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Abstract. The results of numerical investigation of the Finite Superelement
Method (FSEM) for the solution of 3D elasticity problems are given. A definition
of FSEM is proposed, and the general theory is briefly explained. Then the variants
of FSEM are considered for the model problem. Their comparative analysis is being
carried out. These variants are based on the finite element interpolation techniques
on superelements boundaries. FSEM and FEM efficiency comparison is presented
for the model problem. Quantative error data are obtained. A certain example of a
3D elasticity problem is considered in conclusion. A notable advantage of a higher
degree FSEM approximation technique is illustrated.
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1. Introduction

Finite superelement method (FSEM) was suggested by R. Fedorenko and
L. Strakhovskaya in [3]. It has been investigated in our papers [4, 5, 7, §].
This paper presents a continuation of the investigation. FSEM is considered
as a numerical method the main purpose of which is to solve problems with
local sharp domain singularities.

There exists a wide range of problems, the solution of which is character-
ized with sharp and local singularities. They reveal themselves as small ones
compared with the entire domain. The complexity of these problems is in the
fact that these local singularities are small not only with respect to the entire
domain itself, but even to a suitable mesh step. Some possible solutions of this
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problem are known. One can use an adaptive mesh. Alternative approach is to
use a special approximation on a coarse mesh. Finite superelement method is
a special approximation technique on a coarse (superelement) mesh. Each do-
main singularity can be resolved independently inside one of the subdomains
— superelements.

FSEM considers decomposition of the computational domain into a num-
ber of superelements. It has to be noted, that all singularities are situated
inside superelements, but not at their boundaries. The trace of the solution
at superelements boundaries is smooth enough. According to the FSEM, nu-
merical solution is searched within a linear combinations of a special basis.
These basis functions are the solutions of the given differential equation inside
superelements. They are finite, the support of them is in connection with su-
perelements. A variety of solution interpolators can be used on superelements
boundaries. In this paper different variants of FSEM are investigated, they
are based on different solution interpolation techniques on the boundaries.

This work presents numerical investigation of FSEM variants for the solu-
tion of 3D problems of the elasticity theory. Different FSEM approximations
require different interpolators on superelements boundaries. Here we use con-
ventional finite element approaches to construct them.

Our objectives are the following. We carry out a comparative analysis of
FSEM approximations to the 3D model problem solution. Numerical solution
errors are obtained. Then the comparison of the FSEM and FEM efliciency is
given. Finally, we present the computational results of a test problem of the
elasticity theory. Thus, the practical efficiency of the method is illustrated.
When choosing the correct way of constructing the FSEM calculation scheme,
the investigated method is of high efficiency. Higher degree approximation
leads to more accurate numerical results.

The work was done under partial financial support of Russian Fund for
Basic Research (project 06-01-00421).

2. FSEM Theoretical Background

This chapter introduces a brief explanation of the theory of FSEM. For more
details, see works [3, 4, 5, 7, 8]. Let {2 be some bounded domain, 912 denotes
its boundary. Let A be some linear elliptic operator on (2.

The Green formula and the Poincaré-Steklov operator are the basis of the
FSEM theoretical background. The Green formula is well known and has the
following structure:

(Au,v) 1, 0) = aLa(2) (W, V) = (0u,70) 1, 90

where ar, (o) (+,-) denotes some bilinear form corresponding to operator A.
Operator ~ is a trace operator on 9f2, and 0 denotes the normal derivative
operator in a general sense. Particular form of operators 7, § and bilinear form
ar,(2) (+,-) depends on the form of A.
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Poincaré-Steklov operator maps some function, given on the domain
boundary, to another one specified at this boundary. It is calculated in the
following way:

Py = du =Gy,

where u is the weak solution of a problem investigated, G denotes the Green
operator, and the equality yu = ¢ is fulfilled at any point on 92. The result
is that Poincaré-Steklov operator maps Dirichlet boundary condition to the
corresponding Neumann boundary condition.

Now we consider the following problem:

Ay = fin (2,
(2.1)
u=gon 02, O6u=p on 02,

where 02 = 0£2, U925 and 012, N 025 = (), and unknown u € V.

Consider non-overlapping domain 2 decomposition into a number of
subdomains-superelements (2, with boundaries 02;. In the sequel operators
Py, Gk, 7k, - -are operators P, G, ~,...for subdomain (2;. Furthermore we
use the notation vy for the restriction of an arbitrary function v at the region
2.

The Green formula and Poincaré-Steklov operator allow us to exclude the
problem solution inside superelements and to consider only boundary values.
On this basis the initial problem can be reduced to the problem for boundary
traces of superelements (see [4, 5, 7]).

Let ¢ = ycwi be a trace of some function w € V on 92, which is defined
in {2 and is sufficiently smooth. Consider also, the function w is defined in the
following way

MW@ = Grpr + ug k (2.2)

in every superelement (2. Here uy  is a solution of the following problem:

Auf,k = f in Qk,
urp =0 at of..

Let us suppose that @ € V and it is continued across superelements boundaries
due to the concrete form of the function ¢.

Note, that @ is an exact solution of equation under consideration in ev-
ery superelement wy, separately, but it doesn’t satisfy the original problem
(2.1) as a whole. To be the solution of this problem in (2 it has to fit some
additional conditions across superelements boundaries. These conditions can
be derived as follows. Function w is the solution of the problem, if it satisfies
a conventional weak equation for the solution u. Thus, recovering that (2.2)
holds, one can obtain (see [4, 5, 7] for more details):

Xk: (Pxors Yk) 1,000 ZXkI (Ot s e, YkVR) 1, 0.2 V) 1y 002), V¥ € Vo,

Yo =g at 052,.
(2.3)
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The following spaces are proposed here:

Vi ={o={p}: 3w eV :or=mnwi},
Vro ={¢ ={er}: 3w eV :pp=nwg, and yw = 0 at 002}.
Here the unknown function ¢ € V. Problem (2.3) is the required problem for

superelements boundary traces. There are various FSEM calculation schemes.
We consider precise definitions of these variants in the example of Section 3.

3. FSEM for the 3D Model Problem of the Elasticity
Theory

a) computational domain 2 b) decomposition of the domain {2
into K% = 8 superelements

Figure 1. Computational domain for the model problem.

3.1. A statement of the model problem

We consider the 3D model problem of the elasticity theory. Computational
domain (2 is a cube having a cubic hole. Hole side size [ is much smaller than
the domain side size L. The center of the hole is at some £ point (Fig. 1).
Dirichlet boundary condition is given through the whole boundary including
the boundary of the hole. We choose it in such a way that the exact solution of
the model problem is known. It coincides with the restriction of the problem
solution in R?® when placing a point-source of body forces at &. The following
problem is under consideration:

Au = (A +2p) graddivu — protrotu =0, Ve €

i — & .
ui(w)zzb(w):M(ApHm =, Veeon, i=T3.

(3.1)

Here )\, i are Lame coefficients, p is a mass density, u is the unknown displace-
ment field. Vector x defines point coordinates in the computational domain,
and r is the distance from &:
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r=[(z1 — &)+ (22 — &) + (z3 — &) 2,

Function ¢ defines a boundary condition on 9f2. The exact solution u(¢*) of
the model problem has the form:

(ex) (20} — P L& e =13 3.2
u; () T e, i=1,3. (3.2)

Thus, the problem singularity is situated near the hole.

3.2. FSEM variants for the model problem

The construction of variants of FSEM is based on different interpolation tech-
niques on superelements boundaries. We use here the conventional finite el-
ement interpolators. Let us describe these variants for the model problem
considered. Given domain {2 is decomposed into the K x K x K cubic-shaped
superelements (2;:

KS
Q=% 2n2=0 ifk#lL
k=1

We assume that the hole is in the center of one of the superelement (Fig. 1).
Problem solution is approximated independently inside each superelement.
Moreover, the approximating basis functions are the same for different su-
perelements. We can consider the FSEM approximation in one separate su-
perelement. The others are similar.
Let us assume that superelement (2, is fixed. Displacement field u has
three components. Each component u; can be approximated independently.

It is determined as a linear combination of functions @gj ), 1=1,23:
uj(z) = Zaéj)@y)(mL xe, j=1,2,3 (3.3)
i=0

3 _
are vectors of unknown expansion coefficients, (PZ(.J ) de-

Here a; = {agj)}_

Jj=1 )
notes j-th component of the i-th basis function, and az(.J ) j-th component of
the i-th coefficients vector. The expansion term number n defines the number
of superelement degrees of freedom (regarding to the one component of the

displacement field).
3

FSEM basis functions ¢; = {431(7 )} are solutions of the considered sys-
j=1

tem of equations (3.1) in superelement (2, (precisely @; are vector-functions).

These functions are certain solution interpolators ¢, at superelement bound-

aries. Thus, we deal with the following problem:

{Adii(:n) =0 Ve /00, 5.0

Pix |£IZEBQk = ¢;(z) |wea!2k'
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Further we use the notation boundary basis functions for the functions ¢,.

Next we choose a set of boundary basis functions ¢,. They are specified at
superelement boundaries only and serve as traces of the approximating solu-
tion. We choose finite element basis functions on triangles for this purpose. An
accountable number of nodes P;, i = 1, n, is placed on the external boundary
of the superelement (not at the hole boundary). They include superelement
apexes and some additional nodes, if needed. Boundary basis functions possess
the following values at these nodes:

gogjllk(P’m) = 51'7n5kj7 k= m? .] = 1737 1= O,n, m = O,Tlv

where @gj ) is Jj-th component of the i-th boundary basis function ¢;, dx; is the
Kronecker delta, and symbol Py denotes not a node, but the entire bound-
ary of the hole. These functions are continued to the external superelement
boundary with the use of one of the conventional finite element approaches (see
[1, 13, 16, 17]). The following six interpolations are tested: lagrangian linear,
lagrangian quadratic, lagrangian cubic, lagrangian “reduced” cubic, hermitian
cubic and hermitian “reduced” cubic basis functions [1, 4, 13, 16, 17].

Let N be the total number of superelements nodes throughout the entire
domain 2. The problem singularity is taken into account by force of “basis”
function @ having a zero subscript. We have to underline its description.
Function ¥ coincides with the boundary condition at the hole boundary.
And it turns to zero at superelement external boundary. If a superelement
doesn’t contain a hole, then @y = 0. In addition we note, that the other basis
functions ®;, with i = 1,7, turn to zero at the boundary of a hole since no
nodes are situated there.

According to the FSEM, the unknown coefficients a; in expansion (3.3) can
be found with the help of a standard Bubnov-Galerkin scheme. We choose ®;
as both basis functions and trial functions. Then we get the following system
of linear algebraic equations:

a(u,®;) =0, i=13n,

or in the coordinate form:

3 3
3 al™a (¢gm>,¢y>) --Ya (@5”,@”), j=T173n, 1=T1,3,

1 m=1 m=1

n

(2

where a (-, -) is the bilinear form of the problem (3.1).

3.3. Computational results

Let us consider in detail errors of the numerical solution obtained from the
model problem. Here we assume

4 3 .
L—2, l—§, 6l_§7 Z—172,3.

Material characteristics are the following:
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E Ev
p =100, p= A+ A= AT 1=2) E=1, v=0.33.
We investigate two variants of domain decomposition. The first one is spec-
ified as 2 x 2 x 2, so that K> = 8. In the second variant we have 5 x 5 x 5
superelements, i.e. K® = 125. The number of the superelements is fixed and
the variants of interpolation formula is changed (n has to be varied at the
same time).

All FSEM basis functions (3.4) are computed approximately on a fine mesh
inside a superelement. A standard finite element calculation with linear basis
functions on tetrahedrons are used to perform this task.

The difference between the exact solution (3.2) and FSEM numerical so-
lution is measured in C({2) space norm. Solution relative error under study is
given by

e @) ) )
[ @) maxluf (@)

3
where u,. is the displacement field radial component: u? = Y u;?
=1

28 Superelements

| @ lagrangian linear
B lagrangian quadratic

\ <] lagrangian cubic
¥t hermitian cubic

# lagrangian “reduced” cubic

P hermitian “reduced” cubic

Figure 2. FSEM relative error dependence on the total number of superelement
nodes N. FSEM and FEM accuracy comparison. K> = 8.

Fig. 2 and Fig. 3 show numerical solution error dependence on the FSEM
approximation technique. Relative error dependence on the total number of
superelement nodes is given. Different graphs present different approximation
variants, which are based on various interpolators at superelement boundaries.
Tab. 1 shows appropriate rates of convergence. A notable advantage of a
higher degree interpolation techniques is evident, but a small coefficient of
linear regression is not usual for them. It is caused by the initial closeness of
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Figure 3. FSEM relative error dependence on the total number of superelement
nodes N. FSEM and FEM accuracy comparison. K = 125.

the error obtained (even on a few SE nodes) to the “unavoidable” error. Here
the presence of the “unavoidable” error is linked to the influence of the basis
functions approximate computation and is not the property of the FSEM. The
value of error obtained confirms the efficiency of the method (see Tab. 2). One
can easily see the notable advantage of higher degree interpolation.

Table 1. Convergence rates.

Interpolator Convergence Rate
Lagrange linear 1.4745
Lagrange quadratic 1.2849
Lagrange cubic 1.8020
Lagrange “reduced” cubic 1.6357
Hermite cubic 1.6909
Hermite “reduced” cubic 2.0488

Table 2. FSEM and FEM numerical relative error values comparison.

K FEM ¢ Minimal FSEM §

K3®=8 55073-107%, when h=1/20  5,754-1073
K? =125 22338-1072 when h =1/36  1,493-1073

Our next step is the comparison of the accuracy of FSEM with the con-
ventional method of finite elements (FEM). The model problem is solved with
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the FEM when finite element mesh sizes (step h): h = 1/20, h = 1/36, are
available. Linear shape functions on tetrahedrons and uniform mesh is used.
Numerical solution errors in C({2) space norm are defined. Judging from these
results the obtained values are analyzed together with FSEM errors. As it has
already been mentioned, Fig. 2 and Fig. 3 present the dependences of the
FSEM relative errors on the total number of superelement nodes, when dif-
ferent interpolation techniques are applied. In addition to these dependences
one can see the values of FEM relative errors that are marked with horizontal
dotted lines. Exact numerical error values for the comparison are given in
Tab. 2.

4. Test Problem Computational Results

In this section we consider the computational results of a test 3D problem of
elasticity theory. Dirichlet boundary conditions are given in this problem:

Au=(A+2p)graddivu — protrotu =0, Va € Q,
u;(x) = 1, when x is at the boundary of the hole,
ui(z) = 0, when z is at the external boundary of domain 2, i =1, 3.

Given domain is elastic media with several fibres, having “brick” form.
Fibres sizes are small enough in comparison with the entire domain (Fig. 4).
Given domain is decomposed into 27 superelements. The problem is solved
with the use of FSEM when lagrange linear, quadratic and “reduced” cubic
interpolation techniques are applied at superelements boundaries. The figures
below show FSEM solution level lines at a chosen section. Numerical solutions
obtained with the help of quadratic and cubic interpolators are similar and
physically correct. One can see a notable difference with the linear case.

5. The Results Discussion

There exist a variety of methods, that are based on some boundary-type solu-
tion procedure. Many of them uses regular functions satisfying the governing
equations. Such functions serve as a basis for the numerical solution expansion
as it is in FSEM. Most famous of them don’t propose any decomposition, for
example: a sort of boundary element method or classical Trefftz method. The
problem begins at the moment domain decomposition appears: indeed, com-
patibility conditions have to be satisfied at the boundaries (these boundaries
are sometimes called “interface” by analogy with a boundary between different
materials). The question is in what way the scheme must be constructed to
achieve the best results for the given problem? This problem is not solved and
it concerns the approximation of boundary equations, presenting the compat-
ibility conditions at the interface. So, the boundary equations of different pro-
posed methods can “match” in some sense, while their approximation scheme,
either the solution interpolation technique, have to be rather different. Finite
Superelement Method offers more qualitative results in comparison with other
methods and by multiple characteristics. It should be noticed, that direct and
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il fibres
IE:
Computational domain (2 Numerical solution u, level lines
for the test problem at the section zo = 3/2.

