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Abstract. Two-fluid channel flows arise in different kinds of coating technologies.
The corresponding mathematical models represent two-dimensional free boundary
value problems for the Navier-Stokes equations or their modifications. In this pa-
per we are concerned with the so-called Boussinesg-approximation of the coupled
heat- and mass transfer. Thermocapillary convection is included. The solvability of
two related stationary problems is discussed. The solution techniques of both prob-
lems are quite different. The obtained results generalize previous results for similar
isothermal problems.

Key words: Free boundary value problems, viscous nonisothermal channel flows,
two-fluid flows, Boussinesq-approximation, thermocapillary convection

1. Introduction

Under thermocapillary convection one understands a fluid motion driven by
surface-tension gradients on a liquid-liquid interface, where these gradients
arise from surface-temperature gradients and the temperature dependence of
surface tension. This type of convection is very important in many technolog-
ical and scientific applications; interesting examples may be found in the field
of materials processing, particularly in coating and solidification processes or
in crystal-growth processes (cf. [2, 4, 14, 16, 18]).

In this article we consider two problems for plane stationary flows with two
viscous incompressible heat-conducting fluids in each (having kinematic vis-
cosities v; > 0, densities ¢; > 0 and thermal conductivities \;, i = 1,2)
through different horizontal channels. Emphasize that the corresponding
problems will be formulated in dimensionless form. The concrete transition to
that formulation can be found in [19].

Let us formulate the first problem which we will denote by Problem (I)
in the sequel. We consider the two-fluid flow within a perturbed horizon-
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tal channel of width 1 between the walls Sy and Sy (cf. Fig. 1). The mov-
ing bottom Sy of it is given by the formula Sy = {x = (z1,22) € R? :
xg = 0, —00 < @1 < +oo} and the fixed top Sz has the representation
So = {x € R? : 29 = 1 +epa(x1), —00 < o1 < +oo}. Furthermore, we
suppose that ¢o has a compact support. Since the channel is horizontal, the
direction e, of gravitational force is equal to (0, —1)T (cf. Fig. 1).
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Figure 1. Flow domain for Problem (I).

We study the plane stationary flow of two viscous incompressible heat-
conducting fluids generated by a pressure gradient downstream in the per-
turbed channel, by a temperature gradient in the transverse direction and by
motion of the lower wall Sy with constant velocity R = (R, 0). This means
mathematically that the volume flux F; in each fluid layer (2; (i = 1,2) is
prescribed. Suppose that the free interface I} separating two fluid layers ad-
mits the parametrization I1 = {x € R? : 29 = ¢1(21), —00 < 21 < +00},
where the function 1 is a priori unknown and has to be found. Emphasize
that F; (i = 1,2), R are not necessarily positive for this channel flow.

Let ho be the constant limit of 1 (x4 ) at infinity. Obviously, it should hold
0 < heo < 1. Problem (I) has the following form: to find a vector of velocity
v = (v1 (21, 22),v2(w1,22))T, a pressure p(r1, x3), a temperature §(x;, x5) and
a function 1 (1) satisfying in the domain 2 = 2; U 25 with 2; = {x € R?:
0 <z < ¢1($1), -0 < 1 < +OO} and (2> = {X € R?: wl(fl) < 22 <
14+epa(x1), —00 < 1 < 400} the Boussinesq-approximation of the coupled
heat- and mass transfer (cf. [3])

(V- V)v—vV?v+ 2 Vp=(9—10)ey,
V-v=0, (1.1)
(v-V)0—AV30 =0,

and the boundary and integral conditions

V|50 = (R7 O)Tv V|S2 =0,
Ols, = o, O]s, = 02,
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ol
[9]|F1 =0, |:/\ %] n =0, [V]|F1 =0,
ol
V-II|F1— =0, [t-S(v)n]|lp = —ba F;,

A i) (1.2)

dzy /; + ()2 a(0)
lim wl(xl) = hOO7 / U1 d!Eg = Fl,
|z1|—+o00 51(@)

