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Abstract. The convergence rate of histopolation on arbitrary nonuniform mesh
with linear /linear rational splines of class C" is studied. Established convergence rate
depends on Lipschitz smoothness class of the function to histopolate. Corresponding
numerical examples are given.

Key words: histopolation, rational spline, convergence rate

1. Introduction

It is well known that interpolating cubic and quadratic splines have good
convergence properties for properly smooth functions. On the other hand,
geometrical properties like monotonicity and convexity need not be preserved.
The same could be said about histopolation with these splines. A natural
way to preserve geometrical properties is the use of rational splines because,
e.g., linear/linear rational splines of class C'* are always monotone by itself.
We have studied the histopolation with them in [1, 2] and we outlined in [1]
without details a way to prove the convergence indicating also the convergence
rate in the case of uniform mesh. In this paper we will give complete proofs
of convergence rate for arbitrary meshes and for several Lipschitz smoothness
classes of functions to histopolate.

The convergence of interpolating splines is better studied than that of
histopolating ones [3, 5]. Instead of histopolation with linear/linear rational
splines the corresponding interpolating problem may be formulated in a stan-
dard way and then the derivative of its solution is a solution of initial histopo-
lation problem. Such an interpolation problem could be solved (see [4]) using
quadratic/linear rational splines of class C? which are convex by itself. But
the derivative of a quadratic/linear rational function, in general, is not lin-
ear /linear rational function and this algorithm produces a different method
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compared to the direct solution of histopolation problem with linear/linear
rational splines. Therefore, the study of convergence rate for histopolation
with linear/linear rational splines needs independent research.

2. Linear/Linear Rational Spline Histopolation to
Monotone Data

In this section we introduce the notation and review basic results about a
monotonicity preserving method of histopolation studied in [1].

Consider a given mesh a = o < 1 < ... < x, = b with given numbers z;,
i=1,...,n,i.e. a given histogram. A linear/linear rational spline histopolant
is a C! smooth function S on [a, b] of the form

a; + b; (x - 9&‘71)
1+d; (a: — xi_l)

S(z) =

with 1 4+ d;(z — 2;-1) > 0 for « € [z;_1,2;], i = 1,...,n, such that

/ S(x)dx:zi(xi—xi,l), i=1,...,n. (2.1)
In addition, we impose the boundary conditions
S (o) =, S'(xn) =2 (2.2)
or
S(zo) =a, S(z,)=p (2.3)

for given o and £.

In such a general situation, there are no two different linear/linear ratio-
nal splines of class C! satisfying histopolation conditions (2.1) and boundary
conditions (2.2) or (2.3) (see [1]).

On the other hand, a C* linear/linear rational spline is strictly increasing
or strictly decreasing or constant on [a, b]. This implies that, for the existence
of the solution, it is necessary that

21 <...<zZp Or 2zZ1>...>2, O 2] =...=2y, (2.4)

and the boundary data have to be consistent with histogram data. We proved
in [1] that, on the assumptions (2.4) with consistent boundary data, the so-
lution of considered form exists.

The actual construction of histopolating spline could be implemented sol-
ving a nonlinear system of basic equations

mi = pu(m) = i (2.5)

rao(() )+ (%))
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with two additional equations obtained from (2.2) or (2.3). Here we mean
m; = S'(x;),1=0,....,n, m = (mg,...,my), hy = x; —x;_1,1=1,...,n,
0; = zi+1 — 2z; and ¢ is the function
2
z*(logx — 1)+ x
forz >0, x#1,
o) =3 — @-1p 7
0.5 forx=1.

