MATHEMATICAL MODELLING AND ANALyYsSIS. ED. A.BUIKIS
VoOLUME 12 NuMBER 1, 2007, PAGES 71-79
© 2007 Technika ISSN 1392-6292 print, ISSN 1648-3510 online

APPLICATION OF TEMPLATE
METAPROGRAMMING TECHNOLOGIES
TO IMPROVE THE EFFICIENCY OF
PARALLEL ARRAYS

A. JAKUSEV

Vilnius Gediminas Technical University

Saulétekio al. 11, LT-10223 Vilnius, Lithuania
E-mail: alexj@fm.vtu.1lt

Received December 28, 2006; revised January 22, 2007; published online February 10, 2007

Abstract. Parallel array library ParSol is an easy way to parallelize data parallel
algorithms implemented in C/C++. However, in order to use all the features provided
by C++ and OOP in real life applications, the efficiency of C++ code that uses ParSol
library must be similar to the one of C code. Template metaprogramming is one of
the ways to achieve this goal. This paper describes the details of application of this
technology to parallel arrays, and presents the efficiency tests.

Key words: ParSol, OOP, C/C++, template metaprogramming, expression tem-
plates

1. Introduction

ParSol is a parallel array library which brings to C++ programs functionality
similar to the one that HPF brings to FORTRAN programs [4]. This allows for
quick parallelization of data parallel algorithms. ParSol uses MPI standard [5]
for interprocess communications, which makes it highly portable to various
platforms. Initially designed with the purpose of parallelizing of flow in porous
media problem solver [3], ParSol has developed into full featured library which
is also successfully applied to such applications as image smoothing [1, 2],
Schrodinger equation and others [6].

To simplify the parallelization of data parallel algorithms, the ParSol 1i-
brary introduces special array classes, which library user should use instead
of native C/C++ arrays. In sequential version, the behaviour of these arrays
is similar to any other arrays. However, in parallel case, the parallel versions

72 A. JakuSev

of these arrays are able to distribute contained data between processes and
perform data exchange.

The next step in improving ParSol library is to increase the efficiency
of its array classes. In this article, the results of applying of the template
metaprogramming technology for the improvement of ParSol arrays efficiency
are presented.

The template mechanism of C++ is very powerful due to such features of
template programming as specialization (also partial specialization), recursive
instantiation and others. It was shown that template programming of C++ is
Turing complete [9], making it possible to solve various problems, such as
computation of roots or prime number generation, during compile time. The
name metaprogramming is better suited here due to the fact that by using
templates a programmer writes a program that generates another program as
a result.

By using the template metaprogramming, the following issues in ParSol
arrays were addressed:

Efficient array expressions. Using the operator overloading, it is pos-
sible to write a program code that looks close to mathematical notation of
various operations. It is possible to overload “+” operator in such a way that
adding arrays will look the same as adding numbers:

Vector A(20), B(20), C(20);

A =B+ C;

However, standard ways to implement such an overloading, while achieve
the goal, are not computationally effective. In the example given above, if
implemented in a standard way, the line A = B + C; would be equal to some-
thing like that:

{ Vector Temporary(B);
Temporary += C;
A = Temporary; }

Note the allocation and deallocation of a temporary array and several as-
signments, which means that a cycle through all array elements needs to be ex-
ecuted several times. In the more complex cases,suchasA = B + C + D + E;,
the inefficiency will be even more obvious, especially on large arrays. This
problem was noticed by the creators of C++ language [8, §11.6].

In order to resolve this problem, expression templates, as one of the tem-
plate metaprogramming techniques [11], were successfully applied. This paper
presents the detailed description of the problems that had to be overcome, to-
gether with the results of efficiency tests.

Efficient code generalization. ParSol provides a hierarchy of various
array and vector classes, and many of them have a great amount of similar
functionality. From the one hand, this allows many classes to share common

Application of Expression Template Technology 73

code base, which would make code simpler and easier to maintain. But gen-
eral algorithms, suitable for various cases, are less effective than its specific
counterparts. Thus we have to choose between a better code structure and a
faster performance.

By using the template metaprogramming, it became possible to optimize
a general code for multidimensional cases. This paper describes a few cases
for the ParSol arrays.

2. Application of Template Metaprogramming

2.1. ParSol class structure

The ParSol arrays class hierarchy is shown in Figure 1. The general idea is
that common functionality must reside in base classes, and children classes
must provide an easier user interface and specific optimization algorithms.
Generally, different children are derived for every number of dimensions.
For example, a general array functionality resides in the template class
CmArray<class,int>, and there are specific children for 2D, 3D and other
cases.

