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Abstract. The present paper deals with an alternating direction implicit method
for a two dimensional parabolic equation in a rectangle domain with a nonlocal
boundary condition in one direction. Sufficient conditions of stability for Peaceman-
Rachford method are established. Results of some numerical experiments are pre-
sented.
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1. Introduction

Theoretical analysis of differential problems with nonlocal boundary condi-
tions (NBC) of various types and finite-difference methods for them often
appeared in scientific literature n the past decade [3, 4, 7, 8, 10, 17, 18, 23].
Two-dimensional and three-dimensional problems are the focus of attention
[16]. Economical finite difference schemes (FDS) and their theoretical inves-
tigation are one of the main issues of numerical mathematics [19]. Various
algorithms are under consideration for solving 2D or 3D parabolic problems
with the integral condition when a multidimensional case is reduced to 1D
problems [5, 6, 9, 11, 12, 13, 14, 15].

This paper deals with the Peaceman-Rachford Alternating Direction Im-
plicit (ADI) method [1, 2, 20, 21] applied to linear 2D parabolic equations
with Bitsadze-Samarskii type NBC in one direction. The spectrum of matrix
for this finite-difference problem is complicated [24]. Namely, eigenvalues of a
finite difference problem can be positive and simple or positive and some of
them multiple, or a few eigenvalues can be negative, or one of the eigenvalues
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is zero, or some eigenvalues are complex with positive or negative real parts.
We show that the ADI method can be stable or nonstable for different values
of parameters in NBC.

The paper is organized as follows. In Section 2 we present a differential
problem and write the Peaceman-Rachford ADI method. In Section 3, we
present some theoretical ADI method stability results for solution of a discrete
problem. The results of numerical experiments are given in Section 4. The
paper ends with some concluding remarks in Section 5.

2. The ADI Method for a 2D Parabolic Equation with a
Nonlocal Boundary Condition in One Direction

2.1. Differential problem with a nonlocal condition

We consider a two dimensional parabolic equation

ou @ 0%u

% o2 g T/@wt), te(0T), (2.1)

in the rectangular domain D = {0 < z < L,,0 < y < L,} with boundary
conditions

w(z,0,t) = w(z,t), w(x,Ly,t)=w(x,t), z€l0,Lg], (2.2)
u(0,y,t) =vi(y,t), y€[0,Ly] (2.3)

and additional Bitsadze-Samarskii type NBC with 0 < £ < L:
WLy, y,t) = yu(§,y,t) + vr(y, 1), y € [0,Ly], (2.4)
where 7 € R, and the initial condition
u(z,y,0) =uo(z,y), (z,9) € D={0<2 < L;,0<y < Ly} (2.5)

We are interested in sufficiently smooth solutions of this problem with NBC.

2.2. Notation

We introduce grids with uniform steps

L
GZ::{iozoafla-'-axn:Lw}v hw:xi_xiilzf’
_h Ly
Wy = wo=0, y1, ..., ym = Ly}, hy:yj—yj_lzﬁ’
— T
G i={to=0, t1, ..., ty =T}, T:tk_tkflzﬁ’

wh={ay, ... 201}, wg ={y1,-- -y Ym-1}, W :={t1,...,tn} and
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tp + 11

T . . —

Wy 1= {t1/2, ey IN—1y2  tg—1y2 = — }

In the domain D we use grids @ := @) X @}, @, := Wk x @), @, :=wh x Wl

w = wh x wg and Jw := W\ w. We also suppose that £ = sh;, 0 < s < n. So,

(&,y;) = (zs,y;) is a grid point.
Let H be a space of grid functions U; ; := U(x;,y;) on w with the inner
product

U V)= > Ulwi,y)V(@i,y;) hahy.

