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Abstract. In this paper we study the problem of the diffusion of one substance
through the pores of a porous material which may absorb and immobilize some
of the diffusing substances with the evolution or absorption of heat. The transfer
of moisture and the heat are described by the model. The system of two partial
differential equations (PDEs) is derived, one equation expresses the rate of change
of concentration of water vapour in the air spaces and the other the rate of change
of temperature. The obtained initial-boundary value problem is approximated by
using the finite volume method. This procedure allows us to reduce the 2D transfer
problem described by a system of PDEs to initial value problem for a system of
ordinary differential equations (ODEs) of the first order.
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1. The Mathematical Model

The interest to studies of hydrodynamic flow and heat transfer through a
porous media is increased due to its vast applications such as the drying in
porous solids and soils, drying of wood and paper, soil mechanics, porous
heat pipes, paper machines, liquid composite moulding. Many mathematical
models are developed for the analysis of such processes, for example mathe-
matical models of moisture movement in wood, when the wood is considered
as porous media [1, 2, 3, 8]. Basically these models can be classified into three
categories: empirical curve-fitting equations, moisture diffusion equations, and
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fundamental heat and mass transfer equations. Historically, most models are
based on the moisture diffusion equation. The using of diffusion equation is
usually restricted to the drying below the fiber saturation point, where only
water vapor and bound water are involved and transported by molecular dif-
fusion. However, over the last decades the development of more accurate and
general models becomes more popular [2, 3, 8]. In such models the wood is
consider as a porous medium and multiphase flow and heat transfer is taken
into account. In certain porous media applications the working fluid heat gen-
eration (source) or absorption (sink) effects are important [5]. In this paper
we study the heat and moisture transfer processes in the porous media layer,
described in [4].

We shall further assume linear dependence on both temperature and mois-
ture content and write

M = const+ oC — wT, (1.1)

where C' is the concentration of water vapour in the air spaces, M is the
amount of moisture absorbed by unit mass of fiber, 0 and w are constants.
We shall consider the equilibrium uptake of moisture by a fiber to be related
to water vapour concentration and temperature T' by the linear relation (1.1).

Let us consider an element of a porous material. We can derive two equa-
tions, one expressing the rate of change of concentration and the other de-
scribing the rate of change of temperature. The PDE defining water vapour
diffusion is given in the following form

2
ng% zm%—k(l—m)psaa—]\f, z€0,L], t>0, (1.2)
where D is the diffusion coefficient for moisture in air, m is the fraction of
the total volume of the material occupied by air and (1 — m) is the fraction
of the porous material occupied by fiber of density ps, 2L is the thickness of
the layer of the porous media (due to symmetry conditions
o0y o
Ox lz=L Oz lz=L

we consider only a half of this layer), ¢ is the time. If m = 1, then the equation
(1.2) is diffusion equation for the concentration without fibers. The parameter
g, follows from the fact that the diffusion process goes not along straight air
channels but through a matrix of intertwined fibers and any diffusion of mass
along the fibers is also allowed.

The rate at which the temperature of the element changes is determined
by the heat conduction through air and fibers and the heat evolved when
moisture is absorbed by fibers. The heat diffusion PDEs can be rewritten in

the following form:

oT o*r oM
— =K— —_—, 1.3
Por = Moz T (1.3)
where c is the specific heat of the fibers, K, p is the heat conductivity and the
density of the porous material, ¢ is the heat evolved when the water vapour

is absorbed by the fibers.
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We notice, that both PDEs (1.2), (1.3), i.e. the vapour and temperature
equations, depend on the amount of moisture M in the fibers.

We assume that

1. All coefficients in the PDEs are assumed constant and independent of
moisture concentration and temperature.

2. The heat of sorption g is assumed independent of regain, though in practice
it it can depend on it.

3. Hysteresis of sorption is neglected.

4. The relative volumes occupied by fiber and air are assumed to be constant
as diffusion proceeds, i.e. m is assumed to be constant.

