cauchy conditions for the
Liouville-Master Equation correspond to having placed the process X (¢) at the
initial position Xy = 0, to an equiprobable random initial state, having spent
no time in it (i.e. 6(y) in (1.2)). This is a common choice when studying the
motion of a particle subject to a random fluctuating force, but is not a good
mathematical hypothesis for applying Lemma 1. However, it is well known
that the upwind methods tends to regularise the solution (numerical viscosity)
around discontinuities [1, 21], and, for the problems we are approaching to
solve, a unique stationary solution exists regardless the initial state of the
process. In this way we are enabled to use such “non-regular” Cauchy condition
for our numerical convergence tests. lF,;f ; are then integrated by (3.8).

We are interested in plotting the density probability function of the pro-
cess, regardless memory and states, defined as:

S
pla,t) = 0pF(z,t) == 0, Y _ Fila,t). (6.3)
=1
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Figure 2. Six snapshots of the temporal evolution of p;; for the Langevin equation
driven by Poisson distribution time intervals of Sec. 6.1 (horizontal axis: xy; t, =
0,4,8,12, 16, 20).

The discrete version of this operation is:

s
n 1 3 n 1 n 3
P = o (Fi = Fe) = o ;( Fir — F), (6.4)

that is the first order right-derivative of the numerical distribution function.

6.1. RC-filter subject to Markovian process (Poisson PDF)

In Fig. 2 we plot six snapshots of the temporal evolution related to the four
states process: Ag(x) = —ysx + W, studied in [1]. Parameters are defined as:

W() = 1, W1 = —1, W2 = 2, W3 = —2, )\S = 0.2, Vs = 0.1 Vs.
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Results are comparable with that of the cited reference. Note the broadening
of the four peaks due to the numerical viscosity of the upwind method.

6.2. Filtering of non-Markov dichotomous noise with McFadden
interval PDF

=122 ——

t=2.45 —— =367 ——

1=7.37
1=4.90 —— 34T HRPN)
1 05 0 05 1 1 05 0 05 1

Figure 3. Six snapshots of the temporal evolution of pj; for filtering of dichotomous
noise driven by the McFadden distribution time intervals (horizontal axis: xy).

For this example the process is described by the Langevin equation (2.1),
with functions of Eq. (2.3) and transition measure of Eq. (2.4). Intervals be-
tween switching time have the McFadden PDF: () = 3¢ %(1 — e )%. The
equilibrium density distribution has the form [29]:

) 3
Peale) = Jim plat) = Z(7+2%), ol <1 (6.5)
and its integral:
1
Feqlx) = tlim F(x,t) = ﬂ(a}?’ +21z+22), |z| <1. (6.6)

The hazard function related to the density for switching intervals reads as:
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3(1 —et)?

) = 2—et+ (1—et)2

We note that A\(0) = 0, so that the error committed from the choice w((f) =0
(see (6.1)), is further improved. Beside it is A(t) < 4/9 and the convergence
lemma give us more guarantee that the errors do not grow fast. Here the
grid step sizes are Az = 0.002 and Ay = 8 - 10~*. Integration starts with a
concentrated initial density (6.2) and stops at time T' = 7.37.

In Fig. 3 we see six snapshots of the numerical solution of the PDF (6.4).
At time t = 0 the density of the process is concentrated to x = 0, then two
peaks, corresponding to the two dynamical states, move towards the attraction
points x + 1, and at last the stationary distribution appears.

6.3. Filtering of non-Markov dichotomous noise with “gamma”

interval PDF

For this example the process is described by the same Langevin equation as
that the previous one, but the intervals between switching times of £(¢) of
Eq. (2.1) are taken as the gamma density (t) = u?te #! for both states
[29]. Provided that p = 1/2, the equilibrium solution for the total density
distribution function is:

[rd—r)

. _ o 1
Peale) = Jim p(a,t) = = Do (1 =22 2SR 5i0%), (6)

r=0+v-1/4, [z[<1,
in which o F} is a hypergeometric function. The hazard function (1.10) related
2
t
to 1(t) results: A(t) = 1/i
errors do not grow so fast, because the maximum value of A(t) is Az = 1/e.
We perform the numerical integration on a mesh with spatial discretization
step Az = 0.004 and temporal step At = 0.0015. Integration starts with
distribution (6.2) and stops at time T' = 12, where the equilibrium is supposed
to be reached in good approximation.
In Fig. 4 six snapshots of the total density distribution (6.4) are plot-
ted. The evolution behaves as in the previous example, with the exception of
singularities at « + 1, for the equilibrium.