[—p—|—n-S(v)n]\pl,

/ 1}1((/]\, 332) dxg = FQ.
62(q)

In [2] it was shown that for a large number of liquids the surface tension o can
be regarded as a linear function of the temperature 6 along the free interface
I (cf. also [14, 18)])

a(0) =a—100. (a,b>0) (1.3)

In Problem (I) the symbol 6;(¢) denotes the intersection of (2; with the vertical
line x1 = ¢. By 7, we denote the thermal expansion coefficient of the m-
th fluid (m = 1,2). The symbol g means the acceleration of gravity. The
values 6y and 6, are the (constant) given temperatures of the walls Sy and
So, respectively. Without loss of generality one can suppose that 6, = 0 and
that @ is in fact the difference between the physical temperature and 6.

Furthermore, the following notations have been used: n and t are unit
vectors normal and tangential to I} and oriented as xo, z1, respectively. By
a-b we mean the inner product of a,b € R%2, V = (9/0z1,0/0x5)" is the
gradient operator, Vp = grad p,V -v = div v, 9lg,, = om(m = 1,2) is
the restriction of o to £2,, (analogously for v and \). V2 denotes the Laplace
operator. By S(v) we denote the deviatoric stress tensor, i.e. a matrix with
elements S;;(v) = ov(9v;/0x; + Ovj/0x;) (i,j = 1,2). The symbol [w]|p,
expresses the jump of w crossing the free interface I7, i.e.

[w(xo)] I = lim w(y) — lim w(x), (xo€I1,y € P, x€ ),
y—Xo X—X0
and the symbol w| e denotes the limit from below at the interface I, more
precisely

w(x0)|rf = lim w(y), (xo €I, y € ). (1.4)

Y—Xo

Note that the left-hand side of (1.2)¢ (i.e. of the sixth equation in (1.2)) is
equal to the curvature K(z1) of I1.

The second flow under consideration is also steady-state and has some fea-
tures of a slot coating process. The channel is again horizontal, unbounded in
both directions and contains a semi-infinite inner wall (cf. Fig.2). The lower
wall S := {x € R? : —0co < 71 < 400, 3 = 0} is again moving with constant



146 J. Socolowsky

velocity R = (R,0)” (R > 0). The upper wall (which is a straight line in this
case) Sy := {x € R? : —00 < 71 < 400, 2 = 1} is at rest. Furthermore,
we are given the partial inner wall S5 := {x € R?2: —oco <21 <0, 29 =
h1 (0 < h1 < 1)}. Thus, in fact we have two separated parallel channels for
negative values of x;. Both viscous fluids are flowing out of the two channels
and behind the point Q(0, k1) they are joining and creating a free interface
I :={xeR?:0<z; <+00, x93 = 91(x1)} where ¢; is unknown a priori
and has to be found. It is supposed that the free interface I separates from
the inner wall S5 at its endpoint Q.

1 52
F, i V2, 02, A2 I, Qo
LY o=mmmm e e e e e ——————————— -
53 .16’2 h oo
F hyl ‘Vla 0,A1 R So 0 leg
0 <1

Figure 2. Flow domain for Problem (II).

By ) = {x€R?>:0< a3 <h if —c0o<r <0 and 0 < 2y <
P1(zq) if 0 < 21 < +oo} we denote the flow domain of the lower fluid. By
{25, the flow domain of the upper fluid, respectively, we understand the set
2y ={x€eR?:h; <a3<1if —co<x <0 and (1) <z2 <1if 0<
x1 < +oo}. Finally, by 2 := 2; U {25 we mean the union of both fluid layers.
The direction of the gravitational force is again the vector e, = (0, —1)7. We
study the two-fluid flow through the channel (2 caused by a pressure gradient
downstream, by temperature gradients in the spanwise direction and by mo-
tion of the lower channel wall. This means mathematically that the positive
volume flux F; in each liquid layer (2; (i = 1,2) is prescribed and the final
fluid layer thicknesses hoo and (1 — hoo) are to be determined.

