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Abstract. The difference sequence space m(M, ¢, AL, p)¥' of fuzzy real numbers for
both 1 <p < oo and 0 < p < 1, is introduced. Some properties of this sequence space
like solidness, symmetricity, convergence-free are studied. Some inclusion relations
involving this sequence space are obtained.
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1 Introduction

The concept of fuzzy set theory was introduced by Zadeh [18]. Later on se-
quences of fuzzy numbers have been discussed by Tripathy and Nanda [17],
Nuray and Savas [7], Kwon [5], Esi [1], Tripathy and Dutta [12], Et, Altin and
Altinok [2] and many others.

Kizmaz [4] studied the notion of difference sequence spaces at the initial
stage. He investigated the difference sequence spaces {o(A),c(A) and ¢o(A)
of crisp sets. The notion is defined as follows, Z(A) = {z = (xy) : (Azy) € Z},
for Z = l, ¢ and cg, where Az = (Axy) = (v — Tk41), for all k € N.

The above spaces are Banach spaces, normed by, || z |[a= |z1]| + sup | Ag|.

k

The idea of Kizmaz [4] was applied to introduce different type of difference
sequence spaces and studied their different properties by Tripathy [11], Tripathy
and Esi [13] and many others.

Tripathy and Esi [12] introduced the new type of difference sequence spaces,
for fixed m € N, Z(A,,) = {z = (vg) : (Anmak) € Z}, for Z = Ly, ¢ and ¢
where A,z = (Apxr) = (¥k — Tkym), for all & € N. This generalizes the
notion of difference sequence spaces studied by Kizmaz [4].

* The work of the authors was carried under University Grants Commission of India project
No.-F. No. 30 —240/2004 (RS)
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The above spaces are Banach spaces, normed by,

m
|z |la= Z|5Er| + sup |4 xg)-
k

r=1

Triapthy, Esi and Triapthy [14] further generalized this notion and introduced
the following notion. For m,n > 1, Z(Am) = {& = (x) : (Alag) € Z}
for Z = l,c and c¢g. This generalized difference has the following binomial
representation,

n . T n
AL xp = ZO(—I) <r>zk+rm. (1.1)
An Orlicz function is a function M : [0, 00) — [0, 00), which is continuous, non-
decreasing and convex with M(0) =0, M (z) > 0 for x > 0 and M (z) — oo, as
x — oo. If the convexity of the Orlicz function is replaced by sub-additivity,
then this function is called a modulus function.

Remark 1. An Orlicz function satisfies the inequality M (Az) < AM (z) for all
Awith 0 < X < 1.

Sargent [9] introduced the crisp set sequence space m(¢) and studied some
properties of this space. Later on it was studied from the sequence space point
of view and some matrix classes were characterized with one member as m(¢)
by Rath and Tripathy [8], Tripathy [10], Tripathy and Sen [16] and others. In
this article we introduce the space m(M, ¢, A", p)E" of sequences of fuzzy real
numbers defined by Orlicz function.

Throughout the article w!, ¢, (£ represent the classes of all, absolutely
summable and bounded sequences of fuzzy real numbers, respectively.

2  Definitions and Background

A fuzzy real number X is a fuzzy set on R, i.e. a mapping X : R — I(= [0, 1])
associating each real number ¢ with its grade of membership X (¢).
A fuzzy real number X is called conver if

X (t) > X(s)AX (r) = min (X (s), X (r)),

where s <t < r. If there exists to € R such that X (tg) = 1, then the fuzzy
real number X is called normal.

A fuzzy real number X is said to be upper semi continuous if for each € > 0
and for all a € I the mapping X ~1([0,a + ¢€)) is open in the usual topology of
R. The class of all upper semi continuous, normal, convex fuzzy real numbers
is denoted by R(I).

For X € R(I), the a-level set X® for 0 < a < 1 is defined by X = {t €
R: X(t) > a}. The 0-level, i.e. the set X, is the closure of strong 0-cut, thus
we have that {t € R : X (t) > 0} is compact.

The absolute value of X € R(I), i.e. |X|, is defined as (see, Kaleva and
Seikkala [3])

max{X(t), X(—t)}, fort >0,
| X1(t) = .
0, otherwise.
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For r € R,7 € R(I) is defined as,

_ 1, fort=r,
T(t) = .
0, otherwise.

The additive identity and multiplicative identity of R(I) are denoted by 0 and
T respectively. The zero sequence of fuzzy real numbers is denoted by 6.

Let D be the set of all closed bounded intervals X = [X, X7]. Define
d:DxD — Rbyd(X,Y)=max{| X’ - Y| |XF —YE|}. Then (D,d) is a
complete metric space.

Define d : R(I)x R(I) — Rby d(X,Y) = sup d(X*,Y?), for X,Y € R(I).

0<a<l
Then it is well known that (R(I),d) is a complete metric space.
A sequence X = (Xj) of fuzzy real numbers is said to be convergent to the
fuzzy number X, if for every € > 0, there exists ko € N such that d(X}, Xo) <
g, for all k > kq. A sequence space F is said to be solid if (V,,) € E, whenever

(X,,) € E and |Y,]| < |X,|, for all n € N.

Let X = (X,,) be a sequence, then S(X) denotes the set of all permutations
of the elements of (X,) i.e. S(X) = {(Xrn)) : 7 is a permutation of N}. A
sequence space E is said to be symmetric if S(X) C E for all X € E.

A sequence space F is said to be convergence-free if (Y,) € E whenever
(X,) € E and X,, = 0 implies Y,, = 0.

A sequence space E is said to be monotone if E contains the canonical
pre-images of all its step spaces.

Lemma 1. A sequence space E is monotone whenever it is solid.

Let @, be the class of all subsets of N those do not contain more than s
number of elements. Throughout {¢;} is a non-decreasing sequence of positive
real numbers such that n¢,+1 < (n+ 1)@, for all n € N.

The space m(¢) introduced by Sargent [9] is defined as,

1
m(6) = {(@) €w:llalme= s o> ol < oof.

TERs VS peg

Lindenstrauss and Tzafriri [6] used the notion of Orlicz function and introduced
the sequence space:

by = {(xk) cw: ZM <M) < o0, for some p > 0}.
k=1 P

The space £); becomes a Banach space with the norm defined by

k) ||=in :OO M
I (@) = me{p > 0 ;M( ) <1}

p

which is called an Orlicz sequence space. The space £, is closely related to the
space {p, which is an Orlicz sequence space with M (z) = 2P, for 1 < p < 0.
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In the later stage different classes of Orlicz sequence spaces were introduced
and studied by Esi [1], Tripathy and Mahanta [15] and many others.
In this article we introduce the following difference sequence space:

m(M, 6, 47,.p)"={ X=(X) S i%(“@))p@o’

for somep>0}, for 0 < p < o0.

3 Main Results

In this section we prove some results involving all these sequence spaces.

Theorem 1. (a) The sequence space m(M, ¢, A", p)E" is a complete metric
space with the metric

n(X, Y)iE(XT, YT)Jrinf{p > g;ii%psi;(M@(AzX,; Aank)));Dgl},

for X,Y e m(M, ¢, A" