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Abstract. We consider stopping rules in conjugate gradient type iteration meth-
ods for solving linear ill-posed problems with noisy data. The noise level may be
known exactly or approximately or be unknown. We propose several new stopping
rules, mostly for the case of unknown noise level. Numerical comparison with known
rules (discrepancy principle, montone error rule, L-curve rule, Hanke-Raus rule)
shows that the new rules are competitive.
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1. Introduction

We consider an operator equation
Au= f., f.€R(A), (1.1)

where A is a linear bounded operator between Hilbert spaces H and F. In
general, the problem (1.1) is ill-posed (see [4, 21]): the range R(A) may be
non-closed, the kernel A/(4) may be non-trivial. In practice often instead of
the exact data f, only an approximation f is given (containing, for exam-
ple, measurement errors). If an ill-posed problem is solved by some iterative
method, typically on first iteration steps n = 1, 2, ... the iterated approx-
imation u,, approaches to the minimal-norm solution wu, of (1.1), the error
|r, — us]| has minimal value for some nqpy and increases for n > ngpt. There-
fore, the iterations should be stopped after a certain number n of steps. If the
exact noise level § with ||f. — f|| < ¢ is given, the proper choice of n = n(J)
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guarantees the convergence u,, ;) — . as 6 — 0. For many iterative methods
this convergence is guaranteed by choice of n by the discrepancy principle or
by its modifications (see [1, 4, 5, 6, 8, 9, 10, 13, 16, 17, 18, 19, 21] or by the
monotone error rule [6, 8, 9]. If there is no information about the noise level ¢,
then no rule can guarantee the convergence u,, 5y — ux, d — 0 (see [2]). Never-
theless, iterations may be stopped e.g. by heuristic rules from [3, 4, 6, 10, 14].
In some applications the noise level § is given approximately: it holds

w <C ford—0,
where C' is an unknown constant. In this case convergence 5y — u« (6 — 0)
for explicit and implicit iteration schemes is guaranteed by stopping iterations
by rule from [7]. In [6] we formulated the monotone error rule and the analogue
of rule [7] for conjugate gradient type methods.

In this paper we formulate many additional stopping rules, which do not
use the noise level. Numerical comparison of these rules and known stopping
rules (L-curve rule etc) shows good performance of new rules.

2. Conjugate Gradient Type Methods

The problem (1.1) can be solved by various different iterative methods. Simple
iterative methods are

Up = Up—1 —|—ﬂn_1A*(f—Aun_1), n=12,..., Bn_1>0; (2.1)
Bn_1ty + A" Auy = Bp_1tn_1 + A*f, n=12,..., Bn_1>0. (2.2)

For the initial approximation ug often ug = 0 is used.

The conjugate gradient type methods converge much faster than methods
(2.1), (2.2): the error ||u, —u.| in these methods for n < np is close to ||u,2 —
uy|| in methods (2.1), (2.2). In this paper we consider two iterative methods
based on conjugate gradient method for various possibilities to symmetrize the
problem (1.1). Application of the conjugate gradient method to the normal
equation A*Au = A*f or to the equation AA*w = f with u = A*w gives
the methods called CGLS or CGME respectively. In iterative method CGLS
the kth iterate uy minimizes the discrepancy || f — Au|| among all u from the
Krylov subspace

span{A*f, A*AA*f, ..., (A*A)F~1A*f}

as in the projection method of least squares. The kth iterate uj in method
CGME minimizes the error ||u. — || with « in the same Krylov subspace (as
in the projection method of minimal error (see [12, 20])). Both algorithms
start with fixing the starting values ug = 0, rg = f, v—_1 = 0. Method CGLS
also takes p_; = oo and computes for every n =0,1,2, ...
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Pn = A*ry, on = ”pn”2/||pn71”2 y  Un =Tn + 0nUn_1,
G =A%, Sn=Aq¢,, Bn= ||an2/||8nH27 (2-3)
Upt+1 = Up + 671(]71 y Tnel =Tn — Brsn -

In CGME method one takes »_; = co and computes for every n =0,1,2, ...

Op = ||T7LH2/||TTL—1||2 5 Up = Tn + OpUn—1 I} qn = A*'Un 5 (2 4)
Bn = ”Tn”Q/HQnHQ s Unt1l = Un + Bnln, Tat1 =Tn — BuAqn . ‘

In CGLS method the discrepancy ||r,|| decreases monotonically for all n
but in CGME method numerical results show that ||r,|| decreases monotoni-
cally only at some first iterates.

3. Stopping Rules Using Noise Level

First we consider the case when the exact noise level ¢ is known with || f— f.| <
6. Then the most prominent stopping rule is the discrepancy principle: we
stop at the first index n = np for which ||r,|| < C§, where r,, = f — Au,, and
C > 1 is a constant. For many methods, choice of n = np by the discrepancy
principle guarantees convergence ||u,, — u«|| — 0 (§ — 0) and in case u, €
R((A* A)P/?) the order optimal error estimate

[ty — us| < cép/(p+1), Vp < oo.

These assertions were proved in [21] for method (2.1) if 8, = 5 € (0,2/||A*AJ|)
(then (2.1) is called the explicit scheme of iteration method or Landweber
method) and for method (2.2) if 8, = 8 > 0 (then (2.2) is called implicit
scheme of iteration method), in [13] for method (2.2) with certain various
Bn, in [8, 9] for methods (2.1), (2.2) with certain other (,, in [1, 4, 5, 10,
16, 17, 18, 19] for method (2.3). As stated by Hanke in works [10, 11], in
method (2.4) the discrepancy principle fails but above-mentioned assertions
about convergence and error estimates hold for the following rule: stop at the

n
first index n = npy for which dpy = [ Hri||’2]71/2 < C6 with fixed
i=0
C > 1. In numerical experiments we used C' = 1 for the discrepancy principle
and C' = 1.2 in stopping rule with dpy.

Let us consider now the monotone error rule (ME rule). For iteration
methods of the form

Up = Up—1 + A% 2, n=12,... (3.1)
the ME rule is the following: choose n ;g as the first index n satisfying

(T7L + Tn+1, Zn) < 5 (32)
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Theorem 1. The ME rule has the property
[l — wsl| < |Jtn—1 — usl| form=1,2, ..., nyg. (3.3)
Proof. Using (3.1) we obtain
et = 112 = ftmt = | = (s + 2, = 2114y A 20 1)
=Q(f = fo) = (rn1+70), 20-1)

(rnfl + Tn, anl) }
2||zn—1]|

< 2zl {6 -

Note that iteration methods (2.1), (2.2), (2.3), and (2.4) have form (3.1)
with 2, = Burn, 2n = (Bl + AA*) "1y, 2, = Buvn, and z, = 3,v,, respec-
tively. In methods (2.1), (2.2) the convergence ||, — u«|| — 0 (6 — 0) and
in case u, € R((A*A)P/?) the error estimate ||[uy,,,, — u«| < cd?/P+1 for all
p < oo was stated in [8, 9]. For the CGLS method in [1] a rule similar to ME
rule was proposed and convergence ||u, — us]| — 0 (§ — 0) was stated but
corresponding stopping index is smaller than n g, hence due to (3.3) the ME
rule is preferable.

However, iterating by formula (3.1), on different iteration steps different
forms of element z, may be used for constructing better approximation u,,
than wu,_1, if (3.2) is fulfilled. For instance, after finding wu,,,,, by the CGLS
method or by the CGME method this approximation can be further improved
by methods (2.1), (2.2), until in these methods (3.2) is satisfied first time.

We experimented numerically also with rule, which chooses in CGLS
method npp as the first n =1, 2, ..., for which ||r, 1 — r,| < C§'5, using
the value C' = 0.8.

Consider now the case, when noise level is known approximately: § is given,
for which it holds

with unknown constant C. In [7] for explicit and implicit iterative schemes
the following stopping rule R was formulated.