5. The influence of capillarity in the air spaces is not taken into account.

By eliminating M from (1.1), we get the system of two PDEs
r0°T 0T oC

022 ot ot
LedC 90 or

(1.4)

oz2 ot ot’
where

pT K c Dmyg

- _ p¢=—"""7
plc+ qw) m+ (1 —m)pso

qo (1 —m)wps

ctqw T m+(1—m)pso’

For t = 0 we give the initial condition:
T(x,0) =To(z), C(x,0)=Coh(x), (1.5)

where Ty, Cy are known functions.

2. Reduction to Non-connected Diffusion Equations

Let us assume that Dirichlet boundary conditions (BDc) are formulated on
the exterior surfaces z =0

T(0,t) = ¢a1(t),  C(0,1) = da(?), (2.1)

where ¢1, ¢2 are given functions. Then it follows from [4] that simple diffusion
PDEs
10 v
wi 0x2 ot

can be obtained for functions Vi = C — moT, Vo =T — m1C, here

i=1,2 (2.2)

_1-mD° 11— DT

mq b\ y M2 v )
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and p1, pe are the roots of the quadratic equation

1 1 Av
(“_F)(“_F) ~ DODT’
They can be written in the following form

p1 = (dy +dz)/ds, p2 = (d —dz)/ds, di= DT+ D,

dy =2D"DC, dy =/(DC — DT)? +-4wDTDC, v € (0,1).

Let us assume that solutions V;(z,t) of diffusion equations (2.2) subject to
initial and boundary conditions (1.5), (2.1) are obtained. Then solving for T

and C we get
g v

- _ =2 _ 2.3
Vo +mi iy Vi +maVa (2:3)

where vy =1 — mms.

3. Solution of the Initial-Boundary Problem for the
Diffusion Equation in Infinite Layer

If L = oo, then functions Ty, Cy, ¢1, ¢2 in (1.5), (2.1) are constants and
Tloo = To, Cloo = Co, then we get solutions of diffusion equations (2.2) in
the following form:

Vilant) = @1+ (Vo — d)ert (V37

2V/1
\/uzw)
2V/1

)
3

V(1) = By + (Voo — o) et (

<,

where
Vio = Co — maTp, Voo =Ty — m1Cy,
2 z
Dy = o —map1, Pr= 1 —mida, erf(z)= —/ e_yzdy-
V7o

Solutions T" and C follow from (2.3).

4. The Finite-Difference Scheme for Diffusion Equations

Let us consider the case of finite layer(L # oco). We solve diffusion equations
aV; L o

(2.2) with BDc V;|z=0 = s, %h:L = 0, and initial conditions V;|i=o = Vjo,

i = 1,2 by using the following explicit finite-difference scheme(FDS):

Vit = v e (Vi = 2V V),
J J Jj—1 J Jj+1 (4‘1)

=2, Vi, =Vig, VjO:VO(xj), j=1,N, m=0M,
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where V™ is the approximate value of V;(z;,tm),i = 1,2,
r; =jh, Nh=L, t, =mr, r=71/h?
h, T are the corresponding space and time steps in the uniform grid
B=0; Vo=V, i=1,2.
The stability condition for FDS (4.1)is given by

oh? .
7=~ min(u, p2), ko <1.

5. The Finite-Difference Scheme for System of Two
PDEs

If BDc on the exterior surfaces = 0 are different (the second or the third)
kind, then it is not possible to obtain the PDEs (2.2). The initial-boundary
value problem for the system of two PDEs (1.4) can be written in the following
matrix-vector form:

oW *W
FT
o (5.1)
8— = 0, W|t:0 = WO; W|w:0 = ¢7
X lz=L
where
1 | pT vD®
T 1— | ADT D¢

is the matrix of the second order, W = (T, C)T', Wy = (Tp, Co)*, ¢ = (¢1, ¢2)*
are the vectors, 0 < Av < 1. Then the vector finite-difference scheme is given
by

m+1 __ m m m m
{Wj =W+ rA(WE —2W + Wiy, (5.2)
Wgt = ¢, Wity =Wy, W)=W,, j=1,N.
The stability condition for the vector FDS (5.2) can be written as
koh? _
T=-lAIT ko<1 Al = |4l (5.3)

If BDc are of the second kind, then it is necessary to add other finite-difference
equations. As an example, if C|,—o = 1, _T|z:O = 0, then the difference
equation at grid point xg = 0 is added

Tt =150 + 2r DT (T — T3, (5.4)
The stability condition for this equation 7 = koh?/(2DT) follows from (5.4).

