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Abstract. We provide explicit formulas for the Fu&ik spectra of boundary value
problems with the Sturm-Liouville boundary conditions.
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1. Introduction

We consider equation with the piece-wise linear right side
o = —pPat 4+ X227, o, AER, (1.1)

where 2% () = max{+x, 0}, with the Sturm-Liouville boundary conditions

2(0) cosa — 2’(0) sinw = 0, (1.2)
x(m) cos B — a'(w)sin B = 0. ’
We are looking for those values of (A, ) for which the problem has a nontrivial
solution.

DEFINITION 1. The set of all values (A, 1) such that a nontrivial solution for
problem (1.1), (1.2) exists, is called the Fuéik spectrum for boundary value
problem (1.1), (1.2).

In this paper we show that the spectrum of problem (1.1), (1.2) is a collection
of curves and we obtain the formulas for the spectrum. The branches of the
spectrum are denoted by F© and F), where the lower index indicates how
many zeros in the interval (0, 7) has the respective solution z(¢) of (1.1), (1.2)
and the upper index (+) shows that 2/(0) > 0, respectively (—) shows that

2'(0) < 0.
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The paper is organized as follows. Section 2 provides auxiliary results and
describes the technique we used in the sequel. Section 2 is devoted to main

. s . .
results, i.e. to the case 0 < a < 5 < B < m. In Section 4 we consider other
cases of ordering of « and 3.

Properties of the Fucik spectrum for the Sturm-Liouville problem and
for specific cases of boundary conditions, namely, the Neumann boundary
conditions, the mixed boundary conditions, are considered in [1, 2, 4].

2. Auxiliary Results

Our technique is based on a regular usage of polar coordinates. Let us intro-
duce them by the formulas

x = psing, 2’ = pcosey.

The piece-wise linear function f(z) = —u?x™ + A2z~ in polar coordinates
looks as
—p2psing, sing >0,
flp,p) = 5 . .
—Apsing, sing < 0.

Theorem 1. Let p(t) be the angle function for solutions of the Cauchy prob-
lem (1.1)

©(0) = o, p(0) = po.

The difference o(T) — ¢(0) is independent of the choice of po > 0, that is,
any trajectory starting ot the time moment t = 0 from the first of the straight
lines (1.2) on a phase plane, ends at some other straight line

x(T) cos(T) — 2/ (T) sin(T) = 0.
Proof. By using the polar coordinates we convert equation (1.1) to the form

p' = psinpcosy + f(p,p) cosp,
. flw)

= -2 % sin ¢ + cos? .
p

Let us rewrite the second equation in the form

p?sin? ¢ 4 cos? ¢, sing >0,

¢ =F(p) = { (2.1)

A2 sin? p + cos? p, sing < 0.

As can be seen from (2.1), the derivative of ¢(t) is independent of p(t). Notice
that the function o(t) is increasing, since ¢’ > 0. B

Theorem 2. A solution of the problem

¢ = k%sin? ¢+ cos? ¢, k >0,
o(to) = o
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s given by

1 1
Z arctan(k tan ) — Z arctan(k tan o) = t — to,

f0r0§<po§<p§§

3

<o < ¢ <, and it is given by

wm

1 1
Z arctan(k tan o) + % % arctan(k tan o) =t — to,
f0r0§<po<g<cp§7r.

Proof. One gets by integrating the given differential equation that

©
bt _/ dy B / cos2 ktamp
0 k2sin®¢g +cos2¢ ) k2tan?p+1 k (ktang)? + 1
¥o ®o

©

1 1 1
=z arctan(ktany)| = % arctan(k tan ¢) — % arctan(k tan ¢g).

¥$o

Consider the case when there is a value ¢, = g in the interval (¢o; ). Then

we have
® el ®
b l/ d(k tan ¢) 1 / d(k tan ¢) +/ d(ktan ¢)
7 k) (ktang)2+1  k (ktang)? +1 (ktanp)? +1
$o g
U driang) [ _dktang)
1/, d(ktan e . d(ktan e
- _awany) _alvtany)
k (sfr—{lo / htang? +1 oo / (k tan @)% + 1)
®o 5te2

1
=7 ( lim [arctan(k tan(g —¢1)) — arctan(k tan @0)}

61—>0

+ lim0 [arctan(k tan ) — arctan(k tan(g + 82))})
E2—
1

=7 (g — arctan(k tan ) + arctan(k tan ) + g)

1 1
= —arctan(k tan ) + T_- arctan(k tan ¢g).
k k Kk
|

Let us interpret the Sturm-Liouville boundary conditions (1.2) on a phase
plane. We have from (1.2)

z(0)/2'(0) = tanca, o = «,
x(m)/z'(r) =tanB, @1 =0+ mn, forsomen=0,1,2,...,

where ¢y = ¢(0) and ¢ = (7).
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3. Main Results

Czech mathematician S. Fucik in 70-th of 20-th century formulated and solved
a number of problems which relate to the theory of nonlinear differential
equations depending on two parameters. The second order Dirichlet boundary
value problem was considered in the book [3].

We consider now a more general case. Notice that the Dirichlet boundary
conditions are particular cases of the Sturm—Liouville boundary conditions.

Theorem 3. For the case 0 < a < g < B < 7 the spectrum ofproblem (1.1),

(1.2) consists of separate branches (for k=0,1,2,... A>0, u>0)
1 k—1 k 1
E [Z — — arctan(u tan a)] +Q+—W+ [ +— arctan(up tan 3) }
B A lpop
(k— 1D

! k
F - [Z oY arctan( tan a)} +77T+

1
3 + [E + 3 arctan( tan (3)

A A

1 1
F;;H : [% o arctan(u tan oz)] + b + =4 [ \ arctan(\ tan () }
P | Eo 1 arctan(A tan ) | + l —7T l arctan(ptan 8)| = 7
2k+1 A 2\ 1 Y /,L 7 /J, = T.

Proof.  One can find spectrum of problem (1.1), (1.2) by solving the equation

, p?sin? @ 4+ cos?p, if sing >0,
[ A2sin? o +cos?p, if sing <0

together with the boundary conditions ¢(0) = «, ¢(7) = 3.
Consider a solution of the problem (1.1), (1.2), which has no zeros in the
interval (0; ). Then

o =p0) =ac0;5]. o1 =pm)=p0e5m

This means that for any ¢ € (0;7) a solution x(¢) > 0. Thus z(t) is a solution
of ¥ = —p?x and in polar coordinates satisfies

{gp’(t) = 1% sin? ¢ + cos? o,
©(0) =a, o) =4

By Theorem 2 we get
1 T 1
t —to =m = —arctan(ptan 8) + — — — arctan(u tan ). (3.1)
I poop

Since A is arbitrary positive number, we get

Fyf = { (o, \) : po is a solution of (3.1)}.
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< 0 for any ¢ € (0;7), we use also the result

When treating the case of x(t)
= {(\o,p), 4 € RT}, and )y can be obtained

of Theorem 2. Similarly, F;
from

1 1
=5 arctan(Atan §) + ; -3 arctan( tan «).

Next we consider the case of x(t) having exactly one zero, say, at t = ¢;
and 2/(0) > 0. Then for 0 < t < t; we use " = —u2z and the length of the
interval [0;¢1] is, by Theorem 2

1 T 1 T 1
t1 — 0= —arctan(utanm) + — — —arctan(ptan o) = — — — arctan(p tan ).
[ poop Boop

For t; < ¢t < m, z(t) is non positive, therefore we consider a solution of
2" = —\?z and by Theorem 2 the length of the interval [t;, 7] is equal to

1 1 1
T—t; = X arctan(\ tan(8+m))+ g Y arctan(Atan ) = X arctan(\ tan 3)+ g .

The sum of two intervals is 7, and we get the expression for F; = {(\, 1)},
where A and p can be obtained from

1 | [ 1 |
Fre g o arctan(u tan a)_ + ; + 3 arctan(\ tan ﬂ)_ =T.
Similarly F; is given by
Fo |- Lactan(rtana)| + [T + Larctan(u tan 9)]
: |~ — —arctan(Atan o — + — arctan(u tan = .
S DR I VTR 8 ]

For any solution of problem (1.1), (1.2), which has exactly n > 0 zeros in
the interval (0; 7), the interval [0; 7] can be decomposed in n + 1 subintervals
Jr, = [0;Th), Jp, o= [T1; Ti+ 1), Jpy = [T+ 1o Ti+ T+ 1), - ., J1y ) =

[ > T,; 7 (the lower index refers to the length of subinterval) so, that in any
n=1

of those subintervals the sign of a solution does not change (see Fig. 1). If
z(t) > 0 then we use the equation z” = —p?x, and if 2(t) < 0 then the
equation 2" = —\2z is used. We can compute the length of each subinterval
by using results of Theorem 2. The total length of all n 4 1 subintervals is 7.
This is a basis for proving relations between p and A.

We decompose the main interval in subintervals

1
T=" — Zarctan(utana), To=Ti=...=~, Ty=Ty=..="_,
poop A Iz
T 1 .
— 4 —arctan(utan 3), n is even,
Tn+1 = K /f

T
— 4 —arctan(Atan 3), n is odd,

A A

when finding analytical descriptions of the branches F, (Vn € N). In case of
the branches F,; (Vn € N) this decomposition is
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Figure 1. The example of solutions of problem (1.1), (1.2) with four and three
zeros in the interval (0; 7).

T1: — arctan(/\tana), T2=T4=...= y T3:T5:...:

>3

1 ™
A 2

NI

1
; + 3 arctan(Atan 3), n is even,

™

TnJrl - 1
— 4 —arctan(utan 8), n is odd.
T

We use the fact, that the sum of the lengths of all intervals Jr,, Jr,, Jr3, -
Jr, ., is ™ and obtain the Fu¢ik spectrum for problem (1.1), (1.2). B

e

4. Other Cases

In previous sections analytical expressions for branches of the Fuéik spectrum
™

were obtained in the case of 0 < a < 5 < B < m. Let us consider the three

remaining cases.

4.1. Thecase of 0 < B <n/2<a <7
Consider the problem (1.1), (1.2) under the additional assumption that

0<p<

o

<a<m. (4.1)
In the polar coordinates one gets
o= { w2 s.in2 @+ cos? ¢, when s.in @ >0,
A2 sin? ¢ + cos?p, when singp <0,
p(0)=a, @(m)=p, 0<p<F<a<m

We are looking for solutions such that the respective trajectories on a phase
plane starting at the straight line with the angle g < a < 7, rotate to the

angle ™ < g < g + 7n Vn € N for the time period t = .
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a b)

Figure 2. Visualization of solutions of Figure 3. Visualization of solutions of
problem (1.1), (1.2) with the additional problem (1.1), (1.2) under the additional
condition (4.1): a) z3,, b) x5, - condition (4.1): a) z, ,, b) 25, ;-

Remark 1. The spectrum of problem (1.1), (1.2) with the restrictions (4.1)
relates to solutions which are depicted in Fig. 2 and Fig. 3.

Lemma 1. If § < «, then spectrum of problem (1.1), (1.2) has no branches
Fi.

Proof. Tt follows from ¢'(t) > 0 that the function ¢(t) is monotonically
increasing. There are no branches Fj~ for problem (1.1), (1.2) in the case of
B < «a, therefore solutions of problem (1.1), (1.2) do not exist, which satisfy
the boundary conditions and have no zeros in the interval (0;7). B

Corollary 1. There are no branches Fif for problem (1.1), (1.2) with the con-
dition (4.1).

We got analytical expressions for branches of the spectrum for the problem
under consideration, making use of results of Theorem 2:

(k—Dm n (k—1Dm

1 1
Fl o 2 arctan(u tan a) + + —arctan(A tan ) = 7,

I A A
1 k—1 k-1 1
Fy Y arctan(\ tan o) + ( i + ( 3 i + —arctan(putang) =,
1 [
1 k k-1 1
Fyb : ——arctan(utana) + 777 + (k= D + —arctan(utan 8) =,
[ [ [
1 k k—1 1
F; - 3 arctan( tan ) + f + % + X arctan(Atan 3) = w, Vk e N.

4.2. The case of 0 < a < 7/2,0< B3 < «w/2

Consider a solution of problem (1.1), (1.2) with the additional condition

ogagg,ogﬁgg. (4.2)

Its image on a phase plane starts from the angle 0 < a < g, and ends at the

angle mn < 8 < g + 7n, Vn € N for the time period ¢t = 7 (see Fig. 4).
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Figure 4. Interpretation of the boundary conditions for problem (1.1), (1.2) on a
phase plane, with the additional condition (4.2): a) a < 3, b) o > .

Remark 2. Respective solutions of problem (1.1), (1.2) with the additional
condition (4.2) are depicted in Fig. 5 and Fig. 6.

Figure 5. Visualization of solutions to Figure 6. Visualization of solutions to
problem (1.1), (1.2) with the additional problem (1.1), (1.2) with the additional
condition (4.2): (a) 3., (b) x5 condition (4.2): (a) 23, _;, (b) T5,_;-

Remark 3. Tf 3 < o (see Fig. 4), then there are no branches F° of the spectrum
for problem (1.1), (1.2) with the condition (4.2).

Let us find formulas for branches of the spectrum for the problem under
consideration. Branches F of the Futik spectrum relate to the case of a < 3

1 1
Fy : ——arctan(utan «) + — arctan(p tan 8) = 7,
;) 1

1 1
Fy 3 arctan( tan ) + X arctan(Atan 3) = 7.

Let us find analytical expressions for remaining branches:
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(k — 1)7T+ (k—1Dm _|_l arctan(Atan 8) = m,

1
Ef % a arctan(p tan o)+ . 5 5
1 k-1 k—1 1
F ; 3 arctan( tan o) + ( . i + ( 3 i +; arctan(p tan 3) = ,
1 k k—1 1
Eyo g o arctan(p tan a) + Tﬂ + % + m arctan(u tan 5) = m,
1 k k—1 1
F,. g —3 arctan(\ tan a)+7ﬁ+%+x arctan(Atan 8) = 7, Vk € N.

4.3. Thecaseof /2 < a<w,n/2<(B<mw

Consider solutions of problem (1.1), (1.2) with the additional condition

. G<B<m (4.3)

Its image on a phase plane starts from the angle g < a < 7, and ends at the

angle g +7mn < B <7+ mn, Vn €N for the time period ¢t = 7 (see Fig. 7).

x(t) x(t)

Figure 7. Interpretation of the boundary conditions for problem (1.1), (1.2) on a
phase plane, with the additional condition (4.3): (a) a < 3, (b) o > (.

Remark 4. Respective solutions of problem (1.1), (1.2) with the condition (4.3)
are depicted in Fig. 8 and 9.

Remark 5. There are no branches Fi for problem (1.1), (1.2) with the condi-
tion (4.3), if 8 < « (see Fig. 7).

Let us find formulas for branches of the spectrum for the problem under
consideration. Branches Fi- relate to the case of a < f3:

1 1
Fy : ——arctan(utan ) + — arctan(p tan 3) = m,
;) 1

1 1
Fy - 3 arctan(\ tan «) + X arctan(Atan 3) = 7.



60 T. Garbuza

AR VARSI SVANNN VA
VAN ARVERNN VARVAR ULV

0

a) B)

Figure 8. Visualization of solutions to Figure 9. Visualizati9n of soluti.o 1,18 to
problem (1.1), (1.2) with the additional problem (1.1), (1.2) with the additional

., . . + —
condition (4.3): (a) &, (b) z5,. condition (4.3): (a) 23y, (b) 234,

Analytical expressions for remaining branches are given as:

(k—Lm (k=17
7 B

1

A

E—Dr (k—Dr

1
Fy 1 -3 arctan(\tan o) + ( m + i\

1
Fioo o arctan(p tan o) +

arctan(Atan 8) | = m,

+ 24
A

[ 1
I A arctan(ptan 8)| =,
noop

1 kr (k=1
Fj © —= arctan(ut WAL 2L
o . arctan(p tan o) + 3 + m

1
+ z—|——aurctan(ﬂtaunﬂ) =,
noop

k_7T+(k—1)7T

1
Fy, -3 arctan(\tan o) + 3

[ 1
+ ; + X arctan(Atan8)| =, Vke N
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