(wi,x;)€Ew

We choose one of the most obvious orderings and set a vector
U:=[Ui,...,Us—11,U12, -, Unctm—1] = U1, -, Un—1,m—1) "

We use the notation Ui’fj = U(z;,y;, tx) for functions defined on the grid (or

parts of this grid) @ xw” and Uf;l/z := U(xi,yj,tp—1/2) on the grid ©@ xw{/2.
‘We omit indices if they are the same in the whole equation. Let us define space

grid operators

Ui—1,j = 2Uij + Uit Uij—1—2Ui; +Uijn

2 ,_ 2 R
51Ui,j = h% s 5in7J = h% s
the time grid operator
_ Uk _ Uk—l
oUr = ———
-
and special grid functions
— UF —0.5702U% + UF~1 4 0.5762U% ! _
U]; 1/2 = 2 Ll (mlvyj) € Wya
~ U* —0570,U0% + U1 +0.576,U% !
U571/2 = . 9 . ) (xiayj) € Wy

These functions will be used in the approximation of boundary conditions
for a half-step of the ADI method. For siqlpliﬁcation of writing letters with
indices we denote U := U¥, U := U+~1/2, U .= UF 1,

2.3. Alternating Direction Implicit Method

We use the Peaceman—Rachford method for solving parabolic problem (2.1)-
(2.5). The idea here is to alternate direction and thus solve two one-dimensional
problems at each time step. We approximate the functions f, v, v, w;, wy,
Uuo by F, Vl, ‘/T, VV[, Wr, UO.

In the first step we evaluate the derivative with respect to y implicitly, the
derivative with respect to x explicitly, and use a time step of 0.57:

U-U
0.57

= 62U + 55?4—?, (xi,y5) € w, (2.6)
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with revised first type boundary conditions
Uljmo = Wiz, Uljom = Wya, @i € Wl (2.7)

In the second step, (now the approximation is explicit in y and implicit in x)
we have a finite difference scheme

U-U
0.57
with simple first type NBC

=03U+0,U+F, (xi,y;) €w, (2.8)

Ulizo =V, Ulizn =Uli=s + Vs, y; € w;- (2.9)
We approximate the initial condition as follows
U° = Uy, (xi,yj) € w. (2.10)

We also assume that all boundary and initial conditions are compatible. Note
that U = U, for (z;,y;) € w.

Let us introduce (n — 1) x (n — 1) and (m — 1) x (m — 1) matrices and
(n —1) x 1 vectors

-2 1 0.. 0 0 -2 1 0.. 0 0

1-2 1.. 0 0 1-2 1.. 0 0

1 0 1-2.. 0 0 1 0 1-2.. 0 0

00 0...-2 1 00 0...-2 1

00 7... 1-2 00 0... 1-2

V; = [V;;,0,...,0,V,,], W= (W), Wia)2s -, Wia)n1),

Vj = [(‘/ly)la 0, ey O, (‘77“3;)]]; Wr = [(Wrr)la (WT‘I)Qv RS (Wrz)n—l];
Fj = [Fljyf2j7---;Fn—l,j]; j:l,...,m—l,

where ~ is in the s-th column of the matrix A,. Let I, be the identity matrix
(n—1) x (n—1), I, be the identity matrix (m—1) x (m—1) and I := I, ® I,
where A ® B denotes the Kronecker (tensor) product of matrices A and B.
Then we define (m—1)(n—1) x (m—1)(n—1) matrices and (m—1)(n—1) x 1
vectors

Ay i=—-1,®A,, Ay:=—-A,®I,, F:=[F,Fs ... Fn_l
V= [V, Vo, ..., Vo], W:=[W,,0,...,0,W,],
V:=[Vi, Vo, ..., Vo1l

We can directly verify that

AA; = AA = Ay ® Ag. (2.11)
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We can consider FDS (2.6)—(2.10) as operator equations in the space H

= ~ — T T -~
— — T T

The Laplace differential (or finite difference) operator can be split in a
natural way as the sum of two operators. In our case, these operators are A;
and A,. Let us express U (see, system (2.12)—(2.13)) as follows

— . T .

20 = (I +057A)U + (I = 057400 — 75 (V = V)

x

and let us eliminate U from this system. We get a two-level finite difference
scheme §
U=SU+r71F

with the operator
S = (I+0.57A1) Y (I +0.5745) (I — 0.5745)(I — 0.574;)

and

W T
F=F4— 44T _
Tz T T e

(@Yo + @:Vi)o + BV + @1V )

In the first step of the Peacemen-Rachford method, we sweep in the y-
direction and along each line x; = const,i =1,...,n—1 we have 1D subprob-
lems (see, Egs. (2.6)—(2.7)) with the tridiagonal matrix A,. In the second step
of the method, we sweep in the z-direction and along each line y; = const,
j=1,...,m —1 we have 1D subproblems (see, Egs. (2.8)—(2.9)) with the
quasi-tridiagonal matrix A,. When v = 0, i.e. the classical boundary condi-
tions are formulated, both matrices are symmetrical and tridiagonal. These
tridiagonal systems can be solved very efficiently using Thomas’ algorithm.
We use a modification of this algorithm [22] for solving a quasi-tridiagonal
system, for example, systems with matrix A,.

