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Abstract. In the case of uniform grids, the error of the spline interpolant of a
function defined on R has been well estimated. On the basis of the spline inter-
polation formula for functions defined on R we derive quasi-interpolation formulae
for functions defined on R or in a vicinity of a bounded interval, say [0, 1], and we
estimate the difference between the interpolant and the quasi-interpolants.
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1. Introduction

Our problem setting origins from the collocation type methods to solve weakly
singular integral equations

1
v(t) :/0 K(t,s)v(s)ds + f(t), 0<t<1,

where f € C™[0,1] and K is C™-smooth on [0,1] x [0,1] \ diag having an
integrable singularity on the diagonal. Then a solution v € C]0,1] is C™-
smooth in the interval (0,1) but its derivatives typically have boundary sin-
gularities. With a suitable change of variables ¢ = ¢(z), s = ¢(y), the
integral equation can be transformed so that the singularities of the solu-
tion u(x) := v(p(x)) will be suppressed (see [3] for details) and, moreover,
u(0) =u (1) =0, j=1,...,m. There is a simple extension T onto R of
such v defined by w(z) = u(0) for x < 0 and uw(x) = u(1) for x > 1. This
extension preserves the smoothness and bounds for the derivatives. Alterna-
tively, we can decompose u(x) = u(z) + [u(l) — u(0)]z for 0 < x < 1, then
u(z) = u(x) — [u(l) —u(0)]z has a C™-smooth 1-periodic extension from [0, 1]
onto R and @™ (z) = u{™(z) for 0 < < 1. This enables to replace the
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interpolation/quasi-interpolation of v € C[0,1] by the interpolation/quasi-
interpolation of w € BC(R) or & € Cher(R) on R and build corresponding
collocation/quasi-collocation methods for integral equations. Designing fast
solvers, we are strongly interested in smallest constants in error estimates for
interpolation/quasi-interpolation.
In the present paper we construct 2p — 1 point spline quasi-interpolants
Efj 2n f, p €N, for functions f given in a vicinity of the standard interval [0, 1],
starting from the formula for the spline interpolant Qj, ., f of order m (or, of
degree m—1) with the uniform knot set of a step size h > 0. Here f is a special
extension of f onto R. An optimal error estimate of f — Qp, ,,f (with smallest
possible constant) on the Sobolev classes W™ >°(R) and V"™ > (R) is known,
S0 it remains to estimate Q;hmf—Q;sznf on [0, 1]. For p > p' = int((m+2)/2),
the error Qp mf — Q;f 271 f occurs to be asymptotically smaller than the error
of f—Qn.mf (provided that f is not a polynomial of degree m — 1), and then

the main part of the error f — Qﬁf ) [ is generated by f — Qpm /-

So we proceed in the inverse direction compared to [1,4] where first an
error estimate of the quasi-interpolant was derived directly and then used to
estimate the error of the interpolant; this latter way enables results of optimal
accuracy order but with strongly overestimated (or undetermined) constants
in the error estimates.

We also discuss the operator norms of ), ,,, and Qﬁf 271 in the space BC(R)
of bounded continuous functions v on R equipped with the norm

[[ulloe = sup [u(z)].
zeR

(p)

w0 || for moderate m occur to

The numerical values of norms ||Qp. | and ||Q
be surprisingly small, e.g., [|Qn.m| = 2.142, HQZP;T)LH = 1.419 for m = 10, in

contrast to extremely pessimistic estimate ||Q§1p ;ZLH < (2m)™ in [4]; it must
be said that the spline grids may be non-uniform in [1, 4], and in the case of
uniform grids, the quasi-interpolants of [1, 4] are different from our ones. It
seems that |Qn,m| grows logarithmically as m — oo but we have no analytic
proof of this empiric guess.

