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Abstract. The main problem in regression model selection is finding the best
model that best fits the data, i.e. it does not neither overfit nor underfit. The aim
of this work is to show one of possible ways to find adequate nonlinear regression
models (parametric) of technical systems based on an heuristic search and analyti-
cal optimality evaluation approach by taking into consideration the computational
power of modern computers.
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1. Introduction

The main problem in regression model selection independently from applica-
tion domain is finding the best model that best fits the data and does not
neither overfit (the model is too complicated with too many free parameters)
nor underfit (the model is too simple and therefore can’t express the data
sufficiently well). So the goal is to select a model that is the best trade-off
between overfitting and underfitting. For this purpose we must consider more
than just the model’s error in our experimental data set which was used for
estimation of parameter values. The models must be evaluated by using some
kind of method that evaluates model’s true predicting performance on yet
unobserved data. Some of the most popular methods for model predicting
performance evaluation are validation methods [7, 9] and information theo-
retic methods [1, 8, 12].

Due to a great computational power, now we have new possibilities for
implementing methods, that demand expensive calculations to examine a big
quantity of potentially optimal models. However the approach to evaluate all
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possible models in a defined model space is impractical, since there still ex-
ist too many possible models to evaluate them all in acceptable time even
with modern computers. This goal of this paper is to develop a heuristic
approach for a selection of multiple (multidimensional) nonlinear regression
model (parametric) by using heuristic state space search methods and infor-
mation theoretic model evaluation methods. We use here the Bayesian Infor-
mation Criterion (BIC) [12], which is already shown to be very effective in [§]
and take into consideration the computational power of modern computers.

The paper is organized as follows. Section 2 describes one of possible ap-
proaches in regression model selection by using a heuristic search for the best
model as a sum of components. Section 3 describes empirical comparisons of
the heuristic search algorithms suitable for the approach. Section 4 summa-
rizes the results of empirical comparisons and draws some conclusions about
effectiveness of the search algorithms. Section 5 describes a practical applica-
tion of this new approach. Conclusions are presented in section 6.

2. The Considered Approach

A regression model can be viewed as a sum of previously chosen known indi-
vidual components (functions) of set F'{f;} :

P =aofot+arfi+ - +am—1fm-1,

where a; is model parameters, M is the number of used components, f =
f(X1,Xa,...,Xp) is function of independent variables, X, is the j-th vari-
able, D is the number of variables or data dimensions. In practical applications
the number of such models can be very large.

The problem of regression model selection then can be formulated as fol-
lows: take a set of candidate components F' and select a subset (not neces-
sarily systematical) that performs best. This procedure can provide a better
regression accuracy due to finite sample size effects, since model’s irrelevant
components may negatively affect the accuracy of regression [3, 6, 13]. In
addition, reducing the number of components may help decrease the cost of
acquiring data and might make the regression models easier to understand.
Formally for solving the model selection problem the subset F' C F should
be found:

/ . 1
J(F') = g,lg;J(F )
where J(-) stands for a chosen model evaluation criterion that should be min-
imised.

As the model evaluation criterion J(-) we are using information theoretic
analytical model evaluation methods [1, 12]. It is shown in [8], that they are
very effective for evaluation of regression models. The most straight-forward
approach for searching the best model is to evaluate all possible models in
model space and then to choose the best one (see Figure 1, where an example
of model space (or state space) with four components is given). However such



Model Evaluation and Selection in Nonlinear Regression Analysis 83

approach is impractical, as typically there exist too many possible models to
evaluate them all in acceptable time even with modern computers (especially
in multiple nonlinear regression analysis).

Figure 1. A small state space example.

A convenient paradigm for investigation of such problems is that of heuris-
tic search [3, 6, 9] with each state in the search space specifying a possible
model. In this case we can use heuristic search algorithms to traverse the space
by adding and deleting components and select the best model.
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Figure 2. Regression model selection.

The process of regression model selection can be formed as shown in Figure
2. As input we have a full component set. Each time the search algorithm
generates a new model to be evaluated, an evaluation algorithm estimates the
parameters of the model and calculates the value of the criterion used. The
calculated value is then used in further search process for guiding the search
in the state space in the direction of possibly better models. When the search
stops as output we have the best found component subset, i.e. the best found
model.

3. Computational Experiments

In our performed experiments a special case was considered when all models
are partial polynomials build of functions (components)
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f(x)y=T[x;",
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where r;; = {ry1,ri2,...,rip} is a vector of orders of features, r;; =0,1,....p
is the order of the X; variable, p is a previously chosen highest order. In
addition the sum of all orders of all functions is less than or equal to p :

D
Z Tij < D-
j=1

Seven popular search algorithms together with the Bayesian Information
Criterion (BIC) [12] (already shown to be very effective in [8]) were considered
for empirical evaluation of effectiveness from the aspect of both optimality of
the results and necessary computing resources. In addition they were com-
pared with full polynomial models. For the experiments we used our software
that was developed by using Delphi Object Pascal. It implements empirical ex-
periments with various multidimensional data, search algorithms, and model
evaluation criteria.

