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Abstract. Different spatial discretisation methods for solving the peridynamic
equation of motion are suggested. The methods proposed are tested for a linear
microelastic material of infinite length in one spatial dimension. Moreover, the con-
servation of energy is studied for the continuous as well as discretised problem.
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1. Introduction

Non-local theories describing the effects of long-range interactions in elastic
materials have been known for a long time, cf. [5, 6, 9] and the references
cited therein. However, during the last few years, peridynamic modelling has
become topical as a non-local theory in integral form that avoids any spatial
differentiation, cf. [11] for a first attempt as well as e.g. [3, 4, 12, 13, 14, 15, 16].
In view of the derivative-free integral formulation, the peridynamic approach
seems to be quite promising for the description of fracture, in particular of
crack propagation in homogeneous and complex materials, and other prob-
lems in which discontinuities emerge such as phase transformations where the
displacement gradient becomes discontinuous. For a discussion of non-local
theories in solid mechanics and their application to problems of damaging,
see also [1]. Other recent works on non-local theories and their application in
elasticity and fracture mechanics can be found e.g. in [2, 7, 8].

The governing equation in the peridynamic theory is the second-order in
time partial integro-differential equation (PIDE)
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in Lagrangian coordinates € V on a time interval (0,7"), where p denotes the
mass density, u the displacement field of the elastic body that occupies the
volume V, f the pairwise force function that describes the internal forces,
and the inhomogeneity b collects all external forces per unit volume. Equation
(1.1) is supplemented by initial values for u(-,0) and d;u(-,0). In view of the
balance of the angular momentum of the mass-free bond between x and &,
the pairwise force function f.; is always in the direction of the vector pointing
from the current position  + u(x,t) to the reference position & + u(Z,t).

Let us suppose that the system is invariant against a rigid body motion
and the internal forces are independent of time such that

falz, &,u,a,t) = f(x, 2,04 —u) = —f(&,z,u—10).

If the material is microelastic then there exists a pairwise potential w such that
flx,&,m) = Vyw(x,&,n). Equation (1.1) then follows from the variational
problem: find

T
u = argmin J(u), J(u) := /0 /Vl(:c,u(a:,t),t) dadt, (1.2)

where [ = ey, — € — €oxt 18 the Lagrangian density and incorporates the
kinetic and elastic energy densities:

1 1
€kin = §p(w) |8tu(:c,t)|2, €el = 5/ w(zx, &, u(Z,t) — u(x, b)) dz,
%

and the density eoxt = —b(x,t) - u(x,t) due to the external force density b.

More precisely, a solution to (1.1) also fulfills the necessary condition for
being a solution to the variational problem (1.2), and a sufficiently regular
solution of the necessary condition is also a solution to (1.1). It can be shown

d
that the Gateaux derivative @J (u+ 6v)|g=o vanishes, which is the necessary

condition for a minimum, if for all v in an appropriate function space

/ / ) - By (a, t) dedt — / / / 1) — u(x,1))-
(v(&,t) — v(x,t)) dededt — /0 /vb(:mt) -v(zx,t) dedt . (1.3)

This is the space-time weak formulation of (1.1). For the second Gateaux
derivative of J at u, we find

/ / x)oyw(x,t) - Opv(x,t) dedt — = / // (Z,t) — w(x,t))-

[z, &, u(@, t) —u(xz,t) - (v(&,t) —v(x,t)) dededt.
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This shows that the functional J is strictly convex if for all , & and 1 # 0
n-Vo f(x,&mn) -n=n-Vywe&mn) n>0
holds true, which e.g. justifies also the linear ansatz

f(mvj}vn) :fo(ma£)+c(mai)n (14)

with a positive definite stiffness tensor C' = C(x, &) and fo denoting forces in
the reference configuration (prestressed configuration) that will be assumed
to be zero in what follows. For a stiffness tensor C' that is assumed to be
symmetric with respect to its arguments and its tensor structure,

C(z,z)=C(z, &), C(z,2)" =C(z,2), (1.5)

but needs not to be of convolution type or definite, the corresponding potential
is given by w(x, &,n) =n - C(x, &) - n/2. Equation (1.1) then reads as

p(x)0u(x,t) = /V C(z, &) - (u(Z,t) — u(x,t)) d& + b(x, ). (1.6)

Regarding the conservation of the total energy, we can prove the following
theorem by employing the usual energy method.

