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Abstract. Methods of weakly nonlinear theory are used in the present paper in
order to study the development of instability in shallow water for the case where
the flow is assumed to be slightly non-parallel. An asymptotic scheme where slow
divergence of the base flow is taken into account is applied to shallow water equations
with averaging coefficients. An amplitude evolution equation for the most unstable
mode is derived.
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1. Introduction

Shallow turbulent mixing layers, jets and wakes are widespread in nature and
engineering. The understanding of mass, momentum and energy exchange is
important for flows in compound and composite channels, rivers, estuaries,
and in the atmosphere. Such flows are characterized by the presence of tur-
bulent eddies whose transverse horizontal length scale is considerably larger
than the water depth. As a result, the limited water depth prevents the de-
velopment of three-dimensional instabilities.

Different methods of analysis of two-dimensional structures in shallow wa-
ter flows are considered in [9]. Several authors [3, 10] analyzed different aspects
of the linear stability of flows in shallow water. The base flows used in [2, 3, 10],
for stability analyses are assumed to be parallel. Experimental data show that
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the width of shallow wake [1] and the width of the mixing layer [12] are slowly
changing with respect to the longitudinal coordinate. The slow divergence of
the base flow in the downstream direction allows one to construct an asymp-
totic scheme which takes non-parallelism of shallow water flows into account.
Such formulations have been applied in the past to the spatial stability analy-
sis of slowly diverging shear flows in deep water [4, 5]. Recently such a scheme
has also been applied to shallow wakes [7].

Stability of shallow water flows is usually analyzed under the assumption
that flow characteristics are independent on the vertical coordinate. In some
cases, however, this assumption may not be valid. Changes in roughness of the
bottom boundary or flow regimes can lead to large deviations from the above-
mentioned assumption [13, 14]. Momentum correction coefficients [13, 14] are
sometimes used in order to take into account the non-uniformity of the velocity
distribution with respect to the vertical coordinate. In particular, momentum
correction coefficients are used in [6] for linear stability analysis of shallow
mixing layers and in [11] for weakly nonlinear analysis of shallow wakes.

In the present paper weakly nonlinear spatial stability analysis of flows in
shallow water is performed. An asymptotic scheme where slow divergence of
the base flow is taken into account is applied to shallow water equations with
averaging coefficients.

2. Weakly Nonlinear Spatial Stability Analysis

Consider slightly non-parallel two-dimensional shallow water flow. This means
that the normal velocity component is small compared with the streamwise
component and that the base flow quantities are weakly varying functions of
the streamwise coordinate. The assumption of weak non-parallelism implies
that the instability wavelength A\ is much smaller than the length scale L
associated with streamwise inhomogeneities of the base flow.

Two-dimensional shallow water equations with averaging coefficients are
the following [11]:

(A'@[J)t +’Vl (¢ywwu)y - ﬁ2 (¢wwyy)y +'72 (wwwwu)w + ﬁ2 (¢wwwy)w — 73 (¢w¢w1)y

S
+ Sips Ay + %wzwyy + 20, Py Yy + P202e) =0, (2.1)

where ¢(z, y) is the stream function, = and y are the streamwise and transverse
coordinates, respectively, ¢ is the bottom friction coeflicient, h is water depth,
B1, B2 and P53 are the averaging coefficients defined in [11]:

= — = — = — :C—f = 2 2
Nn=261—02, 2=p-1, 13=20—-1, S 25 Vs =\/V7 + 5.

In the spirit of the WKB approximation [8] we introduce a small parameter

A
£=7 < 1, a slow streamwise coordinate X = ex and decompose the total
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stream function of the flow, ¥(x,y,t), into basic (1) and perturbed (¢f)
components, respectively:

Y(w,y,t) = Yoly, X) + sz, y,t). (2.2)

Note that ¢¢(z,y,t) in (2.2), in general, is not small (that is, ¢f(x, y, t) is not
proportional to a positive power of ¢). Linearizing (2.1) in the neighborhood
of the base flow, dropping the subscript "f" and retaining only the terms of
order £ we obtain

7/)mt =+ wyyt + (261 - ﬂQ)(Uzﬂ/)ry + U%syy) - BQ(Uy¢zy + Uyyq/)r) + ﬂQmer

+ ;_;L [U(¢zz + 2byy) + 2Uy¢y} + E{(261 = B2)(Uxthyy + Uxythy)

- QQ(UXL/)?J?J - wayy) + (62 - 1)(UX1/)II - V¢zzy) + BQUX"/)rr

U,
— (26 = )(Uxvar = Vibyy) + 50 [20xs = 2V, + Vit 2] | =(07 |
2.3

where U = 1o, and V = —1ox.

