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Abstract. In this work we consider parallel variational algorithms for solution of
linear systems. Theoretical analysis explains the superlinear convergence rate for
two step gradient descent method. A new modification of the algorithm is proposed.
Results of computational experiments are given for a linear system of equations ap-
proximating 3D elliptic boundary value problem. All algorithms are implemented
using parallel array object tool ParSol, then a parallel algorithm follows semi-
automatically from the serial one. Results of the scalability analysis are presented
and the efficiency of the presented parallel algorithm is investigated experimentally.
Key words: variational iterative methods, parallel algorithms, linear algebra prob-
lems, software tools

1. Introduction

Application of finite difference or finite volume methods for elliptic or para-
bolic problems of PDE lead to linear algebraic systems of equations of the

form
AX =F, (1.1)

where A is a positive definite A > 0, symmetric matrix of dimension N x N,
F' is the right-hand side vector, and X is the solution vector. We note that in
systems obtained after approximation of PDE matrices A are sparse and in
many cases they are also banded.
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To solve such systems efficiently is an important part of mathematical
modelling technology. Iterative methods take advantage of the fact that ma-
trices are sparse and therefore they are at the center of most modern numerical
codes and software tools. We also note that parallelization of iterative algo-
rithms can be done more easily than to parallelize direct algorithms.

Among iterative algorithms various modifications of Krylov subspace
methods are most popular. Very robust methods can be built by using this
general approach. It is important to note that modifications of many iter-
ative Krylov type algorithms are known for solution of linear systems with
non-symmetrical matrix [7].

For completeness of the presentation we will describe briefly a general
scheme for one-step variational iterative algorithms. It is well known that
system of linear equations (1.1) is equivalent to minimization of quadratic
functional Q(Y) = (A(Y — X)), Y — X), where (X,Y) defines an inner product
of two vectors [7]. We consider the variational iterative method defined by

Xt = X" _ 7. P" n>0, (1.2)

where some initial approximation of the solution X° is given. Here P" are
known vectors and they define the direction vector for minimization of the
functional Q(X"*!). By solving the obtained quadratic equation with respect
to 7, we get the optimal value of the parameter

(AX™ — F, P")
(Apn’ Pn)

Tn =

The methods of Steepest Descent (SD) and Minimal Residuals (MR) are most
popular examples of such algorithms [7].

Let A be symmetric and positive definite matrix having eigenvalues
O0< A <A < < A

Then k(A) = An/A1 is the condition number of A. In applications for solution
of second order elliptic PDEs this number x(A) = O(h~2) > 1, where h is a
space step of the grid [13]. Let us denote the vector norm

IYlla = (AY, V)12

The convergence rate of the SD method is linear and the following error esti-
mate is valid [7]:

X" = X4 < pllX™ = X|[a,

_1—77 _ 1
T1tg "TR@AY

p

Thus the number of iterations K required to reduce the error of initial ap-
proximation 1/e times, i.e. to get the estimate

X5 = X4 < €| X7~ X]|a,
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is given by K = 1r(A)In(1/e).
Very similar estimates are valid for the MR method, only the error is
estimated in the following norm

A" = X)|| = [IR"].

Much faster convergence is obtained for the Conjugate Gradient (CG)
method. The obtained iterations X are the best approximation of the exact
solution X of (1.1) in the so-called Krylov space

K, (A;F) = span {F, AF,... A" 'F},

consisting of linear combinations of the {A‘F, i = 0,...,n — 1}. The error is
estimated as [7]:

1-vi\" | vo
X" —Xla <2 X" —X]a.
e < 2 (1 ) 10— Xl

The number of iterations K¢ required to reduce the initial error 1/e times
is given by K = 1/k(A)In(2/¢).

Let us write an iterative algorithm in the canonical form
X"=C, X"t +1,F.

where C,, = I — 17, A. Two types of methods are used to construct iterative
algorithms and to investigate its convergence rate. The first method is based
on the minimaz estimates of the spectrum of operator

min  max [(1 =7 A)-- (1 —7A)],
T1yeoosTh Qm SALan

where a,,,ap; are the estimates of the spectrum of matrix A. The explicit
sequence of parameters 71, . . ., 7% is calculated by using roots of the Chebyshev
polynomials [13]. The main advantage of this method is that parameters are
computed a priori if some estimates of the spectrum of matrix A are known.
We note that minimization is done with respect to the worst case of the
spectrum distribution, which may be not the case for a given matrix A.