Lagrange linear interpolation

Numerical solution u, level lines Numerical solution u, level lines
at the section xp = 3/2. at the section x = 3/2. Lagrange
Lagrange quadratic interpolation “reduced” cubic interpolation

Figure 4. Computational results for the test problem solution.

exact quantative analysis of the results with the new works of authors from
western countries hasn’t been carried out. This task will be done carefully in
the future investigations.

Let us discuss some results here. It means some empirical comparison by
the example of selected works of different authors, having not only their origins
but also a further continuation up to this day. We concentrate on those in the
area of elasticity problems. We want to mention the class of methods, that is
connected to the so-called “hybrid elements” and the “Trefftz elements”. We
refer to these approaches only due to the space shortage. This class of methods
is of great importance in their origins, has a wide distribution nowadays and
is close to the FSEM.

The origins of hybrid elements are close to conventional finite element
method. If you want to resolve a sole domain singularity, you can try to
construct one large element having some special characteristics near it, instead
of using a great number of conventional ones. Some references can be found
in the well-known monograph of O.Zienkiewicz ([16], ch.13). Usually, hybrid
elements mean such elements, that the variational principles for them are
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modified for relaxed continuity conditions along elements boundaries. Only a
particular cases of them use regular functions, governed by the homogeneous
equation. The description of it can be found in [14]. The Trefftz method is a
prevalent title for the methods, using solutions of the governing differential
equation or its adjoint, defined in subregions. They often use the so-called
"T-complete" basis functions firstly introduced by I. Herrera in [9, 10, 11]. A
rather full information is given in his paper [12]. One of the most complete
and newest description of Trefftz methods is presented in the work of Q.-H.
Qin [15]. Besides, one can find a lot of papers devoted to this subject, e.g.
works of J. Jirousek, N. Kamiya, E. Kita, T. H. H. Pian, R. Piltner, Q.-H.
Qin, J.A. Teixeira de Freitas, A. P. Zielinski, and others.

In contrast to FSEM all basis functions in the referred methods have a sim-
ple and analytical structure, it is their advantage. Despite this fact, it is not
so evident how to construct the specific (e.g., T-complete) basis, especially
in 3D case. One can see much more 2D samples of computations, than 3D
samples. Furthermore, one pose a problem when solving a nonhomegeneous
equation, for instance, in [2]. On the contrary, it is very easy in the FSEM to
construct special basis functions, that are complete in the appropriate space.
Moreover, one can keep the accuracy "under control" by varying the FSEM
basis functions, as it is described in this paper. The group of methods men-
tioned doesn’t offer such a wide range of variants for the method error to be
varied.

The next comment concerns the relaxed continuity conditions along the
element boundaries. It is the main feature that the boundary equations are ful-
filled in a weak sense. One can see no possibility to solve some strong equation
at the interface. FSEM offers a possibility to write down a strong equation as
well, it involves some additional conditions at the boundary, but gives further
possibilities in the investigation area. There are methods, where the interface
coincides with the topological singularity, nevertheless it is possible to solve
such problems in FSEM as well (for instance, [6]). There exist a great part
of works, that don’t emphasize the solution interpolation inside an element,
thus, the method under consideration assume to find only nodal values. The
FSEM offers both approximation scheme and solution interpolation, interpo-
lation comes in a natural way. The elements, considered by the other authors,
use not only assumed displacements, as it does the FSEM, but also assumed
stresses along the interface. It is a work for the future in FSEM investigation,
but the scheme is, of course, by analogy with the existent schemes.

One can see a wide use of the collocation method, or the method of least-
squares to a smaller extend, when discretized equations. It offers a simplifi-
cation, but can influence the potential best accuracy. At present the FSEM
follows the Bubnov-Galerkin scheme only.

6. Conclusions
The results of numerical investigation of the Finite Superelement Method

for the solution of the 3D elasticity problems are given. Different variants of
FSEM are being considered, and their comparative analysis is being carried
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out. These variants are based on the finite element interpolation techniques on
superelements boundaries. FSEM and FEM efficiency comparison is presented
for the model problem. A certain example of a 3D elasticity problem is consid-
ered. The practical efficiency of the method is illustrated, when choosing the
correct way of constructing the FSEM approximation. A notable advantage
of a higher degree FSEM approximation techniques is shown by the example
of the concrete 3D problems of elasticity theory.
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