MATHEMATICAL MODELLING AND ANALYSIS. ED. A.BUIKIS VOLUME 12 NUMBER 1, 2007, PAGES 107-120 © 2007 Technika ISSN 1392-6292 print, ISSN 1648-3510 online

QUASI-INTERPOLATION BY SPLINES ON THE UNIFORM KNOT SETS

E. LEETMA and G. VAINIKKO

University of Tartu Liivi 2, 50409 Tartu, Estonia E-mail: evely.leetma@ut.ee; gennadi.vainikko@ut.ee

Received October 24, 2006; revised November 28, 2006; published online February 10, 2007

Abstract. In the case of uniform grids, the error of the spline interpolant of a function defined on \mathbb{R} has been well estimated. On the basis of the spline interpolation formula for functions defined on \mathbb{R} we derive quasi-interpolation formulae for functions defined on \mathbb{R} or in a vicinity of a bounded interval, say [0, 1], and we estimate the difference between the interpolant and the quasi-interpolants.

Key words: splines, interpolation, quasi-interpolation, weakly singular integral equations

1. Introduction

Our problem setting origins from the collocation type methods to solve weakly singular integral equations

$$v(t) = \int_0^1 K(t,s)v(s)ds + f(t), \qquad 0 \le t \le 1,$$

where $f \in C^m[0,1]$ and K is C^m -smooth on $[0,1] \times [0,1] \setminus \text{diag}$ having an integrable singularity on the diagonal. Then a solution $v \in C[0,1]$ is C^m smooth in the interval (0,1) but its derivatives typically have boundary singularities. With a suitable change of variables $t = \varphi(x)$, $s = \varphi(y)$, the integral equation can be transformed so that the singularities of the solution $u(x) := v(\varphi(x))$ will be suppressed (see [3] for details) and, moreover, $u^{(j)}(0) = u^{(j)}(1) = 0, \ j = 1, \ldots, m$. There is a simple extension \overline{u} onto \mathbb{R} of such u defined by $\overline{u}(x) = u(0)$ for x < 0 and $\overline{u}(x) = u(1)$ for x > 1. This extension preserves the smoothness and bounds for the derivatives. Alternatively, we can decompose $u(x) = \widetilde{u}(x) + [u(1) - u(0)]x$ for $0 \le x \le 1$, then $\widetilde{u}(x) = u(x) - [u(1) - u(0)]x$ has a C^m -smooth 1-periodic extension from [0,1]onto \mathbb{R} and $\widetilde{u}^{(m)}(x) = u^{(m)}(x)$ for $0 \le x \le 1$. This enables to replace the interpolation/quasi-interpolation of $u \in C[0,1]$ by the interpolation/quasiinterpolation of $\overline{u} \in BC(\mathbb{R})$ or $\widetilde{u} \in C_{per}(\mathbb{R})$ on \mathbb{R} and build corresponding collocation/quasi-collocation methods for integral equations. Designing fast solvers, we are strongly interested in smallest constants in error estimates for interpolation/quasi-interpolation.

In the present paper we construct 2p-1 point spline quasi-interpolants $Q_{h,m}^{(p)}f, p \in \mathbb{N}$, for functions f given in a vicinity of the standard interval [0, 1], starting from the formula for the spline interpolant $Q_{h,m}\bar{f}$ of order m (or, of degree m-1) with the uniform knot set of a step size h > 0. Here \bar{f} is a special extension of f onto \mathbb{R} . An optimal error estimate of $\bar{f} - Q_{h,m}\bar{f}$ (with smallest possible constant) on the Sobolev classes $W^{m,\infty}(\mathbb{R})$ and $V^{m,\infty}(\mathbb{R})$ is known, so it remains to estimate $Q_{h,m}\bar{f} - Q_{h,m}^{(p)}f$ on [0, 1]. For $p \ge p' = \operatorname{int}((m+2)/2)$, the error $Q_{h,m}\bar{f} - Q_{h,m}^{(p)}f$ occurs to be asymptotically smaller than the error of $\bar{f} - Q_{h,m}\bar{f}$ (provided that f is not a polynomial of degree m-1), and then the main part of the error $f - Q_{h,m}^{(p)}f$ is generated by $\bar{f} - Q_{h,m}\bar{f}$. So we proceed in the inverse direction compared to [1, 4] where first an

So we proceed in the inverse direction compared to [1, 4] where first an error estimate of the quasi-interpolant was derived directly and then used to estimate the error of the interpolant; this latter way enables results of optimal accuracy order but with strongly overestimated (or undetermined) constants in the error estimates.

We also discuss the operator norms of $Q_{h,m}$ and $Q_{h,m}^{(p)}$ in the space $BC(\mathbb{R})$ of bounded continuous functions u on \mathbb{R} equipped with the norm

$$||u||_{\infty} = \sup_{x \in \mathbb{R}} |u(x)|.$$

The numerical values of norms $||Q_{h,m}||$ and $||Q_{h,m}^{(p)}||$ for moderate m occur to be surprisingly small, e.g., $||Q_{h,m}|| = 2.142$, $||Q_{h,m}^{(p')}|| = 1.419$ for m = 10, in contrast to extremely pessimistic estimate $||Q_{h,m}^{(p')}|| \leq (2m)^m$ in [4]; it must be said that the spline grids may be non-uniform in [1, 4], and in the case of uniform grids, the quasi-interpolants of [1, 4] are different from our ones. It seems that $||Q_{h,m}||$ grows logarithmically as $m \to \infty$ but we have no analytic proof of this empiric guess.

2. Cardinal B-Splines

We present two equivalent definitions of the cardinal B-spline B_m of order m in terminology of [1, 4], or of degree m - 1 in terminology of [2, 5, 7].