. We see from the convergence theorem that the

6.4. Convergence tests

Since for the above mentioned problems we know two analytical results, we
can calculate the global error || E|| s for the stationary distribution functions of
Egs. (6.6) and (6.7). The analytical solution of Eq. (6.7) is evaluated by using
MATLAB® with libraries for calculating the Hypergeometric function [31].
We calculate the solution with the numerical scheme until the time 7" = 20.
At this time we experienced that the stationary solution is reached. This
integration is repeated for some spatial step sizes Az, with the temporal step
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Figure 4. Six snapshots of the temporal evolution of pj; for filtering of dichotomous
noise driven by the gamma distribution time intervals (horizontal axis: zy).

size constraint a = Ay/Az = 0.9 (M + L, Az)~!, satisfying the CFL condition
(5.1).

In Fig. 5 we show the global error Ek, defined at the equilibrium, plotted
for Az = {0.1,0.04,0.008} for the McFadden intervals. We see clearly that
the maximum error decreases as Az decreases.

In Fig. 6 we show the same test for gamma distributed intervals. Also
here the error decreases, but it shows a sort of divergence near z = £1.

In order to stress convergence, in Fig. 7, we plot the error || E||o versus the
step size Ax. We see that the McFadden’s data have unitary slope, i.e. linear
convergence, as we expected from Theorem (1). Instead, gamma’s data are
arranged with approximately 1/2 slope. This can be explained as follows. We
know [29] that the PDF of Eq. (6.7) is U-shaped having (1 —2%)~'/21n(1 —2?)
infinities near x = 1. As dx := 1 — x approaches to zero, the second spatial
derivative of F., behaves as:

OuPeq = 02Feq ox 62~ 3/%(1 4 In(262)).
Being A;(dz) ~ 0z and by considering Az = 0z, we get for the error:

Bl = VAz(1+In(2 Az)),
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Figure 5. Global error . between the exact solution of Eq. (6.6) (McFadden
PDF) and numerically calculated for Az = 0.1, Az =0.04, Az = 0.008.
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Figure 6. Global error Ej, between the integral of the exact
solution of Eq. (6.7) (gamma PDF) and numerically calculated
for Az = 0.1, Az = 0.04, Az = 0.008.

that explains what we see from the results. If we remove the endpoints from
the measure of the error, we see from “gamma 90%” of Fig. 7, that, e.g. for
the interval = € [—0.9,0.9], the linear convergence order is recovered.

7. Summary and Conclusions

A numerical method for approximating Liouville-Master Equation (or forward
equation) for a class of piecewise deterministic process with memory was inves-
tigated. The method was based on a combination of upwind, for the hyperbolic
differential operator, and a quadrature, for the non local boundary conditions.
When non singular solutions are considered, the linear convergence of the time
dependent numerical solution, in an uniform norm, was proved under a CFL
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Figure 7. Convergence test for global error ||E| . vs. mesh step
size Azx.

condition. The linear convergence was validated by numerical tests for the
equilibrium distribution related to the filtering of non-Markov dichotomous
noise, with both “gamma” and McFadden statistics of transition events, whose
solutions are known in analytical form.

A. Proof of Lemma 1

Proof.

We study convergence in two parts: the first concerns the accumulation of
the error along the characteristic lines of Eq. (3.6); the second concerns the
error cumulated on the boundary integration of Eq. (3.7).

Let le}‘“ ; be the global error (4.1) between exact and discrete solutions.
By considering the standard procedure [21, 27] that puts in relation local and
global errors, we find from Egs. (3.1) and (3.6):

i Li 1 i Li oL Li
Chgr1 = €y~ A ( ey — 1) = N e Ayt e Ay, (A
where &% ; is defined in (4.6). We start our analysis from Eq. (A.1), fixed i
and given j we find e} ;. The error for ‘e , is found from the boundary
integral condition.

The first step is to limit the error along the characteristic line i. From Eq.

(A.1) we study the case Ay >0 (v =0):
| l€§w+1| < ‘1 — Ao — l/\jAyH l€2,j| + Aral 162717j| + | lgiﬂAy,
Let lE; = maxy, | le};’j| and ZE; = maxy, | l€2j| then:
| le};7j+1| < (‘1 — YU — l/\jAy| + lAka) ZE;- + lE}Ay.