Furthermore, we stipulate that the right hand side of (2.5) defines the func-
tions ;. The conditions (2.2) simply fix the values my = « and m,, = (3, but,
e.g., the condition S(z¢) = « leads to the equation

do
1/2
me((Ge) )
mo
with d9 = 21 — a. The equation (2.6) could be considered as special case of
(2.5) where i =0 and hg =0, 2o = .
Clearly, only the case z; < ... < 2z, needs the study and we restrict

ourselves to that. Suppose we have a given (at least, differentiable) function
f on [a,b]. The numbers z; are calculated as

mo = po(m) =

Zq

/ fl@)de, 1=1,...,n,

_ L
=
Ti—1

the conditions (2.2) are of the form S’ (x¢) = f'(x0), S'(zn) = f'(z,) and (2.3)
are S(zo) = f(z0), S(zn) = f(xy). The strict increase of histogram heights,
ie. z; < z;41 for all i, is guaranteed, e.g., by f'(z) > 0 for all x € [a, ]].

We are interested in the convergence rate of (S — f) in uniform norm on
[a,b] as h = maxi<i<p h; gOes to zero.

3. Estimates of First Moments

We derive our convergence rate results basing on the estimates of m; which
will be established in this section.

Lemma 1. Suppose ' € Lipa for some o € (0,1] and f'(z) > 0 for all
z € [a,b]. Then
mg; — f/(ﬁl) = O(ha)

Proof. Take K; = [f'(x;) — ch®, f'(x;) + ch®] with a number ¢ > 0 indepen-
dent of i and which will be specified later. Showing that ¢; : [[;-, K; — K;
for all i, we may use Bohl-Brouwer fixed point theorem and the unique-
ness of the solution of the system m; = ¢;(m), i = 0,...,n, to state that
m; € [f'(z:) — ch®, f'(x;) + ch®].

First, let us analyze the main case i = 1,...,n — 1. Using in integrals of



32 M. Fischer, P. Oja
Tit1 T

L /f(a:)dz—h% ff(a:)dz

5 =
hiy1

the Taylor expansion f(x) = f(x;) + f'(z:;)(x — x;) + R, where it holds
|R| < (L/(1+ «))|x — z;|'*® and L is the Lipschitz constant of f’, we get

L

1 / « @
6 = g(hi + hi+l)f (z:) £ m(m& + i ) (3.1)

The compact writing p = ¢ £ r, as usual, denotes the two-sided inequality
g—r<p<q+r.
Next, consider the expansion

sa((mn;l)m) = ¢(1)+<p’(€i)((mn:1)l/2—1), ge(t (mnzl)m). (3.2)

Choose m; = f'(z;) £ ch®, i =0,...,n. Then we obtain

mi—1 mMi—1 — My 2c + L
—-1= =+ he. 3.3
m; m; f'(z;) — che (3:3)

Let us remark, in addition, that this yields m;_1/m; — 1 as h — 0. Using the
Taylor expansion up to the second derivative for (14 z)'/2 at 0, we obtain

-1 (x—1)2

x
VE-1=1+(@-1)-1=— ~ ST

e (0,z—1).

This, applied in the case © = m;_1/m; with the help of (3.3) leads to

S R VT B

m; 2 m;

L
C+§

ct+ 3
= (7 —om

5 2
e+ ol )). (3.4)

We may conclude that, in (3.2) and then in (2.5), it holds

B+ o)) = +(

P(6) = 5 +O("). (35)

Analogous calculations could be done for the term ¢((m;q1/m;)'/?) in (2.5).
Taking in (2.5) into account (3.1) and (3.2), (3.4), (3.5) with their coun-
terparts for m;;1, we obtain

3 (hi+ hiea) F'(20) £ trpajraay (T + W)
c+ %
f'(@i)

pi(m) =

(hi + hig1) £ (hi + higa) (% + O(ha)) ( h + O(hm))

1
2
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(@) £ it b

1+ (% +o(h)) (2;;5 B+ O(h2))

_ (f/(l’i) + %m) (1 + (gfc/(;)% he 4+ O(hza)))

— f(a) + ((§c+ (% + WZ(HQ))L)W n Mh’m) (3.6)

with certain M > 0 depending, however, on ¢, L and f. We have the inclusion
wi(m) € K; if

2 1 2
- -4+ — )L+ Mh* <
3C+(3+(1+a)(2+a)) HMIE s

which, in turn, takes place for sufficiently large ¢ (e.g., in the case o = 1, for
¢ > 2L) and small h.

The boundary condition S’(z) = f'(xo) do not need any analysis and we
deal briefly with S(z¢) = f(z0) leading to (2.6). Then it holds

_ﬁ / L 14+
50_ 2f(x0):l: (1—|—Oé)(2+0()h1

and with the help of the expansion

A7) = @ () ). o (1 (2)")

we get for ¢g the same final form of two-sided estimate (3.6). This completes
the proof. B

Lemma 2. Suppose f” € Lipa for some a € (0,1] and f'(z) > 0 for all
x € |a,b]. Then
mg; — f/(ﬁl) = O(h1+a).

Proof. Let us write equations (2.5) in the form

Fi(mi—l,mi, m¢+1) = himiﬁp((mn;_l)l/2) + hi+1miﬁp((mi+l)l/2) = 0y,

i m;
i=1,...,n—1, (3.7)

introducing at the same time functions F;. By Taylor expansion we establish

. hi + hit1
2

W2y — 12

8 Fll@i) + = @) + O (R + R, (3-8)

At left hand side of (3.7) we use the Taylor expansion

. -Fz‘ll (5)\)

Fi(mi—1,mi,mi1) = F;(mg,mg,m;) + F (mg, mg, m;) h; +
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with Ei = (mi_l —my, 0,mi+1 — mi), some \ € (0, 1) and g)\ = (mi,mi,mi) +

Ah;. Here we have at once F;(m;, m;,m;) = %(hl + hit1)m;. Concerning the
term with F we calculate

i~ 2o ()

which gives aif - (m;,mi,m;) = %hi and similarly we obtain the value
81?511 (mi,m;, m;) = +hiy1. In F" we actually need only
0?F; hi ol (Mim1\1/2 (M1 \ /2N rmy_p\ /2
g~ s (5 ) (5 D ES) )
2

omi,
with ¢1, co > 0 for sufficiently small values of h. This gives

and similar derivative . Observe that, by Lemma 1, it holds m; € [c1, ¢2]
Am;_1 + (1 — /\)mi, Amggq + (1 — /\)m1 € [Cl, CQ].

After standard calculations we can conclude that

a4 _
# h? = hioi (mi—1 — mi)2 + hiv1Bi(mig1 — mi)27

where «; and §; are bounded. Thus, the left hand side of (3.7) reduces to
éhimi—l + %(hz + h¢+1)m¢ + éh¢+1mi+1
+ hioy (mi—l - mi)Q + hit15s (mi+1 - mi)Q- (3.9)
In addition, using the formulae
f'(@i) = haf"(w:) = f'(wio1) + O(h; ),
F(@i) + higa f/ () = f(@ig1) + ORI
let us write (3.8) as

h;
5@‘:5][/(5%‘71)

hi + hi
4T il

h;
L)+ = () O (R ). (3.10)

6
Now (3.9) and (3.10) permit to transform (3.7) to the form

Ai(mic1 = f/(@ic1)) +2(ma — [ () + pa(misr — f'(Tig1))
= -6\ (mi_l — mi)Q — 6”161 (mH_l — ’fTLi)2 + O(h1+a) (3.11)

i

ith \j = ———
v hi + hiy1

and Hi = ]-_)\i-
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In the case of boundary condition S(z¢) = f(zo) write (2.6) as

Fo(mo,mq) = hlmocp((;nl—;)lﬂ) =dp. (3.12)

Here we use the expansions
h h? h h
S0 = éf’(xo) + Flf”(xo) +0O(hite) = Elf/(ajo) + Elf/(ﬂjl) +0O(hiH)

and
Fy'(6x)
2!