DEFINITION 1 (explicit formula):

$$B_m(x) = \frac{1}{(m-1)!} \sum_{i=0}^m (-1)^i \binom{m}{i} (x-i)_+^{m-1}, \ x \in \mathbb{R}, \ m \in \mathbb{N},$$

where, as usual, $0! = 1, 0^0 := \lim_{x \downarrow 0} x^x = 1$,

Quasi-Interpolation by Splines on the Uniform Knot Sets 109

$$\binom{m}{i} = \frac{m!}{i! (m-i)!}, \quad (x-i)_+^{m-1} := \left\{ \begin{array}{c} (x-i)^{m-1}, \ x-i \ge 0\\ 0, \ x-i < 0 \end{array} \right\}.$$

DEFINITION 2 (recursive formula):

$$B_1(x) = \begin{cases} 1, & 0 \le x < 1\\ 0, & x \in \mathbb{R} \setminus [0, 1) \end{cases}, \quad B_m(x) = \int_{x-1}^x B_{m-1}(y) \, dy, \quad m = 2, 3, \dots.$$

Let us list some properties of the cardinal B-splines:

 $B_m \mid_{[i,i+1]} \in \mathcal{P}_{m-1}$ (polynomials of degree m-1), $i \in \mathbb{Z}$, $B_m \in C^{(m-2)}(\mathbb{R})$, i.e., B_m is a spline of defect 1, degree m-1 on the "cardinal" knot set \mathbb{Z} ,

$$B_m^{(m-1)}(x) = (-1)^i \binom{m-1}{i} \text{ for } i < x < i+1, \ i = 0, \dots, m-1,$$

$$\sup B_m = [0,m], \ B_m(x) > 0 \text{ for } 0 < x < m,$$

$$B_m\left(\frac{m}{2} - x\right) = B_m\left(\frac{m}{2} + x\right), \ x \in \mathbb{R}, \ B_m\left(\frac{m}{2}\right) = \max_{x \in \mathbb{R}} B_m(x),$$

$$\int_{\mathbb{R}} B_m(x) dx = 1, \ \sum_{j \in \mathbb{Z}} B_m(x-j) = 1, \ x \in \mathbb{R}.$$

3. The Wiener Interpolant

Assume $m \geq 3$ to be fixed. Introduce the knot set $\{jh : j \in \mathbb{Z}\}, h > 0$, of splines and the set of interpolation knots $\{(k+\frac{m}{2})h, k \in \mathbb{Z}\}$. Given a bounded or polynomially growing function $f \in C(\mathbb{R})$, we look for its interpolant $Q_{h,m}f$ in the form

$$(Q_{h,m}f)(x) = \sum_{j \in \mathbb{Z}} d_j B_m \left(\frac{x}{h} - j\right), \ x \in \mathbb{R},$$
(3.1)

and determine its coefficients d_i by the interpolation conditions

$$(Q_{h,m}f)\left(\left(k+\frac{m}{2}\right)h\right) = f\left(\left(k+\frac{m}{2}\right)h\right), \quad k \in \mathbb{Z}.$$
(3.2)

Conditions (3.1) and (3.2) lead to the bi-infinite system of linear equations

$$\sum_{j\in\mathbb{Z}} b_{k-j} d_j = f_k, \quad k \in \mathbb{Z},$$
(3.3)

where

$$b_k = b_{k,m} = B_m \left(k + \frac{m}{2} \right), \quad f_k = f_{k,h,m} = f \left(\left(k + \frac{m}{2} \right) h \right), \quad k \in \mathbb{Z}, \quad (3.4)$$

$$\begin{split} b_k &= b_{-k} > 0 \ \text{for} \ |k| \le \mu, \ b_k = 0 \ \text{for} \ |k| > \mu, \ \sum_{|k| \le \mu} b_k = 1, \\ \mu &:= \operatorname{int}((m-1)/2) = \left\{ \begin{array}{ll} (m-2)/2, \ m \ \text{even} \\ (m-1)/2, \ m \ \text{odd} \end{array} \right\} \quad (\text{int} = \text{integer part}). \end{split}$$

Thus (3.3) is a symmetric bi-infinite band system with the band width $2\mu + 1$. The solution of system (3.3) exists but is nonunique if we do not set the restriction that $|d_i|$ are bounded or of a polynomial growth as $|j| \to \infty$. The only reasonable solution of (3.3) is based on the Wiener theorem about the trigonometric series which we reformulate for the Laurent series as follows:

Given (possibly complex) numbers $b_k, k \in \mathbb{Z}$, such that

$$\sum_{k \in \mathbb{Z}} |b_k| < \infty, \ b(z) := \sum_{k \in \mathbb{Z}} b_k z^k \neq 0 \text{ for all } z \in \mathbb{C} \text{ with } |z| = 1, \qquad (3.5)$$

the expansion $a(z) := 1/b(z) = \sum_{k \in \mathbb{Z}} a_k z^k$ satisfies $\sum_{k \in \mathbb{Z}} |a_k| < \infty$. By the Wiener solution of the system $\sum_{j \in \mathbb{Z}} b_{k-j} d_j = f_k$, $k \in \mathbb{Z}$, we mean $d_k = \sum_{j \in \mathbb{Z}} a_{k-j} f_j, \ k \in \mathbb{Z}.$

With $b_k = b_{k,m}$ defined in (3.4), introduce the functions

$$b(z) = b^{m}(z) := \sum_{|k| \le \mu} b_{k} z^{k} = b_{0} + \sum_{k=1}^{\mu} b_{k} (z^{k} + z^{-k}), \ 0 \ne z \in \mathbb{C},$$
(3.6)

$$P_{2\mu}(z) = P_{2\mu}^m(z) = z^{\mu} b^m(z)$$
 (the characteristic polynomial of B_m), (3.7)

$$a(z) = a^{m}(z) := 1/b^{m}(z) = z^{\mu}/P_{2\mu}^{m}(z), \ z \in \mathbb{C}, \ z \neq z_{\nu}, \ \nu = 1, \dots, 2\mu, \ (3.8)$$

where z_{ν} , $\nu = 1, ..., 2\mu$, are the roots of $P_{2\mu}^m \in \mathcal{P}_{2\mu}$, called the *characteristic* roots. From (3.6)–(3.7) we observe that together with z_{ν} also $1/z_{\nu}$ is a characteristic root. The polynomials $P_{2\mu}^m(z)$ were introduced in [5] starting from other considerations, and it was stated in [5] that the characteristic roots are real and simple; then clearly $z_{\nu} < 0, \nu = 1, \dots, 2\mu$ and $z_{\nu} \neq -1, \nu = 1, \dots, 2\mu$, thus there is exactly μ characteristic roots in the interval (-1,0) and the remaining μ ones are in $(-\infty, -1)$; in particular, conditions (3.5) are fulfilled. For instance, for m = 10 (then $\mu = 4$) we have

$$P_8^{10}(z) = \frac{1}{9!} [(z^8 + 1) + 502(z^7 + z) + 14608(z^6 + z^2) + 88234(z^5 + z^3) + 156190z^4],$$

$$z_1 = -0.002121, \quad z_2 = -0.043223, \quad z_3 = -0.201751, \quad z_4 = -0.607997,$$

$$z_5 = 1/z_1, \quad z_6 = 1/z_2, \quad z_7 = 1/z_3, \quad z_8 = 1/z_4.$$

The coefficients $a_k = a_{k,m}$ of the expansion $a(z) = \sum_{k \in \mathbb{Z}} a_k z^k$ can be expressed through characteristic roots $z_{\nu} \in (-1, 0), \nu = 1, \dots \mu$, by the formula (cf. [5])

$$a_{k} = \sum_{\nu=1}^{\mu} \frac{z_{\nu}^{\mu-1}}{P_{2\mu}'(z_{\nu})} z_{\nu}^{|k|}, \ k \in \mathbb{Z}; \ \sum_{k \in \mathbb{Z}} a_{k} = 1, \ \sum_{k \in \mathbb{Z}} |a_{k}| = \frac{(-1)^{\mu}}{P_{2\mu}(-1)}.$$
(3.9)