Tterative methods of the second group are based on variational formulation
of the systems of linear equations. These algorithms use the paradigm of
greedy methods, i.e. they minimize the error in a given trial direction. It is well
known that the convergence rate of variational algorithms reduces after each
iteration and the vector of global error asymptotically converges to a linear
combination of two eigenvectors of matrix A, corresponding to the largest and
smallest eigenvalues. The convergence rate of variational iterative algorithms
is estimated from above by using this asymptotical property of the generated
sequence of iterations.

Recently a few new iterative algorithms are proposed, which are based
on combination and modification of well known SD and MR methods. Some
preliminary computational experiments show a super-linear convergence rate.
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Our goal is to make asymptotical analysis of these iterative algorithms and to
present some explanations why their convergence is such fast. This analysis
is based only on qualitative analysis and gives only heuristical proofs. The
importance of the given analysis follows from the ability to construct new
iterative algorithms with better convergence rate than the original methods.

The second goal of the paper is to develop parallel versions of new iterative
algorithms and to investigate their efficiency and scalability. It is well known
that variational iterative methods are sensitive to the accuracy of calculation
of iterative parameters 7,,. These parameters depend on global residual vec-
tors, since dot products of some vectors are computed. In parallel algorithms
the new source of perturbations is introduced when these dot products are
computed on distributed processors and local sums are accumulated.

The rest of the paper is organized as follows. In Section 2, we formulate and
investigate the two step gradient descent algorithm. It is explained why this
method has a superlinear convergence rate. A new modification of the steepest
descent algorithm is proposed by using results of the theoretical analysis. The
third modification of the SD method is obtained by using the sub-relaxation of
the iterative parameter. Convergence rate of these three variational methods
is tested experimentally by solving a discrete 3D elliptic problem. In Section
3, we construct and investigate parallel variational algorithms. They are de-
veloped by using data parallel decomposition method and implemented with
the help of the new parallel array object tool ParSol. A parallel version of the
code follows semi-automatically from the serial one. By applying the scalabil-
ity analysis we investigate the efficiency of the obtained parallel algorithms.
At the end of this section results of computational experiments are presented
and discussed. A discrete approximation of 3D elliptic problem is taken as a
test problem. The spectrum of the obtained matrix is quite complicated and
it simulates very well the distribution of eigenvalues of matrix obtained in
solving many real-world applications.

2. Modifications of the SD Method

In this section we will investigate two modifications of the SD and MR iterative
methods. The two step gradient descent (TSGD) method, was proposed in
[6]. The conclusions on the convergence rate of this iterative algorithm were
based on computational experiments, including 2D elliptic problems. Some
theoretical explanation of its superlinear convergence rate was given in [2].
Another interesting modification of the SD method is proposed in [8]. It is
based on the fixed sub-relaxation of the iterative parameter. No results on the
convergence of this new algorithm are presented in [8].

2.1. Formulation of the TSGD method

TSGD method is a combination of two variational iterative algorithms, de-
scribed above. The method of Steepest Descent (SD) is obtained when vectors
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P" = VQ(X™) coincides with a gradient of the functional Q. Let us denote
the residual R™ = AX™ — F, then the SD method is defined as:

n+1l __ n __ n _ (Rn7 Rn)
X" =X"—7mR", T, = (AR R (2.1)

In the method of Minimal Residuals (MR) the quadratic functional of residuals
Q2(Y) = (AY — F, AY — F) is minimized and the new iteration is defined as

n+1l __ n __ n o (ARn’ Rn) 2.9
X =X"-1,R", T, = (AR". AR")' (2.2)

At odd iterations of the TSGD method the SD method is used and at even
iterations the MR method is applied.

TSGD method

TSGD (Matr A, Vec x, Vec f, )
begin

(1) Set initial values i =0, r = Ax — f;
(2) while (||r|| >¢) do
3) v = Ar;
(4) if (¢==0) then
6) r= (r )/ (o)
(6) i=1
else
(7) 7= (v,7)/(v,v);
(8) i=0;
end if
(9) Ti=x—TT; TI=T—TU;
end do
end TSGD

Convergence analysis

We divide the theoretical analysis of the convergence rate of the TSGD method
into two steps. First we investigate the case when the residual vector R =
AXY — F for an initial vector X° has a form

R’ =c1Vi +enVy,

where V} are the eigenvectors of the matrix A corresponding to the eigenvalues
Aj. Simple computations give that after two iterations of the TSGD method
the residual of vector X? is given by

2 ek Ay — M)A

AL
R = (X + AAN)(EN + 2 22) (Clvl ”NEVN)'

We see that R? # cR” and the convergence is essentially nonlinear. After few
iterations the residual vectors R’ ~ d;Vi, i.e. a linear combination of two
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vectors reduces to a vector parallel to the first eigenvector. It is well known
that in this case the SD and MR methods converge after one iteration [7].