An interpretation of such a flow could be the flow of two liquids coming
from different reservoirs (i.e. slots or chambers) and flowing commonly in one
channel after their unification. In slot coaters such flows occur on some parts
of the coater. The corresponding motion as well as the final layer thicknesses
are important in that case.

Let hoo be the constant limit of i1 (z1) as ©1 — +oo. Obviously, it holds
0 < heo < 1. Then Problem (IT) has the following description: to find a vector
of velocity v, a pressure p, a temperature 6 and a function ; satisfying in
the domain (2 the Boussinesq-approximation of the coupled heat- and mass

transfer
(v-V)v—vVv+ L Vp=(g—1)ey,

V-v=0, (1.5)
(v-V)0 - AV20 =0,
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and the boundary and integral conditions

V|SO = (R7 0)T7 V|52 =0, V|S3i =0,

0|5, = bo, Os, = 02, 9|s§ =03,

00
ol =0 g =0 e =o
V-II|F1— =0, [t-S(v)n]|lp = —b% ,
Iy
d ) 1 (1.6)

d
U1 4 4 (21)?

lim wl(xl):hoo, / U1d$2:F1,
31(9)

x1—+00

/ 1}1((/]\, 332) dxg = FQ.
62(q)

Note that surface tension is the same as in (1.3). For the one-side limits at
S we use analogous symbols as in (1.4). The fluid layer thickness ., has to
be determined.

2. General Solution Techniques

Mathematical problems for the stationary flows of a viscous incompressible
fluid with a free boundary were investigated by many authors. Numerous ref-
erences on this topic can be found - e.g. - in the bibliographies of [9, 13, 22, 23].
In the analytical investigations [2, 4, 8, 14] and [18] the temperature depen-
dence was additionally taken into account. Numerical studies of nonisother-
mal free boundary problems one can find in the papers [2] and [19]. Coating
flows which usually include static or dynamic contact points were studied in
[6,5,10,17,19, 24, 25]. In all papers containing either compact or semi-infinite
free boundary value problems the same general solution scheme developed in
[7, 15] has been used.

Let us shortly recall this scheme on Problem (II). The starting problem
is divided into two problems: the boundary value problem for the differential
equations (1.5) in a fixed domain and the problem of finding the free boundary
Iy from the equation

1
K(x1) = (@) [=p(x) +n-S(v)n]|n, (2.1)
and from the corresponding boundary conditions. The solution of the free
boundary problem can be found by the method of successive approximations.
At every step of successive approximations the system (1.5) is solved in a
fixed domain. The obtained solution is substituted into the right-hand side of
(2.1) and by solving this equation one obtains the next iteration for the free
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boundary I'j. Thus, one gets a new domain in which system (1.5) has to be
solved again. So, this scheme can be illustrated by the diagram

Y=~ (V0" I = 2 = (V6 — L (22)

Note that in this method at every step of successive approximations the con-
struction of (v,p, ) is separated from the construction of the free boundary
I'1. On the other hand, for free boundary problems in which the unknown
flow domain is unbounded in two directions as in Problem (I) the described
scheme is not applicable (cf. [9, 13] and others).

In order to solve such problems in [9], and independently in [1], a different
scheme was proposed which based on a linearization of the original problem
on an appropriate exact solution in the unperturbed “uniform” flow domain,
say II = {x € R? : 0 < 2o < 1}. The main difference of this scheme from the
previous one is that on each step of iterations the determination of v, p, 8 is
not separated from the determination of the free boundary I (i.e. from the
determination of the functions ¢, describing I1).

In order to solve Problem (I), this second scheme should be applied. For
Problem (I) this scheme can be illustrated by the diagram

(Voapoaaoaw?) - (v17p17917w21l) o (Vm’pm’9m7w7l’n) ..

where on each step of iterations the linearized problem is solved in the same
“uniform” domain and the functions v,p, 0 and v¢; (i = 1,2) are determined
simultaneously.