Thus we have in hand the Wiener interpolant $Q_{h,m}f$ defined by

$$(Q_{h,m}f)(x) = \sum_{k \in \mathbb{Z}} d_k B_m(h^{-1}x - k), \ x \in \mathbb{R}, \ d_k = \sum_{j \in \mathbb{Z}} a_{k-j} f_j, \ k \in \mathbb{Z}.$$

Clearly a_k are real, $a_k = a_{-k}, k \in \mathbb{Z}$, and a_k decays exponentially as $|k| \to \infty$.

Introducing the fundamental spline $F_m(x) := \sum_{j \in \mathbb{Z}} a_j B_m(x-j)$ (it satisfies $F_m(i+\frac{m}{2}) = \delta_{i,0}, i \in \mathbb{Z}$) and denoting $\varphi_m(x) = \sum_{k \in \mathbb{Z}} |F_m(x-k)|$ (it is an 1-periodic function with the property $\varphi_m(\frac{m}{2}-x) = \varphi_m(\frac{m}{2}+x)$), it is easily seen that

$$q_m := \|Q_{n,m}\|_{BC(\mathbb{R}) \to BC(\mathbb{R})} = \max_{x \in \mathbb{R}} \varphi_m(x) = \max_{\frac{m}{2} \le x \le \frac{m+1}{2}} \varphi_m(x) \le \sum_{k \in \mathbb{Z}} |a_k|.$$

For $m \leq 20$, the interpolation process has good stability properties:

m	3	4	5	6	7	8	9	10	20
$q_m \ \sum_k a_{k,m} $								$\begin{array}{c} 2.142 \\ 45.73 \end{array}$	

Table 1. Numerical values of q_m and $\sum_k |a_{k,m}|$.

For $4 \le m \le 20$, q_m fits into the model $q_m \le \frac{e}{4} + \frac{2}{\pi} \log m$, and possibly $q_m - (\frac{e}{4} + \frac{2}{\pi} \log m) \to 0$ as $m \to \infty$; for m = 20 this difference is 0.0036. We can also observe that $\sum_k |a_{k,m+1}| / \sum_k |a_{k,m}| \to \pi/2 = 1.5707963268...$ as $m \to \infty$; for m = 20 this ratio is 1.570796327. It is a challenge to confirm these empiric guesses analytically.

In analogy to the Sobolev space $W^{m,\infty}(\mathbb{R})$, introduce the space $V^{m,\infty}(\mathbb{R})$, $m \in \mathbb{N}$, consisting of functions $f \in C^{m-1}(\mathbb{R})$ such that $f^{(m)} \in L^{\infty}(\mathbb{R})$ (the derivatives are understood in the sense of distributions). A function $f \in V^{m,\infty}(\mathbb{R})$ may grow as $|x| \to \infty$. With the help of the Taylor formula

$$f(x) = \sum_{l=0}^{m-1} \frac{f^{(l)}(0)}{l!} x^l + \frac{1}{(m-1)!} \int_0^x (x-t)^{m-1} f^{(m)}(t) \, dt, \ x \in \mathbb{R},$$

we observe that

$$|f(x)| \le ||f^{(m)}||_{\infty} \frac{1}{m!} |x|^m + O(x^{m-1}) \text{ as } |x| \to \infty.$$

Hence, $Q_{h,m}f$ is well defined for $f \in V^{m,\infty}(\mathbb{R})$. Clearly, $W^{m,\infty}(\mathbb{R}) + \mathcal{P}_m \subset V^{m,\infty}(\mathbb{R})$; this inclusion is strict.

Theorem 1. For $f \in V^{m,\infty}(\mathbb{R})$, $m \in \mathbb{N}$, it holds

$$||f - Q_{h,m}f||_{\infty} \le \Phi_{m+1} \pi^{-m} h^m ||f^{(m)}||_{\infty}, \qquad (3.10)$$

where Φ_{m+1} is the Favard constant defined by

$$\begin{split} \Phi_m &= \frac{4}{\pi} \begin{cases} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^m}, & m = 2l \\ \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^m}, & m = 2l+1 \end{cases}, & m \in \mathbb{N}; \\ \Phi_1 &= 1, \ \Phi_2 &= \pi/2, \ \Phi_3 &= \pi^2/8, \ \Phi_4 &= \pi^3/24, \\ \Phi_1 &< \Phi_3 &< \Phi_5 &< \ldots &< \frac{4}{\pi} &< \ldots &< \Phi_6 &< \Phi_4 &< \Phi_2, \ \lim_{m \to \infty} \Phi_m &= \frac{4}{\pi}. \end{split}$$

For 1-periodic functions f and h = 1/n with even $n \in \mathbb{N}$, Theorem 1 is well known (see [2]), and moreover, estimate (3.10) is then optimal in the sense of Kolmogorov *n*-width. Namely, for even n, the Kolmogorov *n*-width of the set $\{f \in W_{\text{per}}^m(\mathbb{R}) : \|f^{(m)}\|_{\infty} \leq 1\}$ is equal to $\Phi_{m+1}\pi^{-m}n^{-m}$, see [2].

A complete proof of Theorem 1 and some further estimates (case of less smooth f, estimates for derivatives) are presented in [6].