We have compared the following algorithms (the first four of them are
sequential and the last three are stochastic):

1. Sequential Forward Selection (SFS),

Plus | Take Away r Selection (PTA),
Sequential Floating Forward Selection (SFFS),
Hill Climbing (HC),

Random-Restart Hill Climbing (RRHC),
Random-Mutation Hill Climbing (RMHC),
classic Genetic Algorithm (GA).

No oA LN

These and other heuristic search algorithms are discussed in [3, 6, 9, 11]. We
have used the following true error rate estimation criteria [2, 7, 8, 10]:

1. Test data set Average Absolute Error, AAE.
2. Test data set Relative Root Mean Square Error (RRMSE)

RRMSE = |20 _ || (& i(@(azi) -0?) /(5 - b)),

i= =1

where x; are the input variables of the i-th training sample, y; is the response
variable of the i-th training sample, 7 is the mean value of response values in
all samples, N is the number of samples, MSE stands for the Mean Square
Error.

In all experiments for each algorithm the search time, a number of found
model’s components, the value of found model’s evaluation criterion and val-
ues of found model’s true error estimations were recorded. The results are
shown in tables where four best search results and one result for the best full
polynomial are presented. We note that all stochastic algorithms were started
in randomly chosen states in search space.
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3.1. Experiment with Hwang’s 4th function with noise

In this experiment a data set was generated by using the Hwang 4th function
(see [5]) which is proposed for testing of regression methods. The values of
both features X; and X5 are uniformly distributed over [0, 1]. The following
parameters of the problem are used in experiments: the number of variables
is equal to 2, the maximum polynomial order is 8, the number of all com-
ponents used to generate models is 45. The learning data set was formed of
100 randomly chosen examples from all the data and the test data set was
formed of 10000 randomly chosen examples from all the left data. The results
are presented in Table 1.

Table 1. Results of the experiment.

Fulls SFFS RRHC RMHC GA

Time < 1s 0.1s 12 s 2.5 s 14s
# of comp. 21 8 12 14 12
BIC -168.0 -97.63 -254.5 -251.3 -257.6

AAE 0.3215 0.6289 0.2107 0.2203 0.2132
RRMSE, % 43.89 9798 25.70 27.18 26.03

In this experiment even with such a small number of used components
all sequential algorithms found only local minimum values. The stochastic
algorithms were more effective, they effectively avoided these local minimums.
All of the found models have much smaller AAE and RRMSE error values
than the best full polynomial.

3.2. Experiment with Friedman’s function

This is an artificial data set from [4]. The examples are generated using the
following method. First we generate the values of 10 variables, X1, Xo,..., X190
uniformly distributed over [0,1]. Then we obtain the values of the target
feature by using the equation (Xg ... X;0 are not used):

Prrica(X) = 10sin(nX; X2) 4+ 20(X3 — 0.5)* + 10X4 + 5X5 + ¢,

where ¢ is a normal distribution noise with the mean value equal to 0 and the
dispersion equal to 1.

The number of variables is equal to 10, the maximum polynomial order
used is 3, the number of all components used to generate models is 286. The
learning data set was formed of 1000 and 400 randomly chosen examples from
all the data, the test data set was formed of 10000 randomly chosen examples
from all the left data. The results are presented in Tables 2 and 3.

The presented results of experiments with the Friedman function have
shown that by reducing the number of examples in a learning data set the
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Table 2. Results of the experiment with 1000 data points.

Full3 SFS PTA SFFS HC

Time 7s 36 s 59 s 40 s 71s
# of comp. 286 17 15 12 12
BIC 1789  228.0 219.3 209.9 209.9

AAE 0.9817 0.8346 0.8371 0.8337 0.8337
RRMSE, % 24.87 2098 21.05 20.97 20.97

Table 3. Results of the experiment with 400 data points.

Full2  SFS PTA SFFS HC

Time <1ls 14 s 17 s 13 s 22 s
# of comp. 66 18 13 12 12
BIC 693.1 118.3 98.04 88.86 88.86

AAE 1.469 0.8468 0.8669 0.8418 0.8418
RRMSE, % 37.73 21.30 2180 21.18 21.18

accuracy of full polynomials decreases much faster than the accuracy of par-
tial polynomials. In the experiments with 1000 data points the order of the
best full polynomial was 3, but in experiments with 400 data points it was
equal to 2. However the best found partial polynomial model was the same in
both experiments. It was found by SFFS and HC algorithms and it was built
entirely of the five features that are used in Friedman’s function equation.