Theorem 1. Let u be a sufficiently smooth displacement field and let the
pairwise force function be given by (1.4) with a stiffness tensor that fulfills
(1.5). The total energy remains constant if the external forces are autonomous,

%(&in(f) + Eal(t) + Eext(t)) =0,

where E;(t) = [, ei(x,u(z,t),t)dzx (i € {kin,el,ext}). Otherwise, there holds
forallt € (0,T) andv >0

t
Exin(t) + Ea(t) + V/ "=, (s) ds
0

1 t el/(t—s)
< vt . - o 2 ]
< ¢ (Eqn(0) + Ea(0)) + 5 /0 /V - bl dads

A similar result can also be found in [11] for microelastic media.

Numerical studies so far rely upon the meshfree Emu code (cf. [10]) that
solves (1.1) by a quadrature formula method on a (not necessarily) equidistant
grid with the composite midpoint rule. The resulting ODE system is solved
using a central difference approximation of the time derivative. The midpoint
rule is one of the methods considered in this paper. Another approach based
upon the Gaufs-Hermite quadrature and the composite trapezoidal rule has
been suggested by the authors in [4, 16] for an infinite bar. As is shown in
[4], the peridynamic modelling is also advantageous from the numerical point
of view since initial jump discontinuities either in the displacement or the
velocity field remain for all times at the same Lagrangian location, cf. also
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[15]. This can be used in the numerical approximation for a sharp resolution
of the discontinuities.

In this paper, three different discretisation methods —based upon the Gauf-
Hermite (GH) quadrature, the composite midpoint (MP) rule, and linear fi-
nite elements (FE)- are presented for the unbounded one-dimensional case
Y = R. All these methods can quite easily be extended to meshfree approx-
imations for the two- or three-dimensional case. Whereas the Gaufi-Hermite
quadrature with its non-equidistant quadrature points is especially suited for
an unbounded spatial domain, we employ the composite midpoint rule and
the finite element method with an equidistant partition that avoids additional
computational costs.

Specialised to an infinite one-dimensional, linear, and pairwise equilibrated
body, the equation of motion (1.1) reads for (z,t) € R x (0,T) as

—+o0
p(x)0Pu(z,t) = C(z, Z) (u(Z,t) — u(z,t)) dZ + b(x, t). (1.7)
— 00

Here, C with C(&,z) = C(z, %) is the stiffness distribution density or so-called
micromodulus function. The initial-value problem for this PIDE has been anal-
ysed in detail by the authors in [4], where existence, uniqueness, and stability
have been proven in the space of functions that are Bochner integrable with
respect to time and essentially bounded with respect to space. We test the
methods suggested for an initial-value problem for (1.7) with a micromodulus
function C(x,2) ~ (~3e~¢ "(#=9° ({ is a length-scale parameter), a GauRian
distribution for the initial displacement, and zero initial velocity. Although ¢
characterises the peridynamic horizon, which is the radius of the neighbour-
hood in which material particles are assumed to interact with each other, we
are dealing here with an infinite horizon as C(x,2) # 0 for all z,& € R.

2. Spatial Approximation

The Gauf-Hermite quadrature reads as

x N
/ e_zzsﬁ(x)da: ~ ZUJG’H@(x?H)
A =0

for given N € N with the roots 25" (j = 0,1,..., N) of the Hermite polyno-

mial Hy1(z) and the quadrature weights o !

2 deLle*‘TQ ﬁ
HN+1 ({E) = (_1)N+1ew TIUNTL (TJGH = 2N+2 (N + 1)'72
da+ HN+2(5CJGH)
The Gaufs-Hermite quadrature is exact for polynomials ¢ = @(x) of highest
degree 2N + 1.
Applying the quadrature formula method with the Gauf-Hermite quadra-
ture to (1.7) leads to the coupled ODE system (i =0,1,...,N, t € (0,T))
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plaSM)SH (1) =

N
S ol C (@l o0 (uF (1) — wS (1) + b, 1), (2.1)

where u$t(t) is an approximation for u(x$" ¢). As usual, the (double) dot
denotes the (second) time derivative. The system is supplemented by the
(pointwise restriction of the) initial values u(-,0) and Oyu(-,0). Multiplying

(2.1) by UiG’He(w?H)z and with b$H (1) = o?He(w?H)zb(xiGH,t) and

2
MSH .= aiGHe(m?H) p(z$M)5,5

N
2
Kt = Z%GHQ(S”?H) el OG5

i
GH GH)?2
lGH ( ) o'jG'He($J‘ ) C({KGH xGH)7

we may rewrite the system (2.1) as
MOEHGEH () ¢ KOHSH () = pSH (1)t € (0,T). (2.2)