Remark 1. Compared with other possible approximations of functions f from values on the uniform grid $\Delta_h = \{(k + \frac{m}{2})h), k \in \mathbb{Z}\}, Q_{h,m}f$ yields the best approximation on the classes $V^{m,\infty}(\mathbb{R})$ and $W^{m,\infty}(\mathbb{R})$. Namely, for a given positive γ , there is a special function $g \in W^{m,\infty}(\mathbb{R}), \|g^{(m)}\|_{\infty} = \gamma$, such that, for any mapping $M_h : C(\Delta_h) \to C(\mathbb{R})$ (linear or nonlinear, continuous or discontinuous), it holds (cf. (3.10))

$$\max\{\|g - M_h(g \mid_{\Delta_h})\|_{\infty}, \|(-g) - M_h(-g \mid_{\Delta_h})\|_{\infty}\} \ge \Phi_{m+1} \pi^{-m} h^m \gamma.$$

4. Quasi-Interpolants

Thus, the Wiener interpolant $Q_{h,m}f$ of $f \in C(\mathbb{R})$ is given by

$$(Q_{h,m}f)(x) = \sum_{k \in \mathbb{Z}} \left(\sum_{j \in \mathbb{Z}} a_{j,m} f_{k-j} \right) B_m \left(\frac{x}{h} - k \right), \quad a_{j,m} = \sum_{\nu=1}^{\mu} \frac{z_{\nu}^{\mu-1}}{P'_{2\mu}(z_{\nu})} z_{\nu}^{|j|}, \ j \in \mathbb{Z},$$

where $f_k = f((k + \frac{m}{2})h), k \in \mathbb{Z}$. For $m \ge 3$ we approximate $Q_{h,m}f$ by the 2p-1 point quasi-interpolants of the form

$$(Q_{h,m}^{(p)}f)(x) = \sum_{k \in \mathbb{Z}} \Big(\sum_{|j| \le p-1} a_{j,m}^{(p)} f_{k-j} \Big) B_m \Big(\frac{x}{h} - k \Big), \quad p \in \mathbb{N},$$
(4.1)

determining the coefficients $a_{j,m}^{(p)}$ from $a_{j,m}$ with the help of a special difference calculus.

Introduce the vector space $\mathfrak{s}(\mathbb{Z})$ of bisequences $\underline{a} = (a_j)_{j \in \mathbb{Z}}$ such that

$$\forall r \ge 0 \ \exists c_r < \infty : \quad |a_j| \le c_r |j|^{-r}, \ 0 \ne j \in \mathbb{Z},$$

and its subspace

$$\mathfrak{s}_{sym}(\mathbb{Z}) = \{\underline{a} \in \mathfrak{s}(\mathbb{Z}) : a_{-j} = a_j, j \in \mathbb{Z}\} \subset \mathfrak{s}(\mathbb{Z}).$$

Consider the difference operators

$$\begin{array}{ll} D^{+}:\,\mathfrak{s}(\mathbb{Z})\to\mathfrak{s}(\mathbb{Z}), & (D^{+}\underline{a})_{j}=a_{j+1}-a_{j}, \ j\in\mathbb{Z} \ (\text{forward difference}), \\ D^{-}:\,\mathfrak{s}(\mathbb{Z})\to\mathfrak{s}(\mathbb{Z}), & (D^{-}\underline{a})_{j}=a_{j}-a_{j-1}, \ j\in\mathbb{Z} \ (\text{backward difference}) \end{array}$$

and their one side inverses J^{\pm} : $\mathfrak{s}(\mathbb{Z}) \to \mathfrak{s}(\mathbb{Z})$, defined for $k \in \mathbb{Z}$ by

$$(J^+\underline{a})_k = \left\{ \begin{array}{l} \sum\limits_{j=-\infty}^{k-1} a_j, \ k \le 0\\ -\sum\limits_{j=k}^{\infty} a_j, \ k > 0 \end{array} \right\}, \ (J^-\underline{a})_k = \left\{ \begin{array}{l} \sum\limits_{j=-\infty}^k a_j, \ k < 0\\ -\sum\limits_{j=k+1}^{\infty} a_j, \ k \ge 0 \end{array} \right\}$$

Namely, denoting $\underline{e} = (\delta_{j,0})_{j \in \mathbb{Z}} = (\dots, 0, 0, 1, 0, 0, \dots)$, it is easy to check that

$$J^{\pm}D^{\pm}\underline{a} = \underline{a}, \quad D^{\pm}J^{\pm}\underline{a} = \underline{a} - \Big(\sum_{j \in \mathbb{Z}} a_j\Big)\underline{e}, \quad \text{for } \underline{a} \in \mathfrak{s}(\mathbb{Z}).$$
(4.2)

Our main tool is the second order central difference operator

$$D = D^+ D^- = D^- D^+ : \mathfrak{s}(\mathbb{Z}) \to \mathfrak{s}(\mathbb{Z}), \quad (D\underline{a})_j = a_{j-1} - 2a_j + a_{j+1}, \ j \in \mathbb{Z},$$

with its one side inverse

with its one side inverse

$$J = J^+ J^- : \, \mathfrak{s}(\mathbb{Z}) \to \mathfrak{s}(\mathbb{Z}).$$

Formulae (4.2) imply that

$$\underline{a} = \Big(\sum_{j \in \mathbb{Z}} a_j\Big)\underline{e} + DJ\underline{a}, \text{ for } \underline{a} \in \mathfrak{s}_{sym}(\mathbb{Z}),$$

and by induction

$$\underline{a} = \sum_{q=0}^{p-1} \gamma_q D^q \underline{e} + D^p J^p \underline{a}, \ \gamma_q = \sum_{j \in \mathbb{Z}} (J^q \underline{a})_j, \ \underline{a} \in \mathfrak{s}_{sym}(\mathbb{Z}), \ p \in \mathbb{N}.$$
(4.3)

Lemma 1. Let $\underline{a} = (a_{k,m})_{k \in \mathbb{Z}}$ be defined by (3.9). Then (4.3) holds with

$$\gamma_0 = 1, \ \gamma_q = \gamma_{q,m} = \sum_{\nu=1}^{\mu} \frac{(1+z_{\nu})z_{\nu}^{\mu+q-1}}{(1-z_{\nu})^{2q+1}P'_{2\mu}(z_{\nu})}, \ q \ge 1.$$
 (4.4)

Respectively, the coefficients $d_k = \sum_{j \in \mathbb{Z}} a_j f_{k-j}$ of the Wiener interpolant can be represented in the form

$$d_k = f_k + \sum_{q=1}^{p-1} \gamma_q D^q f_k + \delta_k^{(p)} = \sum_{|j| \le p-1} a_j^{(p)} f_{k-j} + \delta_k^{(p)}, \quad k \in \mathbb{Z},$$
(4.5)

where

$$\delta_k^{(p)} = \sum_{j \in \mathbb{Z}} (J^p \underline{a})_{k-j} D^p f_j, \ k \in \mathbb{Z},$$
(4.6)

$$a_{j}^{(p)} = a_{j,m}^{(p)} = \sum_{q=|j|}^{p-1} (-1)^{j+q} \binom{2q}{j+q} \gamma_{q,m}, \quad |j| \le p-1.$$
(4.7)

Proof. According to (3.9) and (4.3), $\gamma_0 = \sum_{j \in \mathbb{Z}} a_j = 1$. Let us establish (4.4) for $q \ge 1$. For the bisequence $\underline{z}^{(\nu)} := (z_{\nu}^{|j|})_{j \in \mathbb{Z}}$ we have

$$(J^{-}\underline{z}^{(\nu)})_{k} = \frac{1}{1-z_{\nu}} \begin{cases} z_{\nu}^{-k}, \quad k < 0\\ -z_{\nu}^{k+1}, \quad k \ge 0 \end{cases},$$
$$(J\underline{z}^{(\nu)})_{k} = (J^{+}J^{-}\underline{z}^{(\nu)})_{k} = \frac{1}{(1-z_{\nu})^{2}} \begin{cases} z_{\nu}^{-k+1}, \quad k \le 0\\ z_{\nu}^{k+1}, \quad k > 0 \end{cases} = \frac{z_{\nu}}{(1-z_{\nu})^{2}} z_{\nu}^{|k|}.$$

Thus

$$(J\underline{a})_k = \sum_{\nu=1}^{\mu} \frac{z_{\nu}}{(1-z_{\nu})^2} \frac{z_{\nu}^{\mu-1}}{P'_{2\mu}(z_{\nu})} z_{\nu}^{|k|}, \ k \in \mathbb{Z}.$$

By repeated application of this formula we find that

$$(J^{q}\underline{a})_{k} = \sum_{\nu=1}^{\mu} \frac{z_{\nu}^{q}}{(1-z_{\nu})^{2q}} \frac{z_{\nu}^{\mu-1}}{P_{2\mu}'(z_{\nu})} z_{\nu}^{|k|}, \ k \in \mathbb{Z}, \ q \in \mathbb{N}.$$
(4.8)

Since $\sum_{k\in\mathbb{Z}} z_{\nu}^{|k|} = \frac{1+z_{\nu}}{1-z_{\nu}}$, (4.4) follows.

To establish (4.5), we need some formulae of summation by parts. For $\underline{a} \in \mathfrak{s}(\mathbb{Z})$ and a bounded or polynomially growing sequence \underline{f} , it holds

$$\sum_{j \in \mathbb{Z}} f_j D^+ a_j = -\sum_{j \in \mathbb{Z}} (D^- f_j) a_j, \quad \sum_{j \in \mathbb{Z}} f_j D^- a_j = -\sum_{j \in \mathbb{Z}} (D^+ f_j) a_j$$

For $D = D^+D^-$ these formulae imply

$$\sum_{j\in\mathbb{Z}} f_j Da_j = \sum_{j\in\mathbb{Z}} (Df_j)a_j, \quad \sum_{j\in\mathbb{Z}} f_j D^p a_j = \sum_{j\in\mathbb{Z}} (D^p f_j)a_j, \quad p\in\mathbb{N}.$$
 (4.9)

Recalling that $\underline{e} = (e_j) = (\delta_{j,0})$, we obtain with the help of (4.3) and (4.9)

$$d_{k} = \sum_{j \in \mathbb{Z}} a_{k-j} f_{j} = \sum_{j \in \mathbb{Z}} f_{k-j} a_{j} = \sum_{j \in \mathbb{Z}} f_{k-j} \left(\sum_{q=0}^{p-1} \gamma_{q} D^{q} \underline{e} + D^{p} J^{p} \underline{a} \right)_{j}$$
$$= \sum_{q=0}^{p-1} \gamma_{q} \sum_{j \in \mathbb{Z}} (D^{q} f_{k-j}) e_{j} + \sum_{j \in \mathbb{Z}} (D^{p} f_{k-j}) (J^{p} \underline{a})_{j}$$
$$= \sum_{q=0}^{p-1} \gamma_{q} D^{q} f_{k} + \sum_{j \in \mathbb{Z}} (J^{p} \underline{a})_{k-j} D^{p} f_{j}.$$

We took into account that $D_j f_{k-j} = D_k f_{k-j}$, where the designations $D_j f_{k-j}$ and $D_k f_{k-j}$ mean that the second central difference $D f_{k-j}$ is taken with respect to j or k, respectively; due to the equality of these differences, we may omit the indexes j or k by D. Thus the first expression form (4.5), (4.6) for

 d_k is established. Observing that for γ_q and $a_j^{(p)}$ defined in (4.4) and (4.7), it holds

$$f_k + \sum_{q=1}^{p-1} \gamma_q D^q f_k = \sum_{|j| \le p-1} a_j^{(p)} f_{k-j},$$

we obtain also the second representation form (4.5) for d_k .

Lemma 2. Assume that $f \in C(\mathbb{R})$ is bounded or polynomially growing as $|x| \to \infty$. Then for $i \in \mathbb{Z}$, $p \in \mathbb{N}$, there hold the representations

$$\begin{split} f\Big(\Big(i+\frac{m}{2}\Big)h\Big) &- (Q_{h,m}^{(p)}f)\Big(\Big(i+\frac{m}{2}\Big)h\Big) \tag{4.10} \\ &= \sum_{j=-\mu+1}^{\mu-1} \Big(\sum_{\nu=1}^{\mu} \frac{z_{\nu}^{p}}{(1-z_{\nu})^{2p}} \frac{z_{\nu}^{\mu-1}}{P_{2\mu}'(z_{\nu})} \sum_{|k| \leq \mu} b_{k} \, z_{\nu}^{|k-j|} \Big) D^{p} f_{i+j} \\ &= \sum_{j=-\mu}^{\mu} \Big(\sum_{\nu=1}^{\mu} \frac{z_{\nu}^{p}}{(1-z_{\nu})^{2p}} \frac{z_{\nu}^{\mu-1}}{P_{2\mu}'(z_{\nu})} \sum_{|k| \leq \mu} b_{k} \, D_{j} z_{\nu}^{|k-j|} \Big) D^{p-1} f_{i+j} \\ &= \sum_{j=-\mu+1}^{\mu} \Big(\sum_{\nu=1}^{\mu} \frac{z_{\nu}^{p}}{(1-z_{\nu})^{2p}} \frac{z_{\nu}^{\mu-1}}{P_{2\mu}'(z_{\nu})} \sum_{k=-\mu}^{\mu} b_{k} (z_{\nu}^{|k-j|} - z_{\nu}^{|k-j-1|}) \Big) D^{p-1} D^{+} f_{i+j}, \end{split}$$

where $\mu = \operatorname{int}((m-1)/2)$, b_k are defined in (3.4), and z_{ν} , $\nu = 1, \ldots, \mu$, are the characteristic roots (the roots of the characteristic polynomial $P_{2\mu}$) in (-1,0) whereas the index j in $D_j z_{\nu}^{|k-j|}$ indicates that the difference $D = D^+ D^-$ is applied to $z_{\nu}^{|k-j|}$ with respect to j.