‘ CmArray< ElemType, DimCount > ‘ ‘ CmVector< ElemType, DimCount > ‘

Y 3 b\ /4 X Y

| CmArray_3D< ElemType> < CmVector_3D< ElemType > |

| CmArray_2D< ElemType > F CmVector_2D< ElemType > |

| CmArray_1D< ElemType> |< I CmVector_1D< ElemType > |
| ParArray_1D<ElemType> le I ParVector_1D< ElemType > |

[

| ParArray_2D<ElemType> F4| ParVector_2D< ElemType > |

| ParArray_3D<ElemType> < ParVector_3D< ElemType > |

v v / \4 v v
ParArray< ElemType, Topology_1D ‘ ParVector < ElemType, DimCount > ‘

DimCount >
< Topology_2D
% CustomTopology Topology_3D |

Figure 1. ParSol class diagram.

The part of ParSol library that has been optimized consists of arrays and
vectors, both parallel and sequential versions. All of the classes are template
classes, where base classes usually have two template parameters, array ele-
ment type and number of dimensions, and children classes for every number

74 A. JakuSev

of dimensions have one template parameter, data type. The structure of se-
quential array classes was described above. Sequential vectors are basically
the arrays with additional mathematical functions provided, thus they are
descendants of appropriate sequential arrays and class CmVector, which con-
tains all the additional mathematical functionality. Parallel arrays, which are
used in parallel versions of user programs, are also children of appropriate
sequential arrays, with common parallel functionality inherited additionally
from ParArray class. And, finally, parallel vectors, similar to sequential ones,
are children of parallel array classes, with mathematical functionality inher-
ited from ParVector.

2.2. Expression templates

With the help of the expression templates, the following goals were achieved:

e Fast and efficient vector expressions without memory and processor time
overhead;

e Possibility to mix vectors and scalars in expressions, for example
A=(B+C)/2;

e Compile-time vector type compatibility check, so that it is impossible to
mix vectors with different element types or number of dimensions in ex-
pressions.

Originally, expression templates (ET) were designed to be used with non-
template vectors [11]. However, without modifications, this technology would
not allow to perform strict array type checking due to its template nature.
Moreover, initially ET were formed using array iterators, in order to have
generalised code, as in STL. In ParSol, it was chosen to pass references to
arrays themselves, the approach is also taken in [7]. While this approach makes
it very difficult to reuse ET implementation outside ParSol library, it allows
us for an additional code optimization and run-time checks.

Since expressions, as other mathematical operations, should be avail-
able for vectors only, the core ET functionality is programmed around the
CmVector class. ET are implemented mainly by two kinds of helper classes:
OpWrapper and operation classes.

OpWrapper is a very simple class that behaves as a template container
for various data types and provides access to contained data via two main
functions:

elem — access to the array elements of expression it contains;
SamePhysically — required to check if data it contains is compatible with the
vector where result is to be put.

This class is a glue to the whole ET mechanism. All vector operators return
the answer of type OpWrapper (the data it contains may differ, though), and
a value of this type is expected for assignment to vector. This allows C++
compiler to make correct template instantiation decisions, as well as restricts
the number of data types which are allowed to participate in expressions.

Application of Expression Template Technology 75

There are several implementations of this class, using a template partial
specialization. The main difference among them is the way how they store their
data. The wrapper for vectors holds a pointer to its vector, which greatly re-
duces amount of data that needs to be copied. Since no temporary vectors
participate in expressions, such behaviour is correct. Other wrappers hold
copies of their data. Since their data is usually some kind of temporary wrap-
per, such behaviour is necessary. The overhead produced by copying may be
neglected since, if only vectors and numerical constants participate in expres-
sions, the size of temporary wrappers is small.

The operation classes are also template containers, but they contain not
only some data, but also an information about what should be done with
them. Currently, there are two kinds of operations: one-operand (OpArr1)
and two-operand (OpArr2). Operation classes provide the same interface as
OpWrapper, however, it gives the access to the result of operation with the
contained data.