A significant part in deriving the correct linearization takes the determina-
tion of exact solutions of the nonlinear problems in a “uniform” (not distorted)
flow domain. These exact (basic) solutions in the uniform domain IT will be
calculated in Section 5 - Appendix. They are also important for the numerical
flow simulation: they can be used as inlet boundary data in more complicated
problems. Furthermore, the basic solution represents an asymptotic solution as
x1 — o0 in Problem (II). In [13] and [20] the analogous isothermal problems
(without any inclusion of temperature) to problems (I) and (II), respectively,
were solved by numerical methods. Note that the layer thicknesses ho, and
(1 — hoo) of the fluids and, therefore the whole exact solutions in the uniform
domain, could be not unique (see Appendix). For the case of Navier-Stokes
equations such nonunique solutions were found in [11] for the first time.

3. Function Spaces

When studying Problem (I) it is very convenient to work with weighted
Sobolev spaces. Let I1,, (m = 1,2) be the strip-like domains

lez{xeRQ: 0< 22 < heo, —00 <z < +00},
Iy :={x €R*: hoo <y <1, —00 <21 < +00},

and IT = II; U Il their union, where ho, € (0, 1) is the root to equation (5.4)
(or is one of the roots to (5.4)). We introduce the space Wé’z(ﬂ ) of functions
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u on [T with restrictions u(”™ = u|y;,, belonging to Wé’Q(Um) (m=1,2) and
having the finite norms

@™ WE (1) | = [fu®™ exp (ﬁ 1+x%);wl’2<nm>||7 (m=1,2)

where W2 (I1,,) is the usual Sobolev space. The norm in Wé’z(ﬂ ) is given by

2
s WA = 3 exp (9152 ) w201,
m=1

If 3 > 0, then elements of Wé’z(ﬂ ) vanish exponentially as |z1| — oo and, if
B < 0, then elements u € W[lf(ﬂ ) might exponentially increase as |z1| — oo.

The spaces Wéfl/ »2(R) of functions defined on R can be introduced anal-
ogously. Let S = {&# € I : z1 € R, 22 = h € [0,1]} be a line. De-
note by Wé_l/ >2(8) the spaces of traces on S of functions from WZf(H ).
Then Wé_1/2’2(R) coincides with Wé_l/Q’Q(S), ie.ifue Wé_1/2’2(ﬂ), then
u(-,h) € Wi (R).

When investigating Problem (IT) we are using weighted Holder spaces. This
is due to a better handling of static contact points.

Let B be an arbitrary domain in R? and N C B a manifold of dimension
less than 2. The symbol gy (x) denotes (in this section only) the distance
dist (x, N) :=infycn |x — y|. Let 8 = (51, F2) be a multiindex with

9181y,

=01+ and D°u= ——_
|ﬂ| 61 62 8‘%?18‘%52

(B; e NU{0}).
The symbol [r] will denote the integer part of r (only in this section).

C™(B)(r > 0, non-integer) denotes the Holder space of functions defined in a
domain B C R? with a finite norm

, DB _ DB
|u|59) = Z sup |DPul + Z sup | D ulx) T,[:]L(y”-
|8l<r <P apyves oyl

Let C” (B, N) be the weighted Holder space of functions defined in B\ N and
having a finite norm

lules sy = D sup ol (%) D7u(x)|
: ‘ﬁ|<rx€B\N

| DPu(x) — DPu(y)|
x =yl

+ Z sup oy “(x) sup
181=[r *€P\N =yl <zen ()

CT(B,N)(r > s > 0;r, s non-integer) denotes the space of functions with a
finite norm
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leray =lul$ + 3 sup oyl (x)| D u(x)|
s<|[3\<TXEB\N

|DPu(x) — DPu(y)|
|x —y|r=r]

+ ) sup oy (x)  sup
\5|:[T]XEB\N \x—y|<%gN(x)

Clearly, C7(B, N) is a subspace of C(B, N) consisting of functions vanishing
on N together with their derivatives of order up to [s]. For s < 0 assume
Cr(B,N):=C7(B,N).