with hg = (0,m1 —myg) and &, = (mo, mo) + Aho. In the last formula we have

h F// _
Ela 0 éfA) hi = hla()(ml - mO)Qa

- —2
Fo(mg, m1) = Fo(mo, mo) + Fy(mo, mo)ho + hq

hy 0Fy

- Mo, om
1

FO(mOamO) = 2

(mo,mo) =
where ag is bounded. The equation (3.12) takes the form

2(mo — f'(20)) + (m1 — f'(21)) = =60 (m1 —mg)” + O(h}H*).  (3.13)

Observe that the assumption f” € Lip « guarantees f’ € Lip1 and then,
by Lemma 1, (m; —m;_1) = O(h) or (m; —m;_1)? = O(h?) for all i.

Considering now the equations (3.11) and (3.13) with its analogue at x,, as
a linear system with respect to m; — f'(z;), ¢ =0, ..., n, we find out that there
is the diagonal dominance in rows. However, the condition S’(z¢) = f'(x0)
gives the trivial equation mg — f'(z¢) = 0 which preserves the property of
diagonal dominance. This yields

m; — fl(ﬁl) = O(h1+a),
which completes the proof. B

Remark 1. Instead of exact boundary conditions S(x¢) = f(zo) and S’ (x¢) =
f'(z0) it may be used their perturbed versions S(z¢) = f(x0) + O(hi ) and
S'(z0) = f'(x0) + O(h$) in Lemma 1, as well S(xq) = f(z0) + O(h:T*) and
S'(z0) = f'(x0) + O(h1™*) in Lemma 2.

4. Convergence Estimates
In this section we establish the convergence rate of uniform norm
S — = S(x) —
IS = flloe = max, |S(a) - f(a)
for S being the linear/linear rational spline histopolant to a function f as

was described in Section 2. In addition, the convergence rate of ||S" — f/|| is
obtained.
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Lemma 3. In the assumptions of Lemma 1 (respectively, of Lemma 2) it holds
15" = f'lloc = O(h) (respectively, ||S" — f'[|sc = O(h'*)).

Proof. Let us recall from [1] the representation of histopolating spline

S(x) =z + hi m»_mil_/lz s lo (mni_.l)m
((m—l) ] 1) mi—1

‘ ) 1/2 . ) 1/2
((mzl) 1) (1 ) Z%_l ((mlL_vl) 1))
for z € [$i_1, 331] This gives

mi—1

()

i

S'(z) =

First, let f satisfy the assumptions of Lemma 1. We have found in its proof

that e\ 172 | ey 1
A= (5) T =St -y ot

and we know that A = O(h®). Thus, we have

mi—1

_ — Ti—1
1+ 2—””*;;*1 A+ O(h2e)

= mi_l(l —23:

5'(z) A+0(n))

(3

T — Tj—1 Mi—1

= Mi—1 —

I = (mi_l — mz) + O(hQa). (41)

Using here the replacements m;_1 = f'(x;—1) + O(h*) and
mi—1 —m; = f'(zi-1) + O(h%) = (f'(z:) + O(h*)) = O(h%)
together with m,;_1,m; € [c1, co] for some ¢y, c2 > 0, we obtain
S'(z) = fl(wi—1) + O(hY), = € [zi—1, 7] (4.2)

Obviously, f/(z) = f'(zi—1) + O(h*), x € [x;-1,x;], and this with (4.2) gives
one of the assertions of Lemma 3. Secondly, consider the case of f satisfying
the assumptions of Lemma 2. Now use in (4.1) the replacements

mi—1 = f'(zi—1) + O(h'T%),
Mt _ Plo) £ O e+ O
m; f'(@i) + O(h't)  f'(@i) + O(h'**)
mi—y —m; = f'(zi-1) + O(h'**) = (f'(z:) + O(h'*))
= —hif"(@i1) + O(h*).