2. Cardinal B-Splines

We present two equivalent definitions of the cardinal B-spline B,, of order m
in terminology of [1, 4], or of degree m — 1 in terminology of [2, 5, 7].
DEFINITION 1 (explicit formula):

Bm(a;):ﬁzg(_w@)(x—i)’f—l, r€R, meN,

where, as usual, 0! = 1, 0° := lim, |oz® = 1,
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m\  m! me1 J@—i)mh e —i>0
i) Ty W= 0, a—i<0f"

DEFINITION 2 (recursive formula):

1, 0<z<1 r
Bi(x) = ’ , Bm(x) = / Bi-1(y)dy, m=2,3,....
0, ze R\ [0,1) 1

Let us list some properties of the cardinal B-splines:

B |1i;i+1) € Pm—1 (polynomials of degree m — 1), i € Z, B, € Cm=2(R),
i.e., By, is a spline of defect 1, degree m — 1 on the “cardinal” knot set Z,

m—1

B;g”—”(a;):(—w( )fori<x<i+1, i=0,...,m—1,

1
suppB,, = [0,m], By (z) >0 for 0 <z <m,

Bn (5 =2) = Bn (5 +2)> v B Bu(5) = maBa)

/ B, (z)dx =1, ZBm(x —j)=1, zeR.
R

JET

3. The Wiener Interpolant

Assume m > 3 to be fixed. Introduce the knot set {jh : j € Z}, h > 0, of
splines and the set of interpolation knots {(k+ % )h, k € Z}. Given a bounded
or polynomially growing function f € C(R), we look for its interpolant Qp, , f
in the form

Qunf)(@) =Y diBu(5 ), T€R, (3.1)
JEZL

and determine its coeflicients d; by the interpolation conditions

@) ((k+2)0) =7 ((k+5)0), kez (3.2)

Conditions (3.1) and (3.2) lead to the bi-infinite system of linear equations

Zbkfjdj = fr, k€L, (3-3)

JEL
where

bk:bm:Bm(m%), fk:fm,m:f((m%)h), keZ, (3.4)
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b =b_g >0 for [k < p, by =0 for [k >p, > bp=1,
[k|<p

wi=1int((m —1)/2) = { Ez : i;g: 2 (e)\(;edn} (int = integer part).

Thus (3.3) is a symmetric bi-infinite band system with the band width 2+ 1.
The solution of system (3.3) exists but is nonunique if we do not set the
restriction that |d;| are bounded or of a polynomial growth as |j| — co. The
only reasonable solution of (3.3) is based on the Wiener theorem about the
trigonometric series which we reformulate for the Laurent series as follows:

Given (possibly complex) numbers by, k € Z, such that

Z|bk| < 00, b(z Zbkz #0 for all z € C with |z]| =1, (3.5)
kEZ keZ

the ezpansion a(z) := 1/b(z) = Yoy arz” satisfies >, c; lax| < co.
By the Wiener solution of the system ZjeZ br—;d; = fr, k € Z, we mean

di = ZjeZ ak_jfj, k € 7.
With by, = by, defined in (3.4), introduce the functions

b(z) = b7 (2) == Y bt —bo+2bk2+z , 0#£2€C, (3.6)

[k|<p
Py, (2) = Py, (2) = 2"b™(2) (the characteristic polynomial of By,), (3.7
a(z) =a™(z) = 1/b"(2) = 2"/ Py,(2), 2€C, z# 2, v=1,...,2u, (3.8)

where z,,, v =1,...,2p, are the roots of P, € Py, called the characteristic
roots. From (3.6)—(3.7) we observe that together with z, also 1/z, is a char-
acteristic root. The polynomials Py (z) were introduced in [5] starting from
other considerations, and it was stated in [5] that the characteristic roots are
real and simple; then clearly z, < 0,v=1,...,2pand z, # —1,v=1,...,2p,
thus there is exactly u characteristic roots in the interval (—1,0) and the re-
maining p ones are in (—oo, —1); in particular, conditions (3.5) are fulfilled.
For instance, for m = 10 (then p = 4) we have

1
o [(2®4+1)+502(2"+2)+14608(2%+2%)+88234(2°+2*) + 156190z,

21 = —0.002121, 2o = —0.043223, 23 = —0.201751, z4 = —0.607997,

Ps°(2)=

25:1/21, 26:1/22, Z7:1/Z3, 2321/24.