Finally we define the weighted Holder spaces to which the generalized
solutions of Problem (II) belong. We use the following notations for some
subdomains of 2 and R}, respectively

OV i={xec 0 :|n| <2}, 0T ={xeN:x >1},
N7 ={xeN .z < -1}, J%:=(0,2), Jt = (1, +00).
For an arbitrary real number z > 0 define the space
C:.(92) = {u(x), ulgo € C7(£2°,Q), exp(za1)u(x)| o+ € CT(27),
exp(—zz1)u(x)|o- € C"(27)}
with the norm

or(20,Q) + |eXP(ZJU1)U|(g;)+ + |eXP(—Zl‘1)U|g)—-

I lGs= lu

Herein ) denotes the endpoint of X3 (cf. Fig.2). For functions f(x1) defined
in R! we introduce the space CI _(R!) with the norm

17155 = 1f

In the paper the spaces of scalar and vector-valued functions are not distin-
guished in notations. The norm for vector-valued functions is then the sum of
the norms of the corresponding coordinate functions.

o + 1) Gl

4. Solvability Results

Problem (I) can be handled by the same methods as in [13]. Let us start with
the main result about this problem.

Theorem 1. Let Sy = {x € R? : 25 = 1 + e pa(x1), —00 < 21 < +00}, 2 €
Wé+5/2’2(]R) with 1 > 0,0 = §|6o| > 0, where By is independent of § and de-
pends on eigenvalues of the operator pencils associated with the corresponding
linear problem (cf. [12]). Assume that § is sufficiently small. Then there exist
positive numbers €,7 such that for every ¢ € (0,€) Problem (1) has a unique
solution (v,p,0,11)T. The solution admits the representation

=v’(x) + e u(x), p(x) = p°(x) + £ q(x),
0(x) = 0°(x) + e 9¥(x), V1(x1) = hoo + W1 (21),
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where hoo € (0,1) is one of the roots to equation (5.4), {v°, p°, 6°} are the
functions of the basic solution from (5.3), (5.5),

U= (u,q,9,0)" € [Wé“’z(ﬂ)}QXW;fl’z(H)xWé”’Q(H)xWé+5/272(R)
= DWW (II)
and the following inequalities hold
U DWW D) < 7, £ < const - 02.

Let us remark that U = (u,q,9,%;)” in Theorem 1 is the unique solution
of an associated linear boundary value problem that was obtained by lin-
earization of the original Problem (I) over the basic solution {v’,p° 6°} in
the uniform unperturbed (strip-like) domain I7. Note that the corresponding
isothermal problem to Problem (I) (i.e. without any inclusion of temperature)
was analytically examined in detail in the papers [12, 13]. In order to prove
Theorem 1 one has to repeat and to modify all the investigations from that
papers. Since the temperature equation is also nonlinear elliptic there are not
essential changes in the proof. Thus we omit the detailed proof here.

Let us now study the solvability of Problem (IT). By straightforward cal-
culations one can determine the (exact) nonisothermal Poiseuille flows

(v (x), P (x), 0 (x)} x€e N

in the left part 2~ of the (double) - channel. The corresponding velocities and
temperatures do not depend on z;. In 27 (i.e. if 0 < 22 < h1) one obtains

- 3R G6F 4R 6F;
v )(m2)=< - 1)m§+(——+ 1>x2+R,

R heol B3
v (%) =0, 60 (3) = g + (63 — b0),
4.1
) 3R 6} (41)
p' 7 (x) = 2v101 23 x1 — 019T2+
) 1 1
+oim [90962 + 5(93 —00)x3| + k1.
In 25 (i.e.if hy <z < 1) one gets, respectively,
(-) _ 6k 5 6(14h1)Fy 6 F
o @) = — T T T @)
(=) () — (=) (0 (x2 — 1)
vy (%) =0, 0 (z2) = 03 + ———(02 — 63),
(1= ha) (4.2)
120505 F:
()(x) = —H202r2
(%) TENE T1 — 029T2+ 2
1 r9 —h
+0272 0322 + 5(92 — 93)% + k.
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It is well-known that the pressure p can be determined only up to an additive
constant in channel flows (cf. k1, ko in formulae (4.1), (4.2)).