Not reducing the generality of the analysis let us take the following initial
residual vector

01:]., CN:].7 77:—<<1.
Then we get the following convergence rates ||R7|| < p;||R°||:

P2 = 0(1)7 P4 = 0(7771), Pe = 0(1)7 P6+2k = 0(77%)

The presented analysis explains a superlinear convergence rate of the TSGD
method in the case of very special initial vector.

Remark 1. We note that for a linear combination of two eigenvectors the CG
algorithm converges to the exact solution in two iterations.

In the second part of the convergence analysis we take into account a
special asymptotical property of the SD and MR methods. Starting from a
general initial vector

RO=ciVi+cVo+...+cenVy

iterations monotonically converge to the approximation consisting of only two
eigenvectors: 4
R~ diVi ++dnyVn.

Then a super-linear speed-up of the convergence is obtained in few iterations,
after that we get an approximation, where all eigenvectors are important in
the spectral representation of the residual vector and a full cycle is repeated.

In conclusion we state, that a combination of these two properties, i.e. the
superlinear convergence of the TSGD method for initial vectors belonging to a
special subspace of vectors and asymptotical convergence of all initial vectors
to the neighbourhood of this subspace, explains the fast convergence of the
TSGD method.

The presented analysis is not oriented to obtain strict estimates of the
convergence rate (we note that only estimates from above are usually obtained
in convergence analysis) but we investigated a qualitative behaviour of the
iterative sequences. It explains why the super-linear convergence rates can be
expected and, even more, it helps to construct new efficient algorithms. One
example will be given in the next section.

2.2. Modified TSDG method

By using the results of the theoretical analysis presented above we propose a
modification of the TSGD method, when each consecutive (m + n) iterations
are implemented in the following way: a) first m iterations of the SD method
are computed, b) then n iterations of the TSGD method are computed. We
denote this iterative algorithm by MSD(m, n).
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MSD(m,n) algorithm
MSD (Matr A, Vec x, Vec f, €, m, n)

begin
(1) Set initial values i =1; j =0;
(2) r=Az—f;
(3) while (|r|| >¢) do
4) j=j+1 v=Ar;
(5) if (j<m|li==0) then
(6) T =(r,7)/(v,7);
(7) i=1
else
(8) 7= (v,7)/(v,v);
) i=0;
end if
(10) Ti=X—TT; TI=T—TU
(1) i (j==(n+m))j=0
end do
end MSD

2.3. Sub-relaxation of the SD method

A new interesting modification of the SD method is proposed in [8]. The
following computational algorithm is used

(R", R")

X" = X"~ 0.97,R", 7=
! ™~ (AR", R")

(2.3)
The main idea is to restrict the length of the step, predicted by the classical SD
method. The factor 0.9 was fitted experimentally. We denote this algorithm
by SRSD (Sub-Relaxation Steepest Descent).

Remark 2. We note that this algorithm is an interesting example demonstrat-
ing that the greedy variational SD algorithm is not optimal. In fact in the Sei-
del method exactly opposite technique, i.e. over-relaxation, is used to speed-up
the convergence rate.

SRSD algorithm

SRSD (Matr A, Vec x, Vec {, ¢)
begin

(1) Set initial values i =1; r = Az — f;
(2) while (||r|| >¢) do

(3) v = Ar;

) ™ = (1) (0,7

(5) z:=x—0977m;

(6) r:=r—097v;

end do
end SRSD
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Convergence analysis

Computational experiments for different tests, including 2D elliptic problems,
are reported in [8]. The convergence rate of the SRSD method appears to be
similar to the convergence rate of the CG method. Till now no theoretical
results are given to prove this hypothesis.

Again, we apply two step convergence analysis methodology, which is pro-
posed in previous sections. Let us consider the case when an initial residual
RY = AX° — F has a form

R = aVi+cenVn.