If BDc are given in the form T|,—o = 1, %h:o = 0, then we formulate

the following difference equation

Cytt = Cgr + 2rD(CF" = CFY),
with the stability condition 7 = koh?/(2D%).
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6. The System of Ordinary Differential Equations

The system of PDEs (5.1) can be rewritten in the following form:

*w .
Z W
2 ’

. ow . . . -
where W = T Using the method of finite volumes we obtain the following

exact vector finite-difference scheme with respect to grid points x1 = L/2,
xy = L, h = L/2 for the given function W [6, 7]:

Ah=Y(Wy — 2Wy + Wo) = R + Ry, 61)
— A=Y Wy —Wh) = B3, '
where
1 [ [ ;
Ry = E/ aWi(z,t)de = hJs, Rf = E/ (L — )Wy (z,t)dx = hJy,
0 h
1 L . 1
Ry — E/ (2 — h)Wa(a, )dz = ha, :/ (1 — 3)Va(2)d,
h 0

1

Jy = /0 zVa(z)dz, & = (x — h)/h, Va(z) = Wa(h + h, t);
1

o= / i(2)dz, T =a/h, Vi(3) = Wi (ha,t).

In the non-stationary case one must approximate integrals Ji, k = 1,2, 3 with
quadrature formulas in the following way:

Je = AV0) + AP V(1) + APV () i, k=12, (6.2)
Js = APV0) + AP V(1) + 7, (6.3)
h3 93 Wa (&, t)
Tk = gTCk, &€ (h, L), (k=12),
h? 92W, (&3, 1)
ry = ETCB? 63 S (O, h)

Here r; are vector-errors terms, Agf ), Ci(k,n = 1,2,3) are indefinite coeffi-
cients. Using the power functions z*,i = 0,1,... in (6.2)—(6.3) for the fixed
coordinate of vectors V1(Z), Vo(Z) we get the systems of linear algebra equa-
tions for A%k) :

1/[(i+ 1) +2)) = Aol + A 4540,
1/i+2=A420 4+ A% +ia?, =02, (6.4)

1/i+2=A%0 44 =01,
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where 0° = 1 for i = 0. Calculations shows that solutions of the corresponding
systems (6.4) are given by

1 1 1 1 1 2 1 9 5
PIONPTONE SO AL 4o 5

2 4 312 12’ 12
2 1 3 1 3 1
ap -k apol -]
Constants C, in the residual r;, are determined using power functions z2, 33
1 1 1
Cl—%a 02__%7 Cs=—15

Using vector difference equations (6.1) and the right-side integral’s approxi-
mations (6.2), (6.3) with neglected error terms ry, k = 1, 3 we have the follow-
ing initial value problem for vector system of linear ODEs of the first order
(’llo = 0) :

1. 1. 1. A

Zwl + sz + gwl =52 (WQ —2W + Wo),
1 . 5 . A

W+ gt ==z (W2 - ).

W1(0) = ¢(h),  W2(0) = ¢(L).

(6.5)

7. Some Numerical Results

We consider two processes in the porous layer without inner temperature by
using the following parameters:

L=05 DT =103, D=10"% M =50000, N =50, \v=0.9,

1) the drying process(D): Tp =0, Co =1, ¢1 =1, ¢ =0,

2) the moister process(M): To =0, Co =0, ¢1 =0, ¢ = 1.
The results of calculations for FDS are obtained by MATLAB. For the
FDS (4.1) and for both grid functions V;,i = 1,2 we consider matrix
V = zeros(2,N1), N1 = N + 1, then MATLAB operator for calculations
in every time step is written in following form:

V(,2: N)=V(,2: N)4+r*«B*((V:1:N)=2+V(;,2: N1)
+V(3: N)V(;,N)),

where B is a diagonal-matrix with the elements y; ', 5 *. For the vector FDS
(5.2) this MATLAB operator is similar with B = A.