The method of normal modes is a classical method of stability analysis of
parallel steady flows (see, for example, [8]). In such cases the stream function
is represented in the form

Y(x,y,t) = p(y) exp [i(kz — wi)], (2.4)

where k is the wavenumber of a perturbation and w is the frequency of os-
cillation. An arbitrary perturbation consists of a superposition of perturbed
components of the form (2.4) over the range of all wavenumbers. However,
in order to find a necessary condition for instability, it is enough to consider
only one component of the form (2.4) (see, for example, [8]). If the base flow
is slightly non-parallel, then the perturbation stream function ¥(x,y,t) is
decomposed into a slowly varying amplitude function ¢(y, X,w) and a fast
varying phase function (X, w)/e:

Y(z,y,w,t) = p(y, X,w) exp [z(@ — wt)] (2.5)

We also assume that ¢(y, X,w) can be represented by a power series in ¢ in
the form

oy, X,w) = 1(y, X,w) + epa(y, X,w) + ... (2.6)
Substituting (2.5) and (2.6) into (2.3) and collecting the terms that do not
contain € we obtain

Llp:] =0, (2.7)
where
" w ic U ’ ic U
Llp1] = ¢y [(261 — B2)U — 5 kfh }-HDl [2(51 — B2)Uy — lﬁhu}
icrkU
+¥1 [wk — BoUyy — Bok?U + wg—h} (2.8)
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The primes in (2.8) represent the derivatives with respect to y and k =
k(X,w) = 0x. Thus, equation (2.7) is the modified Rayleigh equation, which
is obtained in [11] under parallel flow approximation. Equation (2.7) together
with zero boundary conditions forms an eigenvalue problem (where the eigen-
values are k = k(X,w)). The values of k¥ = k(X,w) = 6x can be obtained
as a result of the numerical solution of the eigenvalue problem. In addition,
a normalized eigenfunction of the linear stability problem, &(y, X,w), can be
calculated. Note that the coordinate X appears in (2.7) as a parameter.

In order to obtain the equation for the amplitude of a perturbation we
assume that
(,Ol(@/,X,UJ) = A(X,w)@(y,X,w), (29)

where A(X,w) is an unknown complex amplitude and @(y, X, w) is a normal-
ized eigenfunction of the linear stability problem. Substituting (2.5), (2.6) and
(2.9) into (2.3) and collecting the terms containing & we obtain

Llp2] =g, (2.10)

where
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2h

An amplitude evolution equation for A(X,w) is obtained from Fredholm’s
alternative, namely, equation (2.10) has a solution if and only if the function
g is orthogonal to all eigenfunctions @ of the corresponding adjoint problem.
Using the solvability condition

/ gPdy =0

— 00
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we obtain the equation for the function A(X,w) in the form
dA
M(X,w)— + N(X,w)A =
(X, )T + N(X,w)4=0,

where

M(X,w) = %/jo {2wk§l5 + (261 — Bo) (U, P +UP")
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N(X,w) = —/ {mk@x +w5—)’“(q§
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Thus, using the WKB method, the leading order approximation of the stream
function ¢ (x,y,w,t) has the form

Y(x,y,w,t) ~ A(X,w)P(y, X,w) exp {z(é /OX E(X,w)dX — wt)}. (2.11)

3. Discussion

Formula (2.11) provides the connection between local parallel flow approx-
imations and takes into account slow streamwise variation of the base flow.
Following [4], a few important conclusions can be drawn from (2.11). First, all
the three terms on the right-hand side of (2.11) contain information related
to the amplitude and phase of the perturbation. Second, the growth rate and
phase speed of the perturbation at any given downstream station depends
on the choice of the perturbed quantities. Finally, the growth rate and phase
speed depend even on the location where these quantities are calculated. In
particular, it is shown in [4] that for any given flow variable @ one can define
a local wavenumber k; by the formula

B y1Q) = ~in- Q). (3.1)
x

where k; = k; + ik;; and the values of k- and k;; are interpreted as the local
phase speed and local spatial growth rate. Thus, in order to make a meaning-
ful comparison of the weakly nonlinear model (2.11) with experimental data
one needs to choose a particular flow quantity @ (say, pressure or streamwise
velocity), then measure it at a particular point and evaluate the right-hand
side of (3.1) at the same point. In other words, in order to validate the weakly
nonlinear model one needs to have either detailed experimental data or, al-
ternatively, numerical solution of nonlinear two-dimensional shallow water
equations.
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