Results of computational experiments show that after nondeterministic num-
ber of iterations we periodically get approximations where only the first eigen-
vector is dominant in a linear combination of two eigenvectors and a super-
linear speed-up is achieved at such iterations. In Table 1 we present a basic
information on convergence of iterations. We take the following eigenvalues of
the matrix:

A1 =1, Anx =1000.

Two cases of initial vectors are considered
Dei=1, en=1, 2)c1=1, ey =0.1.

The values of coefficients df, d%; in the representation of residual vector after
k-th iteration
RF = d}Vi + dy Vi

and the convergence rate p* are given in Table 1.

Table 1. Convergence analysis of SRSD algorithm.

E case dF dk Pt

49 1 1.00 3.4776  0.9991
50 1 1.00 0.0893 0.8990
106 1 1.00 -2.8350 0.9990
107 1 1.00 0.0336 0.5770
108 1 1.00 24.580  0.9991
13 2 1.00 3.1184  0.9991
14 2 1.00 0.0236 0.4215
27 2 1.00 3.2015  0.9991
28 2 1.00 0.0394 0.6465

A problem of finding the optimal value of sub-relaxation factor d is very
complicated. First we need to define strictly the objective function. As exam-
ple this objective function can be specified as
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min max max K(ci,...,enN; A1, -, AN d),
0<d<1 ClyesCN A1 <. AN

where K(c1,...,¢n; A1, ..., An; d) is the number of iterations. In Table 2 we
present the numbers of iterations required to solve 2 x 2 dimension system of
linear equations, when

A =1, Ay =1000

and the accuracy of computations ¢ = 10~%.

Table 2. The dependence of K on the sub-relaxation factor d.

c1 ey 0.880.89 0.90 0.91 0.92 0.93 0.94 1.0

1 1 359 138 401 248 230 147 216 4606
1 10 204 435 387 317 171 120 283 190
1 0.5 242 212 198 251 171 113 125 2951
1 0.1 116 152 159 153 125 132 237 189

It follows that d = 0.93 is optimal for this small test suit.

2.4. Computational experiments

Let us consider a three—dimensional Poisson problem

3. 0%u
_az::l%:f7 IEQI:(O71)X(O,1)X(O,1)7 (24)
u(z) =g, = €09Q,

We discretize it by using the finite—volume method and get a system of linear
equations

—@it1,5,6Uit1,5.6 — @i1,5,5Ui—1,5k — Qi j+1,6Ui j41,6 — Qi j—1,,Uij—1.6 (2.5)
=045 k105 5 k41 — Qi g k—1Uije—1 + asjrUije = Fijr, 1 <14,5,k <n.

The 7-point stencil is used for the approximation. The resulting system of
equations may be written as AU = F, where A is a symmetric positive definite
matrix. More details about the properties of such discrete approximations are
given by Samarskii [13], Golub and Van Loan [7] .

We note that the convergence of variational iterative algorithms strongly
depends not only on the stiffness parameter «(A), but also on the distribution
and clustering of all eigenvalues of matrix A (see, e.g. [5]). This test problem
is a typical example of 3D elliptic problems solved in many real-world appli-
cations by using variational iterative algorithms.

In Table 3 we present the numbers of iterations, required to reduce the
initial error by factor 1/¢, e = 10~ for different variational iterative methods.
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The size of the discrete grid is equal to n xn xn and it is scaled from n = 20 till
n = 160. An initial vector is such, that all eigenvectors present in its spectral
decomposition. It consist of smooth and non-smooth parts. Artificially we
add a few components corresponding to largest eigenvalues of the matrix (all
eigenvectors of the matrix are known analytically, see [13]). The same initial
vector is used in all numerical experiments.

Table 3. The numbers of iterations for solution of the test problem.

Method n=20n=40n =80 n = 160
SD 337 1273 3920 7702
MR 341 1255 3283 6130
TSGD 78 140 318 552
MSD(30,10) 74 118 196 240
SRSD 101 153 252 262
CG 38 69 118 203

The presented computational results confirm the prediction that all modi-
fications of the SD and MR methods have superlinear convergence rate, which
is close to the convergence rate of the CG method. It is important to note
that this conclusion is obtained for a 3D elliptic problem, thus simple, robust
variational methods can be recommended for usage in general software tools.

Parameters Mj, My of the MSD(M;, Ms) method are not optimized in
these experiments. Experimental results show that the convergence rate of
MSD is not sensitive to the selection of these parameters (see Table 4).