Proof. Due to (4.5)-(4.6),

$$(Q_{h,m}f)(x) - (Q_{h,m}^{(p)}f)(x) = \sum_{k \in \mathbb{Z}} \delta_k^{(p)} B_m(h^{-1}x - k) \text{ with } \delta_k^{(p)} = \sum_{j \in \mathbb{Z}} (J^p \underline{a})_{k-j} D^p f_j;$$

due to (3.4) and (4.8),

$$\begin{split} f\left(\left(i+\frac{m}{2}\right)h\right) &- (Q_{h,m}^{(p)}f)\left(\left(i+\frac{m}{2}\right)h\right) \\ &= (Q_{h,m}f)\left(\left(i+\frac{m}{2}\right)h\right) - (Q_{h,m}^{(p)}f)\left(\left(i+\frac{m}{2}\right)h\right) \\ &= \sum_{k\in\mathbb{Z}}\delta_{k}^{(p)}B_{m}\left(i+\frac{m}{2}-k\right) = \sum_{k\in\mathbb{Z}}b_{i-k}\delta_{k}^{(p)} \\ &= \sum_{k\in\mathbb{Z}}b_{-k}\delta_{k-i}^{(p)} = \sum_{k\in\mathbb{Z}}b_{k}\delta_{k-i}^{(p)} \\ &= \sum_{|k|\leq\mu}b_{k}\left(\sum_{j\in\mathbb{Z}}(J^{p}\underline{a})_{k-i-j}D^{p}f_{j}\right) = \sum_{|k|\leq\mu}b_{k}\left(\sum_{j\in\mathbb{Z}}(J^{p}\underline{a})_{k-j}D^{p}f_{i+j}\right) \\ &= \sum_{j\in\mathbb{Z}}\left(\sum_{|k|\leq\mu}b_{k}(J^{p}\underline{a})_{k-j}\right)D^{p}f_{i+j} \end{split}$$

$$= \sum_{j\in\mathbb{Z}} \left(\sum_{\nu=1}^{\mu} \frac{z_{\nu}^{p}}{(1-z_{\nu})^{2p}} \frac{z_{\nu}^{\mu-1}}{P_{2\mu}'(z_{\nu})} \sum_{|k|\leq\mu} b_{k} z_{\nu}^{|k-j|} \right) D^{p} f_{i+j}.$$

Representing $D^p f_{i+j} = D D^{p-1} f_{i+j} = D^- D^{p-1} D^+ f_{i+j}$ and using the summation formulae, in particular,

$$\sum_{j \in \mathbb{Z}} a_j D^- f_j = -\sum_{j \in \mathbb{Z}} (D^+ a_j) f_j = \sum_{j \in \mathbb{Z}} (a_j - a_{j+1}) f_j,$$

we obtain also

$$\begin{split} f\left(\left(i+\frac{m}{2}\right)h\right) &- (Q_{h,m}^{(p)}f)\left(\left(i+\frac{m}{2}\right)h\right) \\ &= \sum_{j\in\mathbb{Z}} \left(\sum_{\nu=1}^{\mu} \frac{z_{\nu}^{p}}{(1-z_{\nu})^{2p}} \frac{z_{\nu}^{\mu-1}}{P_{2\mu}'(z_{\nu})} \sum_{|k|\leq\mu} b_{k} D_{j} z_{\nu}^{|k-j|}\right) D^{p-1} f_{i+j} \\ &= \sum_{j\in\mathbb{Z}} \left(\sum_{\nu=1}^{\mu} \frac{z_{\nu}^{p}}{(1-z_{\nu})^{2p}} \frac{z_{\nu}^{\mu-1}}{P_{2\mu}'(z_{\nu})} \sum_{|k|\leq\mu} b_{k} \left(z_{\nu}^{|k-j|} - z_{\nu}^{|k-j-1|}\right)\right) D^{p-1} D^{+} f_{i+j}. \end{split}$$

These formulae take the form (4.10) since for the characteristic values z_{ν} we have $\sum_{|k| \leq \mu} b_k z_{\nu}^{|k-j|} = 0$ for $|j| \geq \mu$:

$$\begin{aligned} &\text{for } j \leq -\mu, \ \sum_{|k| \leq \mu} b_k \, z_{\nu}^{|k-j|} = \sum_{|k| \leq \mu} b_k \, z_{\nu}^{k-j} = z_{\nu}^{-j} \sum_{|k| \leq \mu} b_k \, z_{\nu}^k = 0 \\ &\text{for } j \geq \mu, \ \sum_{|k| \leq \mu} b_k \, z_{\nu}^{|k-j|} = \sum_{|k| \leq \mu} b_k \, z_{\nu}^{j-k} = z_{\nu}^j \sum_{|k| \leq \mu} b_k \, z_{\nu}^{-k} = 0. \end{aligned}$$

Recall that together with z_{ν} , also z_{ν}^{-1} is a characteristic value.

Theorem 2. For $f \in V^{2p,\infty}(\mathbb{R})$, it holds

$$\begin{aligned} \|Q_{h,m}f - Q_{h,m}^{(p)}f\|_{\infty} &\leq q_m \sup_{i \in \mathbb{Z}} \left| f\left(\left(i + \frac{m}{2}\right)h \right) - \left(Q_{h,m}^{(p)}f\right) \left(\left(i + \frac{m}{2}\right)h \right) \right| \\ &\leq q_m c_m^{(p)} h^{2p} \|f^{(2p)}\|_{\infty}, \end{aligned}$$
(4.11)

where $q_m = \|Q_{h,m}\|_{BC(\mathbb{R}) \to BC(\mathbb{R})}$ and

$$c_m^{(p)} = \sum_{j=-\mu+1}^{\mu-1} \Big| \sum_{\nu=1}^{\mu} \frac{z_{\nu}^p}{(1-z_{\nu})^{2p}} \frac{z_{\nu}^{\mu-1}}{P'_{2\mu}(z_{\nu})} \sum_{|k| \le \mu} b_k z_{\nu}^{|k-j|} \Big|.$$

Proof. Clearly, $Q_{h,m}f - Q_{h,m}^{(p)}f = Q_{h,m}(f - Q_{h,m}^{(p)}f)$, and (4.11) follows with the help of the first one of representations (4.10).