Rule R. Let 0 < s < 1/2. Find N as the first n for which
p(n) = Vnl[A"r,|| < b5

with constant b large enough. Find the stopping index npy as the location of
the global minimum of the function ¢(n) = n®||r,|| on the interval [1, N].

For explicit and implicit iteration schemes in [7] convergence ||uy, , —u.|| —
0 (6 — 0) was proved and error estimates (which are quasioptimal in case
I — fell < 9) were given.

In iterative method CGLS we find the stopping index ng by an analogue
of Rule R with s € [0,1] and by replacing the function ¢(n) by function
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Vn+il|A*r, |- Here v, is found iteratively as follows: starting with k_; =0,
Yo = 0, compute K, = 1 4+ opkn_1, Ynt1 = Yn + Bnkn for every n =0, 1, 2,
... In numerical experiments we used b = 0.4 and s = 0.2.

4. Stopping Rules not Using Noise Level

Consider now the case when there is no information about the noise level 4.
Then it is principally impossible to formulate a stopping rule with convergence
property ||u, — us| — 0 (6 — 0) (see [2]). Nevertheless, various rules work
well in many cases.

1. In literature much attention is paid to L-curve rule: the norm of the dis-
crepancy ||r,|| and the norm of the iterated approximation ||lu,|| are plot
on log-log scale and the corner point of this L-shaped curve is found. We
used the algorithm from [3], where all triangles are considered with fixed
first vertice, corresponding to n = 0, and where two other vertices change
in all possible ways. For n;, the middle vertice with minimal angle is taken.

2. In Hanke-Raus rule [14] the stopping index n = ng g is found as a location
of the global minimum of the function /7, 1|7,|- Note that in [14],
for iteration methods in form u, = g¢,(A*A)A*f with function g, (\)
approximating 1/, the analogous rule was proposed: here the stopping
index is a location of the global minimum of the function +/gn+1(0)||r, .
In [14] for this stopping rule also error estimates are given.

3. Let us consider rules which minimize some function as Hanke-Raus rule
does. For the CGME method we used rule RM as an analogue of rule R: at
first N was found as global minimizer of the function /7,2 -dpr(n — 3)
(we noticed that global minimizer of the function /7,11 - dpr(n) was
in most cases smaller than n.p:), and after that ngas was found as the
minimizer of ||r,| on interval [0, N].

For the CGME method a good choice of n is also the global minimizer
nppy of the discrepancy function ||r,||. In both methods CGLS, CGME
one may use ngp as the global minimizer of the function ||uy,]| - ||r.| (S
and D refer to “solution approximation” and “discrepancy”). In CGME
method we used also npgyas as the global minimizer of the function
n*dppg(n) with s = 0.9 (in DHNM, DH refers to dpg(n), N to n, and M
to “minimization”).

In numerical experiments we noticed that the maximums of |u,, — u,—_1]]
were close to error ||u, — u.|. It motivated us to choose nsps as global
minimizer of some function approximating maximums of ||u,, —u,—1]|. We
minimized the function

n n 1/16
P(n) = lz (s — ui1|16ik/Zik]
i=1 =1

with & = 164+16(k141)(nmax —1)** /nkL . Here nyay is maximum number

max*

of iterations; for k1 we took 4 in CGLS method and 3 in CGME method.
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Large exponents 16 in ¢ (n) emphasize maximums of |u; — u;—1]|. The
function 1 (n)!° is weighted average of |u; — u;_1|*®, i = 1, 2, ..., n,
where the terms with ¢ close to n have larger weights. Note that functions
VInt1dpr(n) and ¢ (n) predict well not only location of n.p; but also
the behaviour of ||u, — u.|| for all n.

4. Besides of minimization of some function one may use the observation
that several monotone functions attain certain level (“plateau”) around
nept and after that do not change much. We choose nprp, ngpp, and
npprp as the first n, for which the functions

n—1

dprr(n) = [ 31l =212 [ Ml =272 1Y v —ral 7272,
1=0 1=0 1=0

respectively, decreased in next 10 steps no more than C times. We used
for these functions C' values 1.5, 1.3, and 2, respectively.

5. Numerical Experiments

We solved 12 test problems, 10 of which were from [15] and the other two
were slight modifications of these.

For the supposable noise level the values § = 10~¢ with i =1, ..., 6 were
taken and instead of the exact data f, randomly perturbed data were used
with actual noise level || f — f«|| = dd where the values of d were 1 and 100.

The problems were discretized by the collocation method with 256 piece-
wise constant basis functions on a uniform mesh and solved by the methods
CGLS and CGME 16 times. In numerical experiments we found the optimal
stopping index npt as an index n which minimizes the error ||u, —u.|| on the
interval [1, npax]. We used nmax = 200.

In Tables 1 and 2 we give for the method CGLS root-mean-squares of
ratios |[un — ws||/||tn,,, — u«|| over all 16 runs and over all § values, for cases
d =1 and d = 100, respectively, where the stopping index n was chosen by
the rule given in the first row. In Tables 3 and 4, corresponding results are
given for the CGME method. Tables 2 and 4 do not contain results for np,
npy, and ny g, since these rules do not suit for the case of inexact noise level
(they did not stop within 200 iterations).

In case of exactly given noise level (d = 1) in method CGLS all 4 rules
that use the noise level hold first 4 places. In contrast to this situation, in
method CGME both rules ME and DH that use noise level were surprisingly
outperformed by 2 rules not using noise level.

After summarizing the cases d = 1 and d = 100, the best three rules were
R, HR and SDS for CGLS method, and DHP, RM and DM for CGME method.
The rules RM and DM differ only in interval for minimization of ||r,]||: the
intervals are [0, N] and [0, 00), respectively. Tables 3 and 4 show that in most
cases the results for these rules coincide but additional work done in RM for
finding N is justified in some problems.
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Table 1. CGLS, d = 1, root-mean-squares of error ratios.

Problem D ME R DD SDS HR SHP SD L

baart 1.21 1.77 1.77 1.44 1.72 2.47 1.58 1.40 1.39
baart2 1.23 1.77 1.77 1.49 1.68 2.54 1.69 1.44 24
deriv2  1.07 1.16 3.73 1.97 1.50 1.71 133 1.56 9e3
foxgood 1.70 2.61 3.00 3.21 8.08 6.87 27.37 67.03 19.00
gravity 1.46 2.73 1.98 2.48 1.87 3.25 14.97 15.58 7.55
heat 1.12 1.36 1.13 1.27 1.38 2.06 15.15 3.37 2.67
heat2 1.15 2.02 1.27 5.60 1.46 2.77 25.98 28.73 1le3
ilaplace 1.07 1.18 1.13 1.18 1.12 1.29 1.37 1.03 1.04
phillips 1.18 1.95 1.75 1.46 1.67 3.92 7.63 30.69 9.01
shaw 1.41 2.63 2.47 2.51 2.04 2.89 3.27 1.75 1.69
spikes  1.00 1.01 1.01 1.02 1.01 1.01 1.11 1.00 1.01
wing 1.07 1.13 1.20 1.27 1.40 148 1.10 1.11 1e6

average 1.22 1.78 1.85 2.07 2.08 2.69 8.55 12.89 9e4

Table 2. CGLS, d = 100, root-mean-squares of error ratios.

Problem R HR SDS SHP SD DD L

baart 1.61 2.74 1.81 1.54 1.62 2e2 8ebd
baart2 1.68 2.71 1.77 1.66 1.56 99.18 1e6
deriv2 1.26 1.64 6.08 7.80 7.80 3ed4d 5Hed
foxgood 3.22 10.59 8.42 27.25 13.35 4e2 3eb
gravity 1.63 3.53 1.73 4.15 15.40 48.42 7.23
heat 1.17 197 1.19 540 3.40 7e2 4e3
heat2 1.23 2.61 23.88 9.44 10.76 9e3 8ed
ilaplace 1.46 1.73 1.10 1.16 1.26 2e2 1.19
phillips 1.65 4.24 1.39 3.72 30.64 3e2 8.80
shaw 1.33 243 1.77 135 1.48 5.82 1.16
spikes 1.01 1.03 1.02 1.10 1.01 1.01 1.01
wing 1.11 1.36 2.20 2.28 2.28 2e4 1e8

average 1.53 3.06 4.36 5.57 7.55 5ed 1le7

For d = 1 the rule R gave the stopping index np near the end of the search
interval [1, N, for d = 100 the index np lies at the beginning of this interval.

The aim of the numerical experiments was comparison of parameter choice
rules, not methods but some remarks about the relationship of errors in these
methods can be made:

e The best error ratios in Tables 3, 4 are smaller than in Tables 1, 2 but
typically error for nop is in method CGLS smaller than in method CGME.
The ratios of errors for CGME and CGLS methods were in interval [0.95, 5],
averages of these ratios over test problems were in interval [1.5,2].
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Table 3. CGME, d = 1, root-mean-squares of error ratios.

Problem RM DHP DH ME DHNM DM SDS HR DDHP L

baart 1.00 1.00 1.07 1.00 1.07 1.00 1.68 1.84 26.05 1.00
baart2 1.00 1.00 1.07 1.00 1.06 1.00 1.69 1.84 3.09 1.00
deriv2  1.01 1.03 1.05 1.07 191 4.67 1.21 1.36 1.20 9e3
foxgood 1.00 1.00 1.14 1.09 1.00 1.00 4.68 4.78 59.34 1.17
gravity 1.03 1.02 1.10 1.17 129 1.03 1.17 1.32 3.14 1.32
heat 1.04 1.29 1.13 1.14 1.09 1.04 1.36 1.44 226 1.13
heat2 1.03 1.00 1.13 1.24 231 1.03 1.22 1.30 135 1.57
ilaplace 1.01 1.02 1.04 1.03 1.03 1.01 1.09 1.12 1.12 1.02
phillips 1.14 1.11 1.14 1.16 1.17 1.14 1.23 145 3.90 3.33
shaw 1.03 1.01 1.10 1.04 1.01 1.03 1.17 1.32 291 1.01
spikes  1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.11 1.00
wing 1.00 1.01 1.02 1.04 1.00 1.00 1.28 1.31 1.20 1.03

average 1.02 1.04 1.08 1.08 1.24 1.33 1.56 1.67 8.89 7e2

Table 4. CGME, d = 100, root-mean-squares of error ratios.

Problem DHP DM RM HR DHNM SDS DDHP L

baart 1.00 1.00 1.00 1.65 3.77 1.55 1.49 1.09
baart2 1.00 1.00 1.00 1.65 3.88 1.56 1.51 1.09
deriv2 1.00 1.00 1.00 1.20 2e3 1le3 led 1le6
foxgood 1.00 1.00 1.00 4.81 1.21 4.87 3.26 1.67
gravity 1.00 1.01 1.01 1.33 1.20 1.28 1.77 1.01
heat 1.02 1.03 1.03 1.23 28.90 1.16 32.87 2e4
heat2 1.00 1.02 1.02 1.16 1le3 T7e2 2e3 1led
ilaplace 1.00 1.01 1.01 1.08 1.18 1.18 1.03 1.02
phillips 1.00 1.11 1.11 1.57 1.15 1.31 1.82 1.27
shaw 1.01 1.02 1.02 1.34 1.00 137 290 1.17
spikes 1.00 1.00 1.00 1.02 1.00 1.02 1.11 1.00
wing 1.01 1.00 1.00 1.26 4e3 2e4 9e4 3elO

average 1.00 1.02 1.02 1.61 6e2 2e3 9e3 29

The choice of constants in used rules may depend on the discretization
parameter and on the number of iteration steps; the values used in this
paper are representative for our set of test problems.

The rule SDS may have reserves for improvement if we change the form
of the function 1 or adjust its parameters. Also in L-curve rule there may
be room for improvement. Often the L-curve rule failed in case of large §’.
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