The coefficients ar, = ax,m of the expansion a(z) = >, ., arz® can be ex-
pressed through characteristic roots z, € (—1,0), v = 1, ... u, by the formula

(cf. [5])

M 1
2B
ay = E v M kez; E ar =1, E lag| = =——— (3.9
Py () )
v=1 I kEZ kEZ
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Thus we have in hand the Wiener interpolant Qy, .., defined by

@nmf)(@) =Y diBn(h 'z —k), 2€R, dp= ar;f;, k€L

keZ JET

Clearly ay, are real, ap = a_g, k € Z, and ay, decays exponentially as |k| — oo.

Introducing the fundamental spline Fy,(x) := 3 ;o7 a;Bm(z — j) (it sat-
isfies Fy, (i + %) = d;,0, © € Z) and denoting ¢, (z) = >, cp | Fm(z — k)] (it
is an 1-periodic function with the property v, (F — x) = om (% + x)), it is
easily seen that

max om(x) < Z |ag|.

Gm = ||Qumll Bc®)—BO®R) = max om(z) =
7€ S keZ

For m < 20, the interpolation process has good stability properties:

Table 1. Numerical values of ¢, and Y, |ak,m.

m 3 4 5 6 7 8 9 10 20

gm 1414 1549 1.706 1.816 1.916 2.000 2.075 2.142 2.583
S lakm| 2.000 3.000 4.800 7.500 11.80 18.53 29.11 4573 4182

For 4 < m < 20, gy, fits into the model ¢, < § + %log m, and possibly
qm — (5 + %logm) — 0 as m — oo; for m = 20 this difference is 0.0036. We
can also observe that >, |k m+1|/ Dk lak,m| — 7/2 = 1.5707963268. .. as
m — oo; for m = 20 this ratio is 1.570796327. It is a challenge to confirm

these empiric guesses analytically.

In analogy to the Sobolev space W™ > (R), introduce the space V™ (R),
m € N, consisting of functions f € C™ (R) such that f(™ € L*(R)
(the derivatives are understood in the sense of distributions). A function
f € V™ (R) may grow as |x| — oo. With the help of the Taylor formula

m—1 (1) 0 1 -
flz) = Z ! ”( )xl + (m—1)! /0 (z _t)m_lf(m)(t) dt, z €R,
=0

we observe that
m 1 m m—
[f(@)] < [If¢ )Iloomlxl +0(@™ ") as |z| — oo

Hence, Qn,mf is well defined for f € V™ (R). Clearly, W™ >°(R) + P, C
V°(R); this inclusion is strict.

Theorem 1. For f € V™ (R), m € N, it holds
If = @umflloe < Pgam™ ™R £™]|oc, (3.10)

where @,,11 1s the Favard constant defined by
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e 1
=2l
4 §(2k+ DA
b, = — , meN;
" iﬂ m=20+1
=0 2k +1)m’ B

D=1, $y=7/2, B3 =72/8, Oy =7"/24,

4
P < P3<P5<... < —<...<Psg <Py <Py, lim &, =—
s m— 00
For 1-periodic functions f and h = 1/n with even n € N, Theorem 1 is well
known (see [2]), and moreover, estimate (3.10) is then optimal in the sense of
Kolmogorov n-width. Namely, for even n, the Kolmogorov n-width of the set
{f € Wia(R) : ™0 < 1} is equal to Dy m ™0™, see [2].
A complete proof of Theorem 1 and some further estimates (case of less
smooth f, estimates for derivatives) are presented in [6].