Differently from $||f - Q_{h,m}f||_{\infty}$ which is saturated at the accuracy $O(h^m)$, there is no saturation in the error $||Q_{h,m}f - Q_{h,m}^{(p)}f||_{\infty}$ – according to (4.11), the

accuracy order $O(h^{2p})$ grows with p if f is sufficiently regular. It is reasonable to quasi-interpolate with the smallest $p \in \mathbb{N}$ for which 2p > m; denote it by p', i.e.,

$$p' = \operatorname{int}\left(\frac{m+2}{2}\right) = \left\{\frac{\frac{m}{2}+1, \ m \text{ even}}{\frac{m+1}{2}, \ m \text{ odd}}\right\}.$$

Denote also $Q'_{h,m} := Q_{h,m}^{(p')}, a'_{j,m} := a_{j,m}^{(p')}$. As we see from Theorem 3 below, $\|f - Q'_{h,m}f\|_{\infty}$ asymptotically maintains the accuracy of $\|f - Q_{h,m}f\|_{\infty}$ for C^m -smooth f.

Note that a quasi-interpolant can be determined from local values of f since for $x \in [ih, (i+1)h], i \in \mathbb{Z}$, the sum in (4.1) is restricted to the following terms:

$$(Q_{h,m}^{(p)}f)(x) = \sum_{k=i-m+1}^{i} \left(\sum_{|j| \le p-1} a_j^{(p)} f_{k-j}\right) B_m(h^{-1}x - k).$$

In this expression, index k - j varies between (i - m + 1) - (p - 1) and i + (p - 1), and $f_{k-j} = f((k - j + \frac{m}{2})h)$ exploits values of f from the interval $[(i - \frac{m}{2} - p + 2)h, (i + \frac{m}{2} + p - 1)h]$. Thus $(Q_{h,m}^{(p)}f)(x)$ is well defined for $x \in [ih, (i+1)h]$ if f is given on the interval $[(i - \frac{m}{2} - p + 2)h, (i + \frac{m}{2} + p - 1)h]$. Also the total error $f(x) - (Q_{h,m}^{(p)}f)(x)$ can be estimated locally for any $p \in \mathbb{N}$. We restrict ourselves to the case p = p' and $x \in [0, 1]$. The quasi-interpolant

$$(Q'_{h,m}f)(x) = \sum_{k=-m+1}^{n-1} \Big(\sum_{|j| \le p'-1} a'_{j,m} f_{k-j}\Big) B_m(h^{-1}x - k), \ 0 \le x \le 1,$$

is well defined for $f \in C(-mh, 1+mh)$.

Theorem 3. For $m \ge 3$, $f \in W^{m,\infty}(-\delta, 1+\delta)$, $\delta \ge mh$, it holds

$$\max_{0 \le x \le 1} |f(x) - (Q'_{h,m}f)(x)| \le (\Phi_{m+1}\pi^{-m} + q_m c'_m)h^m \sup_{-\delta < x < 1+\delta} |f^{(m)}(x)|, \quad (4.12)$$

where for even m,

$$c'_{m} = \sum_{j=-\mu}^{\mu} \left| \sum_{\nu=1}^{\mu} \frac{z_{\nu}^{p'}}{(1-z_{\nu})^{2p'}} \frac{z_{\nu}^{\mu-1}}{P'_{2\mu}(z_{\nu})} \sum_{k=-\mu}^{\mu} b_{k} D_{j} z_{\nu}^{|k-j|} \right|,$$

whereas for odd m,

$$c'_{m} = \sum_{j=-\mu+1}^{\mu} \left| \sum_{\nu=1}^{\mu} \frac{z_{\nu}^{p'}}{(1-z_{\nu})^{2p'}} \frac{z_{\nu}^{\mu-1}}{P'_{2\mu}(z_{\nu})} \sum_{k=-\mu}^{\mu} b_{k}(z_{\nu}^{|k-j|} - z_{\nu}^{|k-j-1|}) \right|.$$

Moreover, for any compact subset M of $C^m[-\delta, 1+\delta]$, it holds

 $\sup_{f \in M} \max_{0 \le x \le 1} |f(x) - (Q'_{h,m}f)(x)|$ $\leq \Phi + \pi^{-m}h^{m}$

$$\leq \Phi_{m+1}\pi^{-m}h^m \max_{-\delta \leq x \leq 1+\delta} |f^{(m)}(x)| + h^m \varepsilon_{h,m,M}, \quad (4.13)$$

where $\varepsilon_{h,m,M} \to 0$ as $h \to 0$.

Proof. Let us extend $f \in W^{m,\infty}(-\delta, 1+\delta) \subset C^{m-1}[-\delta, 1+\delta]$ up to function $\overline{f} \in V^{m,\infty}(\mathbb{R})$ by setting

$$\overline{f}(x) = \left\{ \begin{array}{ll} f_{-}(x), & x < -\delta \\ f(x), & -\delta \le x \le 1 + \delta \\ f_{+}(x), & x > 1 + \delta \end{array} \right\}$$

where f_{\mp} are the Taylor polynomials of f of degree m-1 with expansion centers $-\delta$ and $1+\delta$, respectively. For $0 \le x \le 1$ we have

$$f(x) - (Q'_{h,m}f)(x) = \overline{f}(x) - (Q'_{h,m}\overline{f})(x),$$

and together with the equality

$$\overline{f} - Q'_{h,m}\overline{f} = \overline{f} - Q_{h,m}\overline{f} + Q_{h,m}(Q_{h,m}\overline{f} - Q'_{h,m}\overline{f})$$

we obtain

$$\max_{0 \le x \le 1} |f(x) - (Q'_{h,m}f)(x)|$$

$$\leq \|\overline{f} - Q_{h,m}\overline{f}\|_{\infty} + q_m \sup_{l \in \mathbb{Z}} \left|\overline{f}\left(\left(l + \frac{m}{2}\right)h\right) - (Q^{(p')}_{h,m}\overline{f})\left(\left(l + \frac{m}{2}\right)h\right)\right|$$

By Theorem 1,

$$\|\overline{f} - Q_{h,m}\overline{f}\|_{\infty} \le \Phi_{m+1}\pi^{-m}h^m\|\overline{f}^{(m)}\|_{\infty}.$$

Using the second and third representation (4.10) respectively for even and odd m, we get

$$\begin{split} \sup_{l \in \mathbb{Z}} \left| \overline{f} \left(\left(l + \frac{m}{2} \right) h \right) - \left(Q_{h,m}^{(p')} \overline{f} \right) \left(\left(l + \frac{m}{2} \right) h \right) \right| \\ & \leq c'_m \left\{ \begin{aligned} \sup_{j \in \mathbb{Z}} |D^{p'-1} \overline{f}_j|, \ m \text{ even} \\ \sup_{j \in \mathbb{Z}} |D^{p'-1} D^+ \overline{f}_j|, \ m \text{ odd} \end{aligned} \right\}. \end{split}$$

Further, for even and odd m we have, respectively,

$$|D^{p'-1}\overline{f}_{j}| = |D^{m/2}\overline{f}_{j}| \le h^{m} \|\overline{f}^{(m)}\|_{\infty} = h^{m} \|f^{(m)}\|_{\infty},$$

$$|D^{p'-1}D^{+}\overline{f}_{j}| = |(D^{(m-1)/2}D^{+})\overline{f}_{j}| \le h^{m} \|\overline{f}^{(m)}\|_{\infty} = h^{m} \|f^{(m)}\|_{\infty},$$

where $||f^{(m)}||_{\infty} := \sup_{-\delta < x < 1+\delta} |f^{(m)}(x)|$. Thus

Quasi-Interpolation by Splines on the Uniform Knot Sets 119

$$\|Q_{h,m}(Q_{h,m}\overline{f} - Q_{h,m}^{(p')}\overline{f})\|_{\infty} \le q_m c'_m h^m \sup_{-\delta < x < 1+\delta} |f^{(m)}(x)|$$
(4.14)

and (4.12) follows.