4. Summary of Experimental Results

Obtained results of the performed experiments prove that the considered ap-
proach is effective in multiple nonlinear regression analysis model selection.

In experiments with a relatively small number of components the best
results were obtained by using RRHC and GA algorithms. However when a
time consumption is taken into consideration the best trade-off is given by
RMHC. Its time consumption is much smaller than CPU time of RRHC, and
the obtained models are almost of the same quality.

When the number of used components is relatively big (approx. 100 and
more components) the best results were obtained by using sequential algo-
rithms. Apparently the state space is too big for stochastic algorithms to be
effective with so small number of iterations allowed. By increasing the number
of iterations it is possible to find better results, however in such a case com-
puting resources needed for the search are greatly increased. In experiments
with relatively big number of components the best results were obtained by
using the HC algorithm. However the best trade-off between obtained model’s
evaluation and time consumption was SFFS.

Our overall conclusion about the search algorithms is that effectiveness of
the algorithms depends on the addressed problem, i.e. the greater the number
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of components is used for model generation, the more effective are sequential
search algorithms. When the number of components for model generation
grows up, the probability of a sequential algorithm to get stuck in a local
minimum reduces. However computing resources needed for the search for
stochastic algorithm quickly increases. When the number of components is
relatively small sequential algorithms get stuck in local minimums very often.
We note that in such cases there are relatively many local minimums in the
state space. In contrast in such cases stochastic algorithms perform better by
avoiding local minimums (GA, RMHC) or restarting the search from different
states (RRHC, RMHC).

Also we conclude that the biggest benefit from the considered approach
is obtained when the available data is relatively small, which is a frequent
phenomena in real-world practical applications.

5. A Practical Application

The obtained results can be used for a regression model selection in empirical
data of various origins for developing optimal technological solutions. For ex-
ample, we did experiments with regression model acquisition of aircraft shell’s
behavior during pre-buckling and post-buckling phases (see Fig. 3) which al-
lows to determine at what amount of the load the construction loses its sta-
bility and collapses [7]. Previously, full polynomials of 2nd and 3rd order were
used in a similar analysis.

Figure 3. Dimensions of a shell.

Four design variables of the construction are described as follows: the num-
ber of stiffener 1 = n(4 — 6), the height of stiffener zo = h(15 — 20), the
internal radius z3 = R(800 — 1600) and the panel length x4 = L(600 — 720).
The maximum load value representing the numerical collapse load is denoted
by P.,. The principal goal of the investigation is to build surrogate mod-
els, where P, is the function of design parameters. The experimental design
was optimized according to the Mean Square Error (MSE) criterion. For each
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Table 4. Results of the approximations.

Method BIC AAE RRMSE  # of comp.

Full2 303.5 5.85 12.04 % 15
Full3 3324 5.88 1242 % 35
SFFS 3756 6.85 14.58 %5

RRHC 267.7 4.69 9.87 % 9

number of stiffeners the three-dimensional design space with 27 sample points
was elaborated, in total we did 3 x 27 = 81 experiments.

Table 4 presents the results of approximation of P.,. The empirical data
was approximated with full polynomials of 2nd and 3rd order (Full2 and Full3)
as well as with partial polynomials of 3rd order. In the search for the best
partial polynomial model two of the most promising search algorithms were
used, i.e. SFFS and RRHC. The results show that the best model is found
by RRHC algorithm, its both BIC values and the AAE and RRMSE values
are better than of any other considered model. SFFS algorithm, as we can
see, apparently was stuck in a local minimum at some rather early search step
and therefore its best found model is even worse than the models obtained by
Full2 or Full3.

Figure 4. The surface plot of the best found model.

In such a way by using the RRHC algorithm and BIC criterion we found
a model that is more accurate and more simple (fewer components) than the
full polynomial models that were used before. In Figure 4 the surface plot of
the best model obtained by the RRHC algorithm is shown, when A = 0.02
and R = 0.9385 are fixed.

6. Conclusions

This paper reflects a research goal to develop a heuristic approach for multi-
ple nonlinear regression model selection by using heuristic state space search
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methods and information theoretic model evaluation methods and by taking
into consideration the computational power of modern computers.

The obtained results of the performed experiments prove that heuristic
search methods and analytical model evaluation criteria are effective tools for
model selection in a multiple nonlinear regression analysis.

The results of the theoretical research are implemented in software that can
be used for regression model selection in empirical multidimensional data of
various origins by developing optimal technological solutions. The developed
software with implemented various search algorithms and model evaluation
criteria is already used for modeling applications at Institute of Materials
and Structures, Riga Technical University. In these experiments the obtained
models are almost always more effective than previously used. The developed
software is effective and competitive tool for solving practical regression model
selection problems.
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