By {v(*), p(+) 9(t)} we denote the exact solution (nonisothermal Poiseuille
flow) in the united part 27 at the right-hand side of the channel. Note that
this solution coincides with the basic solution {v°, p°, 8°} to Problem (I). That
solution is determined by straightforward calculations in the Appendix (see
Section 5). The associated flow fields are given by formulae (5.3), (5.5). Note
that in [13] the corresponding isothermal flow fields were already calculated.
An essential part of the determination of {v(*) p(*) #(H)} consists in the
calculation of the value ho, from the 5th degree polynomial equation (5.4).
Equation (5.4) coincides with equation (A.13) from [13] when the channel is
horizontal. Note that the final thickness h, is a function of Fi, F5, R and of
the rheological parameters of the fluids. It can have up to three different val-
ues in the interval (0,1) for the same parameter set (cf. [13]). Furthermore, by
Y9 (x1) we denote the infinitely differentiable solution of the following bound-
ary value problem

d Yi(21) g(o1 — ¢2)

< - (1) =
Az 14 ) (a)?

a(0)
$1(0)=hy,  lHm ti(21) = heo,

(4.3)

which can be obtained from the sixth condition (1.6)s of (1.6) by setting
v = 0, p = const., # = 0 as the initial solution for F; = F», = R =6y =60, = 0.
Let £ = &(x1) be a smooth cut-off function vanishing for |z1| < 1 and being
equal to 1 for |z1| > 2. Finally, suppose that g1 > g2 is fulfilled. Now we can
formulate the main result for Problem (II).

Theorem 2. There exist positive real numbers

so, Mo and 29 < /g (01 — 02)/0(0)
such that for arbitrary s € (0,s0),z € (0, 20), max (Fy, Fa, R, |6o], |02]) < Mo
and for positive hoo, 1, F5, R satisfying the condition

20(0)

It — hoo(F1, Fy, R)| < 4| ———2—,
[ (71, B, B) g (01— 02)

(4.4)

Problem (II) has a unique solution {v,p,0,¢1} which can be represented in
the form

v =&(—z1)vD) + E(a)v0 +w, p=E&(—z)p ) +p° +q,
0 =&(—21)0) + &(21)0° + 9, P1(x1) = P (21) + w(z),

where {v(_),p(_),ﬂ(_)} denotes the nonisothermal Poiseuille flow in both
channels as v1 — —oo and {v°,p°,6°} is the basic solution of Problem (I)
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as r1 — +oo. The function £ denotes the smooth cut-off function mentioned
above. Moreover, w € [CSSEQ(.Q)}Q 0 € Cit2(02),q € CSF (U RT), Vg e
S 5.(2) and w € CTF: (RL) hold.

s—2,z

The proof of this theorem can be realized in the same way as in [17]
applying the above mentioned scheme (2.2). We omit here the proof. The
condition (4.4) is a consequence of solving the boundary value problem (4.3)
and the restriction g; > g9 is essential for the applied method. The weight
parameter sg in Theorem 2 can be estimated studying a model problem for a
nonisothermal Stokes system in a neighborhood of ) in the same way as in
[17, 18] and [21]. The exponential decay of {w, ¢, ), w} at infinity is well-known
(cf. [9, 17, 18]).

5. Appendix - On the Basic Uniform Solutions

Let us consider now the two-fluid flow in the “uniform” horizontal channel I7,
i.e. in the case where Sy is the straight line Sy := {x = (71,22) € R? : 25 =
1, —00 < x1 < +00}. We suppose that the (unknown) free interface I'; permits
the representation 17 = {x € R? : x5 = ¢1(x1) = hoo = const., —00 < 77 <
+oo} and we are looking for stationary unidirectional flows. Such flows fulfill
the assumptions
(9’01 (99
Vo = O, 5‘%1 = O, a$1 = u.