=1+ 0(h),

Observe also that, at this time, A = O(h) and the remaining term in (4.1) is
O(h?). Then we have
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S'(x) = f(wic1) + (=2 1) [ (xim1) + ORTY), € [xiy1, w4
This with the Taylor expansion
F@) = fl(@ima) + (@ = 2ima) [ (wim1) + O(WTHY), @ € [0, i),
implies the other assertion of Lemma 3. The proof is complete. B
We summarize the estimates of lemmas in the following theorem.
Theorem 1. Suppose f'(x) > 0 for all © € [a,b] and f' € Lipa for some
€ (0,1]. Then the histopolating spline S satisfies |S — f|lco = O(R1T%). If,
in addition, f” € Lipa, a € (0,1], then ||S — f|lc = O(R?T%).

Proof. The histopolation condition

17 1]
h—i/S(a:)da::h—i/f(x)dx

is equivalent to fill(S(x) — f(x))dx = 0, which implies the existence of
& € (xi—1,x;) such that S(&;) = f(&). Therefore, it holds

5@ - 70) = | "(S'(s) - F/(s) ds.

i

Assuming ||S" — f'||oc < MR for some M > 0, we have for € [v;_1,2;]

‘S(x) - f(a;)‘ < ‘ j S'(s) — f’(s)‘ ds‘ < MEP|z — & < MRS+,
&i

Basing now on Lemma 3 we get the assertion of Theorem 1. B

5. Numerical Tests

We histopolated on the interval [0, 1] the function f(x) = sinz to confirm the
highest theoretical rate O(h?) and also the piecewise quadratic function

0522+ for 0<x<0.5,
f(fv) = 2
0.52“4+0.25 for 0.5<xz<1,

having f’ € Lip 1. However, the last function is such that f” € Lip a does
not hold for no one « € (0, 1]. Thus, here the rate O(h?) coincides with those
predicted by Theorem 1.

The mesh was nonuniform of the following form. Taking h = 1/n, central
knots were calculated as
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1+h
x%:T7 Cvg,l:ﬁg—h, CCLQL,z:ng,l—h, x%Jrl:fC%—l—E.

Another ones were spaced uniformly on rest parts of the interval, i.e.
T, =irn_o/(n/2 - 2), i=1,...,n/2 -3,
Toqi4s = To41+ i(1— JU%_H)/(’IZ/Q - 1), i=1,...,n/2—2.

We used the boundary conditions (2.2) with o = f'(x¢) and 8 = f'(xn).
The "tridiagonal" nonlinear system to determine the values of m; consisting
of equations (2.5) was solved by Newton’s method. The errors ||.S — f||oc were
calculated approximately on tenfold refined grid as

€n = max max |(S = f)(xi—1 + khi/10)|.

Results of numerical tests are presented in Tables 1 and 2.

Table 1. Numerical results for f(z) = sinzx.

n 8 16 32 64 128

€n 1.15-107* 1.46-107° 1.84-107% 230-1077 2.87-1078
€on/En 7.874 7.961 7.988 7.996

Table 2. Numerical results for piecewise quadratic function.

n 8 16 32 64 128
En 7.39.-107* 1.79-107%* 4.41-107° 1.09-107° 2.71-107°
€2n/En 4.117 4.071 4.040 4.021
Acknowledgement

Our work was supported by the Estonian Science Foundation grant 6704.

References

[1] M. Fischer and P. Oja. Monotonicity preserving rational spline histopolation. J.
Comput. Appl. Math., 175(2), 195 — 208, 2005.

[2] M. Fischer, P. Oja and H. Trossmann. Comonotone shape-preserving spline
histopolation. J. Comput. Appl. Math., 200(1), 127 — 139, 2007.

[3] B. I. Kvasov. Methods of Shape-Preserving Spline Approzimation. World Scien-
tific Publishing Co., River Edge, NJ, 2000.

[4] R. Schaback. Adaptive rational splines. Constr. Approz., 6(2), 167 — 179, 1990.

[5] H. Spéth. One Dimensional Spline Interpolation Algorithms. A. K. Peters, MA,
1995.