In the commutative case (see, (2.11)), the Peaceman—Rachford method
approximates the exact solution with the second order in time and space [21].

3. Investigation of Stability

The Peacemen-Rachford method is unconditionally stable in the case of the
classical boundary conditions (the case v = 0) [21]. Most stability theorems of
this method require that both operators be symmetrical and positive, but, in
the case of NBC, we have at least one non-selfconjugate operator. A spectrum
of such operators is more complicated. So, additional investigation of stability
properties is needed in this case.
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We offer some theoretical results about the spectral properties of the ma-
trices Ay (7, hy,n) and Ay (hy, m). Let us consider the matrix

A= A(y,h,n) = Az (v, h,n)

and suppose that nh = L. We formulate the main results about the spectrum
for matrix A and apply these results to the matrices A, = A(v, kg, n), Ay =
A(07 hyv m)

Let us consider the domain (2, of the complex plane C, consisting of the
strip 0 < Req < wL/h and two rays ¢ = i, § > 0 and ¢ = wL/h + i0,

4
6 > 0. The analytic function \ = 72 sin? % is a one-to-one mapping of (2,
onto 2 ~ {0,4/h?}. Note that this mapping takes the points ¢ = 0 and
g = wL/h into the points A = 0 and A\ = 4/h?, respectively. We denote
2, = 2,U{0,7L/h}. The eigenvectors and eigenvalues of the matrix (—A)

are of the form (see, [24]):

. qr; 4 9 hg .
Ui(q) = sin 7 AMag) = ﬁsm BT it geCy~{0,7L/h},
_ @ _o _ ) _ 4
Ui0) = 7, A0) =0, UilrL/h) = —F—" AxL/h) = 7.

For real \ # 0, )\7& 5 (¢ #0, q;«é )wehave

. QT 4 ., ha . L
Ui(q):SIHT, )\:ﬁsm ﬁ, lfq:OZE (O,T), (31)
. 6331 4 2 hﬁ . .
U;(q) = sinh T A= ~7z sinh T if g=p01, >0, (3.2)
i . o 0T 4 9 hd . mL
Ui(q) = (—1)" "sinh 7 A= 2 cosh YA if ¢g= W +id,6 > 0. (3.3)

We find the values of ¢ € C, \ {0, 7L/h} as the roots of the equation

sin g — ysin(g€) = 0, (3.4)
and ¢ = 0,if y =1/, and ¢ = 7L /h, if y = (—1)" % /€, where £ = s/n = £/L.
For every ~y there exist n — 1 such values g, k = 1,...,n — 1 in 2, but

they can be complex and multiple. A few results about the eigenvalues and
eigenvectors for matrix (—A) are proved in [24]).

Lemma 1. For every £ € (0;1) there exist such v— = v_(€) and v4 = v+ (£),
—1/6 < - < =1, 1 < vy < 1/E, that for all v € (y_;74) all eigenvalues of
the matriz (—A) are positive and simple:

4 sin? hay,

Ay = 72 sin E sinock—*ysin(ozké):(), k=1,2,....,n—1,

and the corresponding eigenvectors
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k) _ [ AT . Oplp_1 E—=1.92 1
U sm—L ,...,smiL , ,2,...,1 ,

are linear independent, i.e., (—A) is a matriz of a simple structure.

For v = v_ or v = 4 there exist positive multiple eigenvalues with one
eigenvector. In this case (—A) s not a matriz of simple structure. For v, =
1/€, there exists a simple zero eigenvalue A1 (v, £), for v+ > 1/€ there exists
only one simple negative eigenvalue \; (7,5).