As a consequence we obtain that the pressure gradient downstream is an un-
known constant dp/dx1 = po = const. which is determined by prescribing vol-
ume fluxes F}, F». Under these assumptions the nonisothermal Navier-Stokes
equations reduce to

—voV? 01 +po =0,
(Op/dx2) = —0g + 079, —AV20=0,
and the equation of continuity (1.1)s is automatically fulfilled. Problem (I)

can now be transformed to the following two independent systems of equations
containing the unknowns v1(x2), po, hoo and 8(x2), p(x1, x2), respectively

y d%gl) _ y d2v§2) _
101 dﬂ?% = Po, 202 dx% = Do,
) =R, wm =0 @)
do!t do'? 5.1
U§1)|$2:hm = ’ng)'wz:hma V101 d;g = V202 d;g 5 ( )
T2=Noo T2=Noo

oo 1
/ vgl)(mg) dzy = Iy, / v§2> (z2)dzo = Fy,
0 hoo
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d2e 0 426
de3 7 de3 7
0(1)|I2:0 = 90) 0(2)|z2:1 = 92;
(1) (2) 5.2
9(1)|$ —h = 9(2)|w —he s A g = A o , (5:2)
2—oo 2—Noo de z27h de I2:hm
dp
o, = 9t 0v0(x2), PV asmhe = 2P |pazne

In the systems (5.1) and (5.2) the notation vim) means the restriction v1|,,
of the field v; to the subdomain I7,, (m = 1,2). The analogous statements are
true for Uém), 6™ p(m) | respectively. System (5.1) is the same as in [13] and
it has the well-known solution

0.5a1x§ + bizs + R, 0< 22 € heo
v (x2) = 7
0.5&2(%% — 1) + bQ(JJQ — 1), hoo <2 <1
v9(z2) = 0, (5-3)
Po = ai1l101 = a2v202,
where
L o o = | gz Bhee o B o —=1a
_V2927 1= hgo T(l_hgo) 3 2 — 1
Fi — Rho Fy
= oo hoo 5 b = b 5
b1 [(2+h ) h%o + T‘(l—hgo):| o =T10b1

and h is given by one of the solutions to the following equation (5.4) which
is an algebraic equation of the fifth degree (see [13])

r(r — D)RAS, + [—4r(r — )R —r(r — 1)Fy — (r — 1) Fy] ht,
+[r(6r — 5)R+2r(2r — 3)Fy — 2rFy) k3, + [2r(—=2r + 1)R (5.4)
+3r(=2r + 3)Fy + 3rEp)h2, + [P R+ 4r(r — 1)Fy| hoo — 12F = 0.

In [13] the following two lemmas on the existence and multiplicity of solutions
to equation (5.4) were proved.

Lemma 1. If F1 F5 > 0, then equation (5.4) has at least one root ho, within
the open interval (0,1).

Lemma 2. If F1 F; > 0, then equation (5.4) has at most three different roots
heo € (0,1).
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If ho and pg are known from system (5.1) then system (5.2) is independent
of (5.1) and can be solved separately. Its solution has the representation

b0+ 2 (B —60).  0<2<hoo
0 hoo
0 (332) = To — hoo )
9004—7(02—000),}100 <m2 < 1
1—hs
PoZ1 — 019T2 + 0171 <90x2 + Tox§> + K, (5:5)
p(x) = - N Ooc — hoola 02— 0o
Pox1 — 029T2 + 0272 1= he To 2(1 — hoo)x2

+pCOI‘I‘ + k7

Note that in Problem (I) the pressure p can be determined only up to an
additive constant k. This fact is well-known for channel flows.

Furthermore, in (5.5) the correction term peo,, results from the last condi-
tion (5.2)g in (5.2) and 0 denotes the a priori unknown value of § at zo = ho.
These values are given by

0o + O hoo
Pcorr = ghoo(g2 - Ql) + Ql’\/lhooT - Q?V?m(2eoo - 92hoo - 900h00)7
0. — AoOohso + /\190(1 — hoo)
© T TN he)  Ahe
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