To prove (4.13), introduce the operator

$$A_{h,m}: C^{m}[-\delta, 1+\delta] \to C[0,1], \ A_{h,m}f = h^{-m}Q_{h,m}(Q_{h,m}\overline{f} - Q'_{h,m}\overline{f}),$$

where the extension \overline{f} of f now is built using the Taylor polynomials of f of degree m. For $f \in C^{m+1}[-\delta, 1+\delta]$, we then have $\overline{f} \in V^{m+1,\infty}(\mathbb{R})$, and similarly as (4.14) we obtain (cf. also (4.11)) an estimate of order

$$\|Q_{h,m}(Q_{h,m}\overline{f} - Q_{h,m}^{(p')}\overline{f})\|_{\infty} = O(h^{m+1}).$$

Thus $||A_{h,m}f||_{C[0,1]} \to 0$ as $h \to 0$ for f from $C^{m+1}[-\delta, 1+\delta]$ which is a dense set in $C^m[-\delta, 1+\delta]$. According to (4.14), $||A_{h,m}||_{C^m[-\delta, 1+\delta] \to C[0,1]} \leq q_m c'_m$ for all sufficiently small h (for $h \leq \delta/m$). By Banach–Steinhaus theorem, the convergence $||A_{h,m}f||_{C[0,1]} \to 0$ as $h \to 0$ takes place for all $f \in C^m[-\delta, 1+\delta]$; the convergence is uniform with respect to $f \in M$ where $M \subset C^m[-\delta, 1+\delta]$ is a compact set. This proves (4.13) with $\varepsilon_{h,m,M} = \sup_{f \in M} ||A_{h,m}f||_{C[0,1]} \to 0$ as $h \to 0$.

The weights $a'_{j,m} := a^{(p')}_{j,m} = a^{(p')}_{-j,m} = a'_{-j,m}, j = 0, \dots, p' - 1$, of the quasi-interpolant

$$(Q'_{h,m}f)(x) = \sum_{k \in \mathbb{Z}} \Big(\sum_{|j| \le p'-1} a'_{j,m} f\Big(\Big(k-j+\frac{m}{2}\Big)h\Big)\Big) B_m(h^{-1}x-k)$$

can be computed by (4.7) once for ever. For m = 3, ..., 10 they are as follows:

m	$a_{0,m}^{\prime}$	$a'_{1,m}$	$a'_{2,m}$	$a_{3,m}'$	$a'_{4,m}$	$a_{5,m}'$
3	1.2500000	-0.1250000				
4	1.5000000	-0.2777778	0.0277778			
5	1.6614583	-0.3715278	0.0407986			
6	2.0541667	-0.6385417	0.1229167	-0.0114583		
7	2.3113137	-0.8030165	0.1629774	-0.0156178		
8	2.9285825	-1.2534083	0.3430732	-0.0587258	0.0047696	
9	3.3532232	-1.5474118	0.4418932	-0.0774754	0.0063823	
10	4.3468295	-2.3113639	0.8030947	-0.1918579	0.0287522	-0.0020398

Table 2. The weights $a'_{j,m}$ of the quasi-interpolant.

The values of $q'_m := \|Q'_{h,m}\|_{BC(\mathbb{R})\to BC(\mathbb{R})}$ can be computed according to the formula (cf. the formula for q_m in Section 3)

$$q_m^{(p)} := \|Q_{h,m}^{(p)}\|_{BC(\mathbb{R})\to BC(\mathbb{R})} = \max_{x\in[\frac{m}{2},\frac{m+1}{2}]} \sum_{j\in\mathbb{Z}} |F_{m,p}(x+j)|,$$

$$F_{m,p}(x) := \sum_{|k| \le p-1} a_{k,m}^{(p)} B_m(x-k), \quad p \in \mathbb{N}.$$

For m = 3, ..., 10, the numerical values of c'_m (see Theorem 3) and q'_m can be found in Table 3.

Table 3. Numerical values of c'_m and q'_m .

m	3	4	5	6	7	8	9	10	20
q'_m	1.250	1.354	1.329	1.403	1.356	1.413	$\begin{array}{c} 0.0022 \ 1.378 \ 2.075 \end{array}$	1.419	$\begin{array}{c} 6.5\cdot 10^{-6} \\ 1.514 \\ 2.583 \end{array}$

For a comparison, we recalled also the values of $q_m = \|Q_{h,m}\|_{BC(\mathbb{R})\to BC(\mathbb{R})}$. We see that the quasi-interpolation process is even more stable than the interpolation process. On the basis of presented numerical values, it is difficult to set a hypothesis whether q'_m is bounded or of a logarithmic growth as $m \to \infty$; the latter hypothesis seems to be more probable.

Acknowledgement

This work was partly supported by Estonian Science Foundation (research grants No. 6704 and 5859).

References

- [1] C. de Boor. A practical Guide to Splines. Springer, New York, 2001.
- [2] N. P. Korneichuk. Splines in the Approximation Theory. Nauka, Moscow, 1984. (In Russian)
- [3] A. Pedas and G. Vainikko. Smoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equations. Comm. Pure Appl. Anal., 5, 395–413, 2006.
- [4] L. L. Schumaker. Spline Functions: Basic Theory. Krieger Publ., Malabar, Florida, 1993.
- [5] S. B. Stechkin and Yu. N. Subbotin. Splines in Numerical Mathematics. Nauka, Moscow, 1976. (In Russian)
- [6] G. Vainikko. Error estimates of spline interpolation on the real line. (In progress)
- [7] Yu. S. Zav'yalov, B. I. Kvasov and V. L. Miroshnichenko. Methods of Spline Functions. Nauka, Moscow, 1980. (In Russian)

120