Remark 1. Compared with other possible approximations of functions f from
values on the uniform grid A, = {(k + F)h), k € Z}, Qn,m [ yields the best
approximation on the classes V™ (R) and W™ > (R). Namely, for a given
positive 7, there is a special function g € W™ (R), ||g™ ||sc = 7, such that,
for any mapping M), : C(4A) — C(R) (linear or nonlinear, continuous or
discontinuous), it holds (cf. (3.10))

max{|lg — Mn(g |a,)lloos (=9) = Mn(=g |a,)llcc} = Pmyrm"™h™.

4. Quasi-Interpolants

Thus, the Wiener interpolant Q.. f of f € C(R) is given by

~ ! il
(thf Z(Zajmfk ]) ( 7 aj,m:VZ:1 PQI#(Z y J € Z,

k€EZ jeZ

where fi, = f((k + % )h), k € Z. For m > 3 we approximate Q. f by the
2p — 1 point quasi-interpolants of the form

@D N@ =3 ( X ahfies)Bu(s k), peN, (1)

keZ |j|<p-—1

determining the coeflicients agfj T)n from a; ,,, with the help of a special difference
calculus.
Introduce the vector space s(Z) of bisequences a = (a;);jez such that

Vr>03de, <oo: laj| <clj|™", 0#7€Z,
and its subspace

Ssym(Z) ={a €s(Z): a_; =a;, j € Z} C s(Z).
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Consider the difference operators
D% s(Z) — 5(Z), (DTa); =aj+1 —aj, j € Z (forward difference),
D™ : s(Z) —s(Z), (D" a); =a; —aj1, j € Z (backward difference)

and their one side inverses J* : 5(Z) — , defined for k € Z by
Zaj,k<0 Eaj, k<0
ey = =
E aj, - > aj, k>0
J=k+1
Namely, denoting e = (6;,0)jez = (...,0,0,1,0,0...), it is easy to check that
JED*q = a, DiJig =qa- (Zaj)g, for a € s(Z). (4.2)
jez

Our main tool is the second order central difference operator
D=D"D" =D D":s(Z) —s(Z), (Da);j=aj_1—2a;+aj1, j€Z,
with its one side inverse
J=J"J": s(Z) — 5(Z).
Formulae (4.2) imply that

a= (Zaj)g + DJa, for a € ssgym(Z),

JEL
and by induction
p—1
a=Y D+ DPJPa, 7,=> (J%);, a€ssym(Z), pEN.  (4.3)
q=0 JEL

Lemma 1. Let a = (ak,m)rez be defined by (3.9). Then (4.3) holds with

p -1
(14 2z,)z8H9
Yo=1, ¥g="Ygm = , ¢>1. (4.4)
e V; (1 —2)2t Py (2,)

Respectively, the coefficients d, = > a;jfx—; of the Wiener interpolant can be
JEL
represented in the form

p—1
de=fi+ Y D+ = S P +6P, kez,  (4.5)

g=1 l71<p—1
where
0P =3 (JPa)k—;DPf;, k€ Z, (4.6)
JEL
p—1 2
(») _ () _ _1J+q il<p—-1 4.7
o =t = 3 10 2 Y il < (@7)
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Proof. According to (3.9) and (4.3), vo = Y, a; = 1. Let us establish (4.4)
j€L

for ¢ > 1. For the bisequence z(*) := (ZI|/J|)J'€Z we have

—k
1 2% k<0
(J~ 2" = { } |

1_Zu —Z]Ij+1, kZO
—k+1
1 2y ’ k < 0 z
TN, = (Jr T2, = _ v |kl
e A Tl B Gl
Thus
- z Zh1 Ikl
(Ja)k = L Y 2z, k€.
; (1—2,)° Py, ()
By repeated application of this formula we find that
[ -1
2 2y
(J%a)k =) T B G M keZ, geN. (4.8)
v=1 v 2pu\*v
142
Since Y = i, (4.4) follows.
kez 1=z

To establish (4.5), we need some formulae of summation by parts. For
a € 5(Z) and a bounded or polynomially growing sequence f, it holds

S fiDta; ==Y (D" fa;, Y. fiD"a;=—> (D*f;)a;.
JEL JEZL JEZL JEL

For D = DD~ these formulae imply

ijDaj = Z(ij)aj, Z ijpCLj = Z(Dpfj)aj, peN. (49)