For every £ € (0;1), there exist v* = ~* (5) and v} = Wi(g), <y,
Y4+ < %, such that for all v € (v*;77}) and for all complex eigenvalues of the
matriz (—A) the inequality Re A\, > 0 is valid. The eigenvalues can be real or
complex for such v, and we have a full system of linear independent eigen-

vectors, except some vi,...,Yn. € [max{y*, —1/5};7_] U [y4; min{~v}, 1/5}],

n.(§) = 0, where we have real multiple eigenvalues with an eigenvector and
generalized eigenvectors of the first or second order.

Table 1. The values of y—, v+, v* and «}. R denotes the case, where there exist
only real eigenvalues and C denotes real parts of all eigenvalues positive for all ~.

¢ 1/8 1/4 1/3  3/8 1/2  5/8 2/3 3/4 7/8
Yi o n=2 — — — — R — — — —
n=3 - - R - - - R - -
n=4 - Cy+ - - R - - R -
n==~6 — — +00 — C+ — R — —
n=8 1794 2671 — 10034 +4o0o0 Cy - R R
n=12 - 943 1155 2702 — +oo Cy =

n=24 651 599 634 649 729 959 1154 2702 C4
n=o00 589 524 536 536 535 535 535 535 535

Y+ 1.02  1.09 3 1.02 2 1.03 1.5 1.33 114

Y- -1.02 -1.09 -1 -1.02 -2 -1.03  -1.5 -1.33 -1.14

¥E n=2 — — — — R — — — -
n=3 - - —00 - - - R - -
n=4 - -56 - - —0o0 — — R —
n==~6 - — -33 - -52 — —00 — —
n=8 -445 -28 — -28.3 -34 -52 — -0 R
n=12 — -25.5 -24.2 — =27 — -34 -51.98 —

n=24 -394 -24.1 -22.7 -229 -24 247 -25.2 -27  -51.98
n=o00 -389 -23.7 -222 -224 -23.2 -23.1 -23.1 -23.1 -23.1

The values of v_, 74, v* and 77} are presented in Table 1 for different
values of parameters £ and n = L, /h;.

Let the eigenvalues of matrix A,, ., be denoted by {\;}"; and let the
eigenvalues of matrix B,, «,, be denoted by {x; };-;1. We denote the correspond-

ing eigenvectors as {u;};"; and {v;}7_;, respectively. Then the eigenvalues of
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A®I, +1, ®B are the numbers {\; + p; 7171, the eigenvalues of A B
are the numbers {\;p; ;2,7 and {w; ® v;}]*,7_, are eigenvectors for both
matrices [25].

We apply this proposition to matrices A; and As. The matrix (—A,) is a

matrix of the simple structure: eigenvalues and eigenvectors are given by

4 hy o
) _ .2 v = O 4%
ILL()—h%SlD 2yLya ()_[1 3y ot m—l}v
where Vj(l) = sin —Ozyj ,oq =ml, Il =1,...,m—1. The matrix (—A,) is a matrix

Yy
of more complicated structure, its eigenvalues and eigenvectors are given by

AB = 2A®(y), oW =[P (), ., U ()]s k<,

(see, Eqs. (3.1)—(3.4) and Lemma 1). If all the eigenvalues of the matrix (—A;)
are simple (without multiple eigenvalues), then there exist n — 1 linear inde-
pendent eigenvectors, or else the number of linear independent eigenvectors is
less than n — 1.

Lemma 2. If matriz A1 is a matriz of simple structure then matrices A1 Ao,
AsAq and A = Ay + As are matrices of simple structure and have the same
system of eigenvectors:

kD _ rrrDy e _ R0 17— _
R (U, U =0V k=1, =1, 1=1,...,m -1,
and
AFD (A Ag) = XD (A A1) = A (7)),
AED(AL + A) = AB () 44V k=1,....n—1,1=1,...,m—1.

Corollary 1. If A, is a matrix of simple structure, then S is a matrix of simple
structure too, and

(1—0.57A(A1)) (1 - 0.57A(As))
(14+0.57A(A1)) (14 0.57A(A2))

A(S) = (3.5)

Lemma 3. If matriz A, is a matriz of simple structure and Re X*) > 0 for
allk=1,...,n—1, then |A\(S)| < 1.

4. Numerical Experiments

In this section, we present the results of computational experiments. The aim
of experiments is to test the usage of the ADI method for solving a parabolic
problem with NBC.