Due to the scaling of (2.1), the mass as well as stiffness matrix is symmetric.
Based upon the underlying quadrature, we may compute approximations
for the kinetic, elastic, and external energy:

1. .
ZUGH plafafM ()? = ZaSM (O TM M A (1)
GH LCH)? 2

FHOES LS o) G5 O, 26 (u51) — 55 (1)

1,7=0

1
_ 5uGH (t)TKGHuGH (t) ,
N GH)\2
EGH (1) = — 37 o fMel#™) p(a M, 1) ufH (1) = —uSH (1) THSH (1) (2.3)
1=0

For the composite midpoint rule, which forms the basis of the Emu code

(cf. [10]), we observe the following. Let N be an even integer, h > 0, and

2y = (j = N/2)h (j = 0,1,...,N). The internal force at point x is then
approx1mated on the numerical domain [—(N + 1)h/2, (N + 1)h/2] by

N zMR+%

/_OOC(J:,J?) (u(z,t) — u(z,t)) di ~ Z/ ’ . C(x, &) (w(z, t) — u(z,t)) dz
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This leads again to a system of the type (2.2) with bME(¢) = hb(zME,¢) and

MMR hp( )5” , KMR h2 Z C MR MR) i — C(‘ri\/IR xMR) .

) [

The discrete energies are given analogously to (2.3).

The numerical scheme relying upon linear finite elements is derived from
the spatial weak formulation

/ O; ) ule o) do+ 5 [ Z /_Z ezt )

x C(z,z) (v(Z) —v(z)) dedz = / b(z,t)v(z)dz (2.4)
for all v in an appropriate function space. Let N € N be even and h > 0. More-
over, let g; (i = 0,1,...,N) be the linear hat functions with respect to the
equidistant nodes a:fE ;\-/IR = (j—N/2)h (j =0,1,..., N) such that, in par-
ticular, g;(«}") = 6;;. Outside the numerical domain [-Nh/2 — h, Nh/2 + h],
we extend the hat functions g; by zero. Substituting the Ritz-Galerkin ansatz

N
=) u; " (t)g; (@)

=0

into the weak formulation above and testing with g¢;, we again come up with
a system of the type (2.2) with

oo

R0 = [ v g dr, MEF = [ p)galg, ) da

K =3 [ 06 00 Cwd) (00) - i) dic.

Again, ulE(t) = un (2FF,t) is an approximation for u(zf*,¢). The mass ma-
trix MFE as well as the stiffness matrix KFE is symmetric. Moreover, the
integrals appearing are proper and the mass matrix is tridiagonal due to the
compact support of the basis functions. The stiffness matrix is, however, not
sparse in view of the infinite horizon. Nevertheless, the matrix entries decrease
with increasing distance from the diagonal. A possible variation of this method
might be a mass lumping. For the discrete energies, we find, from replacing u
by ux in the definition of the energies, that again (2.3) holds true (replacing
GH by FE).

Remark 1. In the continuous problem, a rigid translation of all particles cor-
responding to an arbitrary choice of the origin causes no deformation and,
therefore, no internal force acting on any particle . The same applies to
the discrete problem arising from the Gaufs-Hermite or composite midpoint
quadrature since the row sums in the stiffness matrices vanish. For the FE
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discretisation as described above, the row sums are only approximately zero.
Choosing only half hats for the first and last shape function, the row sums
become exactly zero. Interpreting the numerical scheme as a discretisation
of an originally finite system, it remains open to investigate which kind of
boundary effects corresponds to this choice of shape functions.

It is an easy task to show that any quadrature formula method applied to
the PIDE (1.7) satisfies the energy equation in the discrete sense and conserves
the discrete total energy for autonomous external forces if the discrete energies
are defined appropriately as is e.g. conducted above for the Gaufs-Hermite
quadrature. The same applies to any Galerkin method.

3. Test Problem and Numerical Results

In order to test and compare the numerical methods suggested, we consider
(1.7) with the micromodulus function

C(x, &) = 4Be~ @=L /(3 /)

and the initial conditions and right-hand side

2

u(z,0) =up(x) =Ue™® 25 Oru(z,0) = vo(x) =0, b(x,t) =0.