JEZ JEZ JEZ JEZ

Recalling that e = (e;) = (J;,0), we obtain with the help of (4.3) and (4.9)

p—1
dy =) ae—ifi =) frjaj =) fi (Z VgD + D”J”g)
q=0

jez JET JEZ

1
Ya (D fr—s)e; + > (D fr—j)(JPa);
0

JEL JEZ

J

p
q=
p—1

- Z%quk + Z(Jpg)k_jDPfj.
q=0

JEL

We took into account that D; fr_; = Dy, fx—;, where the designations D, fj._;
and Dy fr—; mean that the second central difference Dfj_; is taken with
respect to j or k, respectively; due to the equality of these differences, we may
omit the indexes j or k by D. Thus the first expression form (4.5), (4.6) for
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dy, is established. Observing that for v, and ag»p ) defined in (4.4) and (4.7), it
holds

p—1
fr+ Z’Yqufk = Z a;p)fkfja
q=1 lil<p—1
we obtain also the second representation form (4.5) for d;. B

Lemma 2. Assume that f € C(R) is bounded or polynomially growing as
|x] — oo. Then for i € Z, p € N, there hold the representations

r((i+ %)h) —@m.n((i+ %)h) (4.10)
p—1 Iz p
= Z (Z § _Z;V)zp Pz ) Z by 2~ JI)Dpf+
j=—p+1 v=1 ® [k|<p

Sy AT k=31 pp—1
> (Z =27 P (o) >~ b D;2l] )D Fits
J

p .
=2 (Z(l —zz 2 P’ () Z e ) )

where p = int((m—1)/2), by are defined in (3.4), and z,, v =1,..., u, are the
characteristic roots (the roots of the characteristic polynomial Ps,,) in (—1,0)

whereas the indea: j in Djzl‘,kfj " indicates that the difference D = DT D~

ol

applied to z,, with respect to j.

Proof. Due to (4.5)—(4.6),
(Qnanf) (@)= (@ @) =D 67 Bun(h™ Lo —k) with 6 =Y (JPa)r—; D f;;

keZ JET

due to (3.4) and (4.8),
()0 - @i ((i+3)0)
@) (- 2)0) - 0 (4 2]
- Zél(cp)Bm(i"‘ % _ k) _ Zbiik(;](cp)
kEL

keZ
= Zb—kfsl(f:)i = Zbkdl(czl)i
kEZ kEZ
Z bk(z a)k—i—; D" f]) Z bk(z JPa)i- JDprJ)
[k|<p JEZ |kl <p JEL

— Z ( Z bk(JpQ)k—j)Dpfi+j

JEL " |Kl<p
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- ; (Z (1 —Z;/)% PQM(ZV) Z b zlk J|)Dpf+

[k|<p

Representing D?f;y; = DDP~'f; ; = D=DP~'D* f;.; and using the sum-
mation formulae, in particular,

> a;Df; ==Y (DYa))f; =D (a; —a;41)f),

JET JET JET

we obtain also

i+ g)m) - %?%f>((i+%)h)
S (Satmaie I o )or

JEL u:l \k\<
N
_ [k—j] _ \k*jfll p—1p+ ¢
_Z(Z 1—21, 2Z’P (2) Zbk(z ))D DY fivj-
JEZ u:l 2p |k|<p

These formulae take the form (4.10) since for the characteristic values z, we
k—j .
have 37, -, bk 2 =0 for [j] > e

for j < —p, Z bkzl‘,k_j‘ = Z bkzlj_j =27 Z bkzlj =0,

[kI<p |kI<p [k|<p
for j > u, E by, zl‘,k*j‘ = E ) E bzt =
|k|<p [kI<p |k|<p

Recall that together with z,, also z,; I is a characteristic value. B
Theorem 2. For f € V2P°°(R), it holds
.m .om
1@nanf = Q) flloo < amsup| £ ((i+ 5 ) 1) = @700 ((i+5) 1)
i€z
< gumc® B2 FCP) (4.11)

where ¢m = [|Qn,ml|Bo®)—BO®) 0nd

m

Cgﬁ)_ }Z 1—z 2pp2 Zbkz‘k ]w

j=—p+l v= 1 \k\<

Proof. Clearly, Qumf — Q). f = Qum(f — Q). f), and (4.11) follows with
the help of the first one of representations (4.10). B