For example, the definition of operator for adding two vectors looks as
follows (it is a part of CmVector class definition):

/// Helper type to make some expressions smaller
typedef Internal::0OpWrapper<
ElemType,DimCount ,CmArray<ElemType,DimCount>
> ArrWrapper;

Internal: :0OpWrapper<
ElemType,
DimCount,
Internal: :0pArr2<
ArrWrapper, ArrWrapper, ElemType, DimCount,
Internal::et_summ
>
> operator+(const CmVector<ElemType,DimCount>& v)

Plus operator actually constructs and returns new data type, which is an
OpWrapper of 2-operand operation class OpArr2, which in turn contains
OpWrapper’s of two vectors and operation to be performed on them (et_summ
in this case).

Finally, the “=" template operator for OpWrapper<...> needs to be im-
plemented in vector classes. The structure of C++ language requires that as-
signment operators may not be inherited, thus this is the only part of ET
implementation that needs to be copied in every descendant of CmVector.
However, assignment operator in children consists of only one-line invocation
of general OpWrapper assignment code provided by CmVector.

ParSol ET implementation provides strong both compile and run time
checking of vectors in expressions. First of all, all template operators and main
ET helper classes have additional template parameters of type class (Elem-
Type) and int (DimCount). While adding very little additional functionality,

76 A. JakuSev

these parameters ensure that only expressions of vectors with the same ele-
ment type and number of dimensions will match and therefore compile. That
granted, the default assignment operator in CmVector performs one-time check
of other parameters of vectors in expression. This check consists of comparison
of several integer values and does not affect the performance, but ensures, for
example, that vectors of different sizes won’t be accidentally added.

The implementation of ET for parallel vectors is similar to the sequential
version. As before, most functionality is implemented around ParVector class,
with only assignment operator being reimplemented in ParVector’s children.
ET for parallel vectors uses codebase from sequential implementation where
possible.

2.3. General code optimizations

A template metaprogramming was also used to optimize the code in general
ancestors such as CmArray, CmVector and others. The main type of optimiza-
tion performed was a loop unrolling [10]. The loop unrolling is especially useful
for loops with small number of iterations. The problem is that compilers usu-
ally optimize loops for many iterations, which is counterproductive in this
case. These kinds of loops are common in general code, where number of iter-
ations depends on the number of array dimensions. This technique is employed
for the same purposes in such libraries as Blitz++, MTL and FreePOOMA.

The key to the loop unrolling is template classes with some integer tem-
plate parameter. If this class uses the same class, only with a different value of
that template parameter (usually one less than the original), as a part of its
declaration, then instantiation of such class will trigger recursive instantiation
of the same class with different integer parameters, possibly producing loop
unrolling effect. Examples of such code may be found in [10, §17.7].

In ParSol, there are several such classes, which are in internal name-space
and therefore not accessible by default. They are just holders for unrolling of
usually unrelated various loops.

3. Numerical Tests

In order to evaluate the efficiency of expression templates, computational
tests were performed. The tests were performed on a computer with AMD
Athlon 64 3200+ processor and 512 MB of RAM. Operating system was 32-bit
GNU/Linux with kernel version 2.6.8-12-amd64-k8. The tests were compiled
using g++ version 3.3.5, with maximum (-03) optimization.

Since ParSol arrays have only ET implementation of binary operations,
the comparison of ET to classical method was tested on specially created
template arrays, which had various kinds of children, implementing different
techniques of addition. The results of the test are presented in Figure 2. In the
test, we have addition of three vectors of different sizes of double. We may see
that ET realization is from 2.5 to 4 times faster than a classical realization,

Application of Expression Template Technology 77

and its efficiency is almost the same as C-style realization (their graphs closely
overlap).

6,00E-02

5,00E-02 —e—csye /J\
——Expr. Templ. //

4,00E-02 +—] —&A—Classic

3,00E-02 /

2,00E-02 -

Time, s

1,00E-02 -

0,00E+00 r¥ T T T T
0 200000 400000 600000 800000 1000000

Array size

Figure 2. Comparison of the efficiency of ET to other types of array addition.

In another experiment, the performance of ParSol vector additions was
tested. The same vectors were added either by using ET (A=B+C+...;) or
using C-style for loop:

for(int i = 0; i < VecSize; i++)
A(L)=B(i)+C(i)+...;

Vectors of type CmVector_2D were used, and the element data type was
double. The tests were performed with varying vector sizes and number of
added vectors.

During the experiments, computation time of operations was measured.
The time spent on computations was measured using user time returned by
times function. Each test was repeated 10000 times, and average computation
time was calculated.