Table 4. Convergence rate of MSD method for different parameters M, M.

n (20,10) (30,10) (40,10) (30,15) (30,20)

40 116 118 128 124 134
80 202 198 202 168 182

3. Parallel TSGD Algorithm

The parallel versions of variational algorithms from the previous section are
developed by using data parallel decomposition method (see [9]). For example
we consider the TSGD algorithm:
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procedure The serial TSGD algorithm

begin
(1) X° n=0 R =AX°_-F
(2) RN=(R",R"™)
(3) while (RN > 6(RO,RO)) do
4) G" = AR" ,
(5) if (n is even) then
(6) Tot1 = RN/(G", R")
else
(7) Toy1 = (G", R")/(G",G")
end if
©) Xl = X" — 7, 1 R",
(9) Rn+1 — Rn _ T?’L+1Gn ,
(10) RN = (R""Y R ni=n+1.
end while
end

As a preconditioner we use a diagonal part of the matrix A. Diagonal
preconditioners can be parallelized very efficiently. It is well known (see [7])
that a faster convergence rate can be obtained with more complicated pre-
conditioners, such as ILU or multigrid preconditioners, but they are not very
efficient in parallel computing.

A parallel version of ILU is obtained by doing the factorization of a local
part of matrix at each processor. It is well known that such strategy reduces
the convergence rate of the preconditioned iterative algorithms, but a par-
allelism of the obtained preconditioner is the same as for the diagonal one.
Various ordering techniques are used to overcome the trade—off between paral-
lelism and convergence in incomplete factorization. Development and analysis
of parallel preconditioners for CG algorithm are investigated in [3, 11, 12].

3.1. Formulation of the algorithm

Let us assume that we have p processors, which are connected by three di-
mensional mesh, i.e. p = p; X pa X p3. The grid wy, (a data set) is decomposed
into p 3D subgrids by using a block distribution scheme. Then each subgrid
Wnyp has

n n n TL3

Dol
pr P2 p3 p

computational points and it is assigned to one processor. All processors simul-

taneously perform the same code but with different data sets. Each processor

is responsible for all computations of the local part of vector X.

The update of vector G™ at grid points which lie beside cutting planes (i.e.
boundary nodes of the local part of the vector U) needs a special attention,
since information from the neighbouring processors is required to compute
new values. A star-stencil of seven points is used in (2.5), therefore in each
dimension two ghost points are added to local subgrids. Each processor ex-
changes data with its neighbours in the specified topology of processors.
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Similarly, parallel computation of the inner product of two vectors requires
global communication among all processors.

3.2. Complexity of the parallel algorithm

In this section we present scalability analysis of the parallel TSGD algorithm.
According to the definition of the isoefficiency function, we should find the
rate at which the problem size W needs to grow with p for a fixed efficiency
of the algorithm.

Let denote S, = W/T,, E, = S,/p, here T, is the complexity of the
parallel algorithm when p processors are used, .S, is the speed-up of the parallel
algorithm and E, is the efficiency coefficient. Let H(p, W) = pT, — W be
the total overhead of a parallel algorithm. Then the isoefficiency function
W = g(p, E,) is defined by the implicit equation (see [9]):

p
W= -2 gpw). 1

For simplicity of notation we take F, = 0.5. First we will estimate the com-
plexity of the parallel TSGD algorithm.

1. At steps (8), (9) of the parallel TSGD algorithm sazpy type operations
are computed. Only local data is used by each processor and no com-
munication among processors is required. The complexity of this part of
computations is given by

n3

Tip=g1—.
? P
2. During matrix-vector multiplication at step (4) processors exchange ghost
elements of vector R", corresponding to its local boundary grid points.
The complexity of this step is given by

3 2
Ty = g2 +6(o +ﬁ#),
where « is the message startup time and [ is the time required to send
one element of data.
3. Parallel computation of the inner product of two vectors at steps (2), (6),
(7) and (10) requires global communication among all processors during
summation of local parts of the product. The complexity of this step is

given by
3

n
T3, = 93? +2R(p)(ap + B),

where R(p) depends on the algorithm used to implement the ReduceAll
operation and the architecture of the computer. For the simplest algorithm
we have R(p) = p.

Summing up all obtained estimates we compute the complexity of the parallel
TSGD algorithm
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n3 n2
Ty(7) = g7+ SR)(on + ) + 6 (o + 5375 ).
The problem size of the serial algorithm is equal to W = gn?>.
The total overhead of the parallel TSGD algorithm is given by

H(p,W) = 6ap + 68p"*n* + 5pR(p) (s + By).-

We analyze the influence of each individual term. The component that requires
the problem size to grow at the fastest rate determines the overall asymptotic
isoefficiency function. After simple computations we get the following three
isoefficiency functions

W=0(p), W=0({), W=O(@pR(p).