Here, E denotes the Young modulus, ¢ > 0 a length-scale parameter, which
models the non-locality and is discussed in detail in [15], L > 0 another
length-scale parameter, which describes the initial displacement, and U the
maximal initial displacement. As we assume a homogeneous material, we also
have p(x) = po. The exact solution is given by

o0

u(x, t;0) = 20 e’ cos (201_33) cos <E V1- e—“’2‘32/L2> dw, (3.1)
VT Jo L ¢

where ¢y = /E/po is the velocity of sound (cf. [15]), and can be used to

estimate the discretisation error. In the limit ¢ — 0, the peridynamic equa-

tion becomes the classical wave equation of local elasticity theory and the

peridynamic solution converges indeed towards the d’Alembert solution.

The numerical results are presented for the normalised quantities

oo _uwt) L
C_La T_La W(Cﬂ')— U ) )\_La
~ _ LSkin(t) ~ _ Lgel(t)
gkm(t) - TUza el(t) - EU2 .

Moreover, we choose A = 0.75 in order to have a significant influence of the
non-locality. In view of the initial conditions, it follows

gkin(t) + gel(t) = gkin(o) + éel(o) = 2—@ f(A)’ f(/\) = % (1 a \/%—v)
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o,
L

Figure 1. Numerical solutions: a) peridynamic solution, b) function f = f()\).

Note that ;imo f(A) = 1, whereas )\lim f(A) = 0. In particular, we obtain in

the limit A — 0 the classical strain energy
E [ / 2 2 \/—
Ea(0) = 5 ug(x)® de = EU*/7/(2V2L)

of a bar in linear elasticity theory with the initial displacement wug as above.
Therefore, f = f()\) describes the ratio of the elastic energy in the non-local
peridynamic model and the classical strain energy. As is seen in Fig. 1, the
more non-local the material is, the less elastic energy is stored in it. Note again
that the initial elastic energy equals the total energy. It might be interesting to
study whether this comparison still holds true in general, i.e. whether a non-
local material always possesses a lower total energy as a classical material
when the initial conditions remain the same.

In order to compare the numerical results for given N, the spatial grid
size h is taken such that for all methods the numerical domain is the same
as determined by the Gaufs-Hermite quadrature. Therefore, the numerical
domain becomes larger with an increasing number of quadrature points. It
should be noted that in the case of finite elements, the integrals appearing are
simplified as far as possible but the remaining Gaufsian integrals are calculated
numerically using Mathematica. Moreover, our numerical computations rely
upon the exact solution of the corresponding ODE system. The numerical
results are compared with the normalised exact solution given by (3.1). In
order to calculate the integral in (3.1), we again use Mathematica.

Fig. 2 shows the interpolated numerical solution for different numbers of
quadrature points. As one can infer from Fig. 2, there are artificial wave
reflections at the boundaries of the numerical domain after some time. These
reflections appear the later, the greater the spatial domain of computation is.

Moreover, these reflections seem to cause oscillations in the kinetic and
elastic energy as is shown in Fig. 3. Similar results are obtained for the other
methods. The conservation of the total energy is exactly reproduced by all
methods as is expected.
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Figure 2. Numerical solution GH with different parameters: a) N = 24, b) N = 98.

é(r} Euin(T) £alr)

Figure 3. Discrete energies (GH with N = 98): a) total, b) kinetic, c) elastic energy

In Fig. 4, the displacement of the origin is presented. The plotted numerical
solution coincides with the exact solution up to some time when the spurious
wave reflections deteriorate the numerical solution. Similar results are again
obtained for the other methods.

n(0.)
1 1
0.75 0.75
0.5 0.5

0.25 j\ /_/\ 0.25 /\

V' 10 15v )V/\ 25 0 T V' 10 15 20 25 O
-0.25 -0.25
-0.5 -0.5
0.75 0.75
-1 -1

a) b)

Figure 4. Exact (grey) and numerical (black) displacement of the origin GH with
a) N =24, b) N = 98
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What follows in Figs. 5, 6, and 7 is the error between the exact and the
numerical solution, measured in the L?-norm over the numerical domain, for
the different methods.

0.0025
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a) b)

Figure 6. Error as a function of time for MP with a) N = 24, b) N = 98.

error
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0.01 0.0002

Figure 7. Error as a function of time for FE with a) N = 24, b) N = 98.

It turns out that the Gaufi-Hermite quadrature and the composite mid-
point rule give almost the same accuracy, GH being somewhat better. The
Gaufi-Hermite quadrature, which is particularly suitable for an unbounded
domain as in our test problem, requires, however, the rather costly computa-
tion of the roots of the Hermite polynomials. With the finite element method,
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the best accuracy is achieved. However, in view of the definition of the stiff-
ness matrix, which is not sparse, the finite element method requires more
computations than the quadrature formula method.
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