The results of the tests are shown in Figure 3. The computation time de-
pendency on the number of added vectors is presented for a number of differ-
ent vector sizes and types of addition. While the increase of vector size makes
clear impact on the computation time, the difference between C-style and ET
programming is often negligible. In the worst case, the ET performance is
decreased 9.5% comparing to C-style programming, and average decrease of
performance was ~ 2.6%.

Assuming that performance ratio between C-style and classic addition im-
plementation would be approximately the same here as in previous experi-
ment, it is possible to state that ET implementation of binary operations in
ParSol is =~ 2.5 — 4 times faster than if it were implemented in a classical way.
These results are comparable to [11].

78 A. JakuSev

0,16

0,14 4

“=ET- 100000
C - 100000
——ET - 300000
C - 300000
—%—ET - 500000
n —e— C - 500000
g 0,08 ——ET - 700000
= ——C - 700000

0,12 4

Number of added arrays

Figure 3. Comparison of C-style and ET performance of ParSol vectors.

While template metaprogramming allows to achieve high computational
efficiency, it brings some problems as well. One of the problems is much longer
program compilation time. This may slow down the development of the prod-
uct, especially if compiler does not support precompiled headers. The size of
resulting executables is also considerably bigger in case of template metapro-
gramming, however, with modern storage capacities, this is not an issue in
most cases.

Another problem is that template metaprogramming, although C++ stan-
dard compliant, requires such compiler features that may not be supported
or thoroughly tested on all compilers. For example, on Ubuntu Linux sys-
tem with g++ version 4.0.2 (prerelease), the compiler was unable to produce
working executable for the same test suite, when compiled with maximal opti-
mization. However, with the rapid improvement of C/C++ compilers, this issue
will become less important with time.

4. Conclusions

Template metaprogramming technology is not trivial to implement, however
it may provide performance to C++ programs comparable to C or FORTRAN
languages. That’s why it is ideal to use in libraries, so that library user may use
highly optimized code without much of additional knowledge. The existence
of such numerical packages as Blitz++, MTL or FreePOOMA proves this fact.

Array and vector classes of ParSol library were successfully optimized us-
ing such template metaprogramming techniques as expression templates, loop
unrolling and others. Initial ET technology had to be modified to fit into the
structure of ParSol template classes. This resulted in the efficiency of Par-
Sol vector operators that is only ~ 2.6% lower than its C-style hand coded
equivalents.

Application of Expression Template Technology 79

While template metaprogramming provides a significant improvement of

run-time performance, it also results in bigger size of executables, longer com-
pilation time and compatibility problems with some compilers. However, these
problems should lose their importance in the future.

Acknowledgement

This work was also supported by the Lithuanian State Science and Studies
Foundation within the framework of the Eureka Project EUREKA E!3691
OPTCABLES.

References

(1]
(2]

(3]

[4]
[5]
16]

[7]
18]
[9]
[20]

[11]

R. Ciegis and A. JakuSev. Parallel algorithms in image filtering. Lithuanian
Mathematical Journal, 45, 411-416, 2005. (in Lithuanian)

R. Ciegis, A. Jakugev, A. Krylovas and O. Subo¢. Parallel algorithms for so-
lution of nonlinear diffusion problems in image smoothing. Mathematical Mod-
elling and Analysis, 10(2), 155-172, 2005.

R. éiegis, A. Jakugev and V. Starikovi¢ius. Parallel tool for solution of multi-
phase flow problems. Lecture Notes in Computer Science, PPAM-2005 Revised
Selected Papers, 312-319, 2006. Springer

High Performance Fortran Forum. High Performance Fortran Language Speci-
fication. Electronic version available on Internet, 1997. (Version 2.0)

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Electronic version available on Internet, 1995. (Version 1.1)

A. JakuZev and V. Starikovicius. Application of parallel arrays for paralleliza-
tion of data parallel algorithms. Computer Aided Methods in Optimal De-
sign and Operations, Series on Computers and Operations research, 7, 109-118,
2006. Springer

C. Pflaum. Expression templates for partial differential equations. Computing
and Visualization in Science, 4(1), 1-8, November 2001. Springer-Verlag

B. Stroustrup. The C++ Programming Language, 3-rd ed. Addison-Wesley,
1997.

E. Unruh. Prime number computation. ANSI X3J16-94-0075/ISO WG21-462,
1994.

D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide.
Addison-Wesley, 2002.

Todd L. Veldhuizen. Expression templates. C++ Report, 7(5), 26-31, June
1995. Reprinted in C++ Gems, ed. Stanley Lippman