Thus the the overall asymptotic isoefficiency function is defined by the over-
heads of the global reduction operation.

Let us consider the most simple algorithm, when all processors send their
local results to the master processor, which computes the global inner product
and broadcasts it to all processors. Then R(p) = p and W = W = O(p?). In
three—dimensional mesh network the global reduce and broadcast operations
can be implemented with R(p) = p*/3. Thus the problem size W has to grow
as O(p4/ 3) to maintain a certain efficiency. For a hypercube mesh we have
smaller costs of the global reduction operation R(p) = logp, then isoefficiency
function is close to linear W = O(plogp). We note, that in the case of a
moderate number of processors the costs of global reduction operation can be
ignored and the isoefficiency function W = O(p) linearly depends on p.

3.3. Results of computational experiments

In this section we present some results of computational experiments. Com-
putations were performed on IBM SP5 computer at CINECA, Bologna.

Parallel numerical objects.

Special tools are developed to simplify the parallelization of numerical al-
gorithms, e.g. Diffpack tool [10] and PETSc toolkit [1]. We have developed a
tool ParSol of parallel numerical arrays, which can be used for semi—automatic
parallelization of data parallel algorithms, that are implemented in C++. Such
algorithms are usually constructed for solving PDEs and systems of PDEs on
logically regular rectangular grids. ParSol is a library of parallel array objects,
a functionality of which is similar to Distributed Arrays in PETSc. Its main
features and some applications are described in [4, 14].

As it follows from the theoretical analysis given in previous section the
superlinear convergence of the TSGD method follows due to high nonlinear
effect of the obtained iterative operator. In fact we deal with the bifurcation
of the function describing the error or residual of the iteration sequence. A
smooth trend of these functions are changed with abrupt jumps at some itera-
tions. This feature is sensitive to small perturbations of iterative parameters.
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Thus we can expect that the numbers of iterations of the parallel versions
of these algorithms will depend on the number of processors. This prediction
is confirmed by computational experiments for a test problem with difference
grid 80 x 80 x 80 (see Table 5, where the numbers of iterations for parallel vari-
ational algorithms are presented). The classical iterative algorithms as well as
the MSD algorithm are stable with respect to the number of processors, while
the convergence rate of the SRSD and TSGD methods depends on p.

Table 5. The numbers of iterations for parallel variational algorithms.

Method p=1lp=2p=4p=8p=16

CG 118 118 118 118 118
SD 3920 3920 3920 3920 3920
MSD(30, 10) 198 198 198 198 198
SRSD 252 268 279 234 218
TSGD 318 342 320 412 382

Next we consider the efficiency of parallel CG and MSD(30,10) algorithms.
They are typical examples of two—step recurrence and one—step iterative al-
gorithms. The results are given in Tables 6 and 7. Here we present the values
Ty(n)
Tp(n)
ficients for scaled sizes of the discrete problem.

and efficiency E,(n) = S,(n)/p coef-

of experimental speedup S,(n) =

Table 6. The speedup and efficiency coefficients for the MSD(30,10) algorithm.

D Sp.so Ep,80 Sp,120 Ep,120 Sp,160 Ep,160

2 1.920 0.960 1.962 0.981 1.971 0.986
4 3.688 0.922 3.776 0.941 3.808 0.952
8 7.104 0.878 7.232 0.904 7.922 0.911
16 13.15 0.822 13.62 0.851 14.58 0.865
32 24.99 0.781 25.70 0.803 26.01 0.813

It follows from results, presented in Tables 6 and 7 that both parallel algo-
rithms scale well, and experimental results confirm the theoretical prediction
that isoefficiency function of the parallel MSD algorithm is close to linear one.
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Table 7. The speedup and efficiency coefficients for parallel CG algorithm.

D Sp.so Ep,8o Sp,120 Ep,120 Sp,160 Ep,160

2 1.891 0.945 1.926 0.963 1.962 0.981
4 3.612 0.903 3.688 0.922 3.760 0.940
8 6.768 0.846 6.968 0.871 7.160 0.895
16 12.82 0.801 13.17 0.823 13.49 0.843
32 24.03 0.751 24.96 0.780 25.38 0.793
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