Differently from || f — Qp,m f|lcc which is saturated at the accuracy O(h™),
there is no saturation in the error ||Qh,mf—Q§f?2nf |loo — according to (4.11), the
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accuracy order O(h?P) grows with p if f is sufficiently regular. It is reasonable

to quasi-interpolate with the smallest p € N for which 2p > m; denote it by
s

p', ie.,

241
(2 2 , M even
P = )= mr
——, modd
2
Denote also Q}, ,,, = gp ;7)1, a5 = ag . As we see from Theorem 3 below

| f — Q}.mflloc asymptotically maintains the accuracy of ||f — Qpnmflloo fo
C™-smooth f.

Note that a quasi-interpolant can be determined from local values of f
since for x € [ih, (i+ 1)h], i € Z, the sum in (4.1) is restricted to the following
terms:

@nN@ = > (> A fis)Bulh e k).

k=i—mt1 - |j]<p-1
In this expression, index k — j varies between (i — m + 1) — (p — 1) and
i+ (p—1),and fr_; = f((k—j+ %5 )h) exploits values of f from the interval
[(i =% —p+2)h, (i + 2 + p— 1)h]. Thus (Q}"),f)(x) is well defined for
S [zh (i+1)h]if f is given on the interval [(i — F —p+2)h, (i+ 5 +p—1)h].
Also the total error f(z)— ( gpznf)(x) can be estimated locally for any p € N.
We restrict ourselves to the case p = p’ and x € [0, 1]. The quasi-interpolant

(Qh.m ) Z ( > dfie J) (bl —k), 0<ax <1,
k=—m+1 |j|<p'—1
is well defined for f € C(—mh,1+ mh).

Theorem 3. For m > 3, f € W™ (=4§,1+ ), § > mh, it holds

max |f(0)= Qe N@| < @ran ™+, )h™ sup [ (@), (412
—o<x<1l+6

where for even m,

w 2 / 1 w
2P P )
/ k—
Cm = Z Z (1_: )Qp/ P/V(Z ) Z kasz‘/ il )
j=—p |v=1 v 2p\Y) =y
whereas for odd m,
H H 1
“— k=1 _ lk=j=1]
5 bk )| -
Pld® 1/:1 l—z,, P2u zy) f

Moreover, for any compact subset M of C™[—6,1+ 4], it holds
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sup max |f(z) — (Q), . f)(x)]

feM 0<z<1

< —mypm (m) m .
S P "R max STV (@)] B e, (4-13)

where € . — 0 as h — 0.

Proof. Let us extend f € W™>(—4,1+6) C C™~1—6,1+ 4] up to function
f e V™>(R) by setting

f*(x)v T < —0
@) =4 f(z), 6<az<1+3
fi(z), x>1+6

where fr are the Taylor polynomials of f of degree m — 1 with expansion
centers —¢ and 1 + J, respectively. For 0 < x < 1 we have

F@) = @hmf) (@) = f(2) = (Qh mS) (@),

and together with the equality

7 - Q;Lm? = 7 - Qh,Wl? + Qh,m (Qh,m? - Q%,m?)