The results of calculations for ODEs are obtained by MAPLE. In Table 1
the values of

C1 =Clz=0.25, Th =T|z=025 C2=Clz=05, To=T|z=05
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Table 1. The values of C and T for x = 0.25,z = 0.5 at time ¢t = 114.6.

Process A v C1 T Cs Ty

1(M) 0.9 1.0 0.1603 0.0846 0.085 0.0923
2(M) 0.1 9.0 0.1603 0.7627 0.085 0.8311
M) 9.0 0.1 0.1603 0.0085 0.085 0.0092
D) 0.1 9.0 09244 0.1603 1.007 0.0850
D) 0.9 1.0 1.6020 0.8383 1.746 0.8238
D) 1.0 0.9 1.6870 0.8467 2.839 0.8330

plate.ime = 114.5914 lambda= 0.9000 nu= 1.0000 plate ime = 114 5914 lambda= 01000 nu= 9,000

005 01 015 02 02 03 035 04 045 0S5 005 01 o015 02 025 03 03 04 045 05

Figure 1. The moister pro- Figure 2. The moister pro-
cess A =09,v=1.0 cess A =0.1,v=9.0

plate ime = 114.5914 lambda= 9.0000 nu= 0.1000 plate ime = 114 5914 lambda= 0.1000 nu= 9.0000

005 01 015 02 025 03 035 04 045 05 005 01 015 02 025 03 03 04 045 05

Figure 3. The moister pro- Figure 4. The draying pro-
cess A =9.0,v =0.1 cess A=0.1,r=9.0

are presented for ¢t = 114.5914, M = 50000. Comparing the solutions of ODEs
system (6.5) and FDS (4.1), (5.2), we see that for C;,T;,i = 1;2 two digits
remain the same.

In Fig.1-6 we present the concentration and temperature distributions in
the porous layer depending on the space coordinate z and on the parameters
A, v at time moment ¢t = 114.5914. In the legends the following notation is
used:
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plate,ime = 114.5914 lambda= 0.9000 nu= 1.0000 plate ime = 114 5914 lambda= 1,000 nu= 0.9000

casessoco
Figure 5. The draying pro- Figure 6. The draying pro-
cess A =0.9,v=1.0 cess A =1.0,v=0.9

1) o — o — o for the temperature curve in infinite layer of = € [0, 0.5],
2) x — % — « for the temperature curve in corresponding finite layer,
3) ——

4) oo for the concentration curve in finite layer.

for the concentration curve in infinite layer,

For the moister process in Fig.1-3 we can see, that if parameter v is in-

creased and water vapour is absorbed by porous material, then inside the layer
heat is evolved, this produces a considerable increase in temperature.

For the draying process in Fig.4-6 we can see, that for increasing values of

parameter \ and the temperature inside the layer the concentration of water
vapour in the air spaces also can be increased.

8.

Conclusions

. For the modelling of transfer of moisture and heat in porous layer the

system of two PDEs is considered. It is used for determination of the
concentration C' of water vapour in the air spaces and the temperature 7.

. In the case of BDs of the first kind this system is transformed to two

independent PDEs.

. The initial-boundary value problems for the system of PDEs and for the

separate PDEs are solved by using the explicit vector finite-difference
scheme.

. The 2D problem of the system of PDEs with constant coefficients is ap-

proximated by the initial value problem for a system of ODEs of the first
order.

. Such a procedure allows us to obtain a simple engineering algorithm for

solving mass transfer equations for different substances in layered domain.

. The results of the numerical experiments give us some new physical con-

clusions about the drying and moister processes in porous material.
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