If we set 1 — 'Aya — N\;Ay > 0, Vi, j,k, i.e. the CFL condition is satisfied,
then we get:
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| l€§c,j+1| < (1 - l)\JAy) lEjl + ngsz’ Vk7.]7l

Since it is valid for all k, we can write:

‘Bl <(1- N\Ay) B+ €Ay, (A.2)
that is verified for j =0,...,n and i = 0,...,n. Now we have to find 'Ej*!.

The case v = 1 gives the same result:
| l€?§j+1| <1+ "Aga— N Ay)| l€2,j| — gl l€2+17j| + | lE}IAy

and for the maximum error on z:

| er il < (J1 = Mkla — N Ayl + | 'Akle) 'E; + €Ay,
Let 1—| Ayla— \;Ay > 0, we get Eq. (A.2), so that it is valid independently
by the sign of A;(x). By iterating this expression we find:

‘Bl I (1— N Ay) 'Ef+ (m+1)Ay €7, (A.3)
where €7 = max; ‘€7. When the norm over all states is considered:
15l < [Elli(1 = LuAy)™ + mAy|[ €)1

Being ‘\; > 0 we have good chances to get an upper bound to the error for
increasing time.

Now we study the second step, i.e. the error '} ; (or 'Ej) along the
boundary condition. Here j = 0 then n = 1.

From Eq. (3.3) as calculated with quadrature on the exact solution
o1(x,y, &), we can write:

s i
s (2h, 0,) = Y QSl(Z Aywl” Ny di(@r,ys,ti — ;) + lRZ)
=1 §=0
Subtracting side by side this equation and (3.7):
o= Do au (X Ayl 0 + L)
1=1 §=0
and by applying the triangle inequality we get:
el <D aa (D0 Aywl® Nyl e+ | RYl).
I=1 j=1
Let 'R' = maxy, | 'Ri| and being g5 > 0, w§i) >0, we get:
5 i

By <3 qa (Y Aywl? N B+ R, (A.4)
=1 =0
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Let )\ =min; \;, from Eq. (A.3) is:
‘B, < (- Ay B+ (+ 1) Ay €

and inserting it in (A.4), we find:
By <3 au(Ay Y wl! Wl - WAy B 4 Ay €]+ R,

This inequality puts in relation the error on the boundary condition (j = 0)
with those at early times. Let @) = max;>; w](-l)
then the following inequality

and l/\ = maX;>q l)\j,

By < E qsl(Ayw(l) I\ E — hay) lEl T4 jAy eI
(&) 1y dgi | lpi
+Aywy’ Ao By + R

is valid for ¢ > 1. We have introduced the sum starting from j = 0, so that,
in order to find °Ej , we have to solve a system of equations. However for
convergence we do not need to solve it at all. By moving 'E{ to the left hand
side and summing over the states, we find:

> By =Y audyul’ N ‘B

s s,l
< Zqul Aya® lAZ — WAy By 4 jAy )+ RY).
s I=1

By using the fundamental property of stochastic matrix:

> (1 —woLoAy) 'Ej
I

<2Aywl) Z l)\ 1-— l)\Ay) lEZ J—’—]Aylgl J +Z le

j=1

where wy = max; w(()i), Ly = max; A\g. Let a := 1 —wgLoAy > 0, we get:
ST <o Ay Y w3 N1 - WAy By Ay €I 4> R
l j=1 l l

where 0 < a < 1. Let L, = max; ‘\, Ly = min; \, b = (1 — LyAy) provided
that from CFL it is surely LAy < 1, we have:

1B < et Ay@® Loy I1E; [l + jAylIE 1] + | Ry
j=1
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and with the summation index change m =i — j, it becomes:

i(i+1)

b E I < K Ay(Ay= =€l + Zb-mnE D)+ IR

where ||€]|; = max; ||€]|;, and K = max;(a ‘@@ L,). From the discrete
Gronwall lemma (cf. in Th. 1.5.4 and Corol. 1.5.1 of [7]), we obtain:

22(14‘ 1)

b Byl < (K Ay 11 + I35~ ) (1 + K Ag)'.

Let | R||; = max; ||R!||1, we find:

126l < IRl (1 + K Ay)" + || €]l K Ay?

00 4 K gy

and finally:

) _ _ tf
IEolln < |R[l1 exp (Kt;) + [|E]1 K ; exp ((K — La) t;) .
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