we obtain
a1 (@) = (Qh ) (@)
< 1T = QuaFlo + ansup |7 (14 ) ) = @07 ((1+5) )|

By Theorem 1,

T T —m g m (™M)
If— Qh,mf”oo <Py "h Hf HOO

Using the second and third representation (4.10) respectively for even and
odd m, we get

sup ’7((14- %) h) —( gf;)j) ((l+ %) h)‘

< supjez [DP "1 f;], m even
- sup,cz DY "1D*f;|, m odd

Further, for even and odd m we have, respectively,
'_17F m/27F m —(m) m m
(DY VF L = 1D EE < B oo = BT F™ oo
/_ - m— rd m —(m) m m
|DPDYF| = (DD < BT oo = BT oo

where || /)]s :=sup_s_pc145 ™ (2)]. Thus
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1@hm(@Qnmf — Q) Flloe < gmc, ™ sup  |F™(a)] (4.14)
’ —i<xe<1+d

and (4.12) follows.
To prove (4.13), introduce the operator

Apm 2 C™[=8,1+ 6] — C[0,1], Anmf = h™"Qun(Qnnf — Qo)

where the extension f of f now is built using the Taylor polynomials of f
of degree m. For f € C™T1[—6,1 + 6], we then have f € V™ 1>°(R), and
similarly as (4.14) we obtain (cf. also (4.11)) an estimate of order

1@ (@i — QDo = O™ ).

Thus || Apm fllcp,1) — 0as b — 0 for f from C™*+[—4,1+ 6] which is a dense
set in C™[—4,1 4 0]. According to (4.14), [|Anmllcm—s1+51—cl0,1] < GmCry,
for all sufficiently small h (for & < §/m). By Banach—Steinhaus theorem, the
convergence || An m f|lclo1] — 0 as h — 0 takes place for all f € C™[—4,14];
the convergence is uniform with respect to f € M where M C C™[—4§,1+0]is
a compact set. This proves (4.13) with p, m v = sup e | Anm fllcio,y — 0
ash— 0.1

) _ ) _

a a

’ .
j ,m —Jjm = Y=jm> J

J,m

The weights a = a; =0,...,p — 1, of the

quasi-interpolant

@@ =3 (X @t (k=i +5)0) ) Bz~ k)

keZ |j|<p'—1

can be computed by (4.7) once for ever. For m = 3,...,10 they are as follows:

Table 2. The weights a’; ,,, of the quasi-interpolant.

m ao,m at,m as,m a3,m aly,m as,m

3 1.2500000 -0.1250000

4 1.5000000 -0.2777778 0.0277778

5 1.6614583 -0.3715278 0.0407986

6 2.05641667 -0.6385417 0.1229167 -0.0114583

7 23113137 -0.8030165 0.1629774 -0.0156178

8 2.9285825 -1.2534083 0.3430732 -0.0587258 0.0047696

9 3.3532232 -1.5474118 (.4418932 -0.0774754 0.0063823

10 4.3468295 -2.3113639 0.8030947 -0.1918579 0.0287522 -0.0020398
The values of g, := [|Q}, ,,|[Bo®)—Bo(®) can be computed according to

the formula (cf. the formula for ¢, in Section 3)

¢®) = ||Q§LI?3—,IHBC(R)HBC(R) = max_ > |Fuu(z+5),

11
IG[%, mg ] JEZ
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Fm,p(x) = Z Cl](f’?.an(x — k), pE N.
|k|<p—1

For m = 3,..., 10, the numerical values of ¢/, (see Theorem 3) and ¢/,, can be
found in Table 3.

Table 3. Numerical values of ¢}, and ¢,,.

m 3 4 5 6 7 8 9 10 20

¢, 0.016 0.019 0.015 0.0085 0.0060 0.0030 0.0022 0.0010 6.5-107°
gm 1.250 1.354 1.329 1.403 1.356 1.413 1.378 1.419 1.514
gm 1414 1549 1.706 1.816 1.916 2.000 2.075 2.142 2.583

For a comparison, we recalled also the values of ¢, = ||Qnm| Bo®)—BC®R)-
We see that the quasi-interpolation process is even more stable than the inter-
polation process. On the basis of presented numerical values, it is difficult to
set a hypothesis whether ¢/,, is bounded or of a logarithmic growth as m — oc;
the latter hypothesis seems to be more probable.
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