Using the ADI method described above, three parabolic problems with
NBC were tested. The behaviour of solutions u(z,y,t) is different in these
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three examples as t — oo. We choose functions f(x,y,t), wi(z,t), w.(x,t),
v (y,t), vr(y,t) and up(x,y) so that these three differential problems have the
solutions:

1) up =% + 9% + 13 2) up = e TUtt: 3) uz = 2xysint,
respectively. Each problem was solved with the following parameters
51:1/4a 52:1/27 53:3/47 Lw:Ly:]-

(so, é = ¢). Test problems were solved with different values of parameters ~, 7
and h. Numerical experiment results are presented for 7 = 10~%, h = 0.0125
and T = 2 (Problems 1 and 2), and T = 13 (Problem 3).

Table 2. The intervals [ym; va]-

Problem 1 2 3 Problem 1 2 3
Ym £=1/4 94  -25. -57.6 v €=1/4 40 6.0 11.7
£E=1/2 -29.0 -34.1 -359 E=1/2 24 31 46
£€=3/4 -269 -26.0 -27.6 £E=3/4 16 18 21

Table 3. The values of the solutions and computational errors.

Problem 1 2 3
U(1;1/2;2) 0.91252E+1 0.33116E+2

U(1;1/2;13) 0.42016E+0
€ 0.600081E-3  0.26970E-2  0.89765E-4

The minimum 7, and the maximum ~s of the stability interval [y, ya]
for the ADI method are presented in Table 2. The stability interval was estab-
lished using a simple rule: the error of solution must be the same as that for
the problem without NBC (y = 0). Note that the ADI method is stable for
all the three test problems in the case of the negative eigenvalue of matrix A,
where this eigenvalue is almost zero (y £ 1/£). This effect may be explained
in part by the formula A(S) = A1 \a, where

o1 0.57A(A;)

%

=——~ =1,2.
1+ 05T>\(Al)

If at least one eigenvalue of matrix A, is negative, then |A;| > 1, but [As] < 1,
so it may be |[A(S)] < 1. The values of 7, and vy (Table 2) are different
for the same £. This effect can not be explained by matrix S eigenvalues,
because these eigenvalues don’t depend on f, v, v,., w;, w, and ug expressions.
So, additional investigation is needed to explain the stability conditions of
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the ADI method. An approximate value of solution U and computational
error ¢ = max;; |U;; — u;;| are presented in Table 3. We have the greatest
computational error at the point (1;1/2) in all the three problems. For v < v,
or v > vy, errors are growing. A typical error growing is shown in Table 4.

Table 4. Computational error.

£=1/4 Problem 1 £&=1/4 Problem 2
v 5 vy 5

-75.0  0.37050E+1 -60.0  0.15376E-+0
-30.0 0.14887E-2 -40.0 0.50163E-2
-10.0 0.92220E-3 -20.0 0.36163E-2
-9.5 0.90408E-3 -11.0 0.26970E-2
-5.0 0.60081E-3 4.5 0.26970E-2
1.0 0.60081E-3 4.6 0.27428E-2
2.5 0.60081E-3 6.0 0.40054E-2
4.0 0.90122E-3 10.0 0.11425E-1
4.3 0.10014E-2 15.0 0.14919E+0

13.0 0.13848E-1
20.0 0.25756E+1

£=3/4 Problem 2

£=1/2 Problem 3

~y €

7 c 280 0.12772E+4
37.0  0.11745E+5 261  0.48370E-2
-36.0.  0.14627E-1 260  0.31166E-2
35.0  0.89765E-4 210.0  0.26970E-2
1.0 0.89765E-4 1.0 0.26970E-2
45  0.89765E-4 1.6 0.26970E-2
46  0.13483E-3 1.7 0.31700E-2
50  0.23469E-3 2.3 0.63396E-1
55  0.62273E+4 2.6  0.13651E+2

5. Conclusions and Remarks

The values of parameters £ and « in NBC are essential for the stability of
the ADI method. The sufficient stability condition |A(s)| < 1 of this method
is theoretically justified. The numerical experiment shows the efficiency of
this theoretical condition. If ¢ is fixed, then the ADI method is stable for
a sufficiently wide interval of v values, but this interval is not symmetrical
with respect to v = 0. It is determined by a FDS spectrum structure. Some
numerical experiments are given and they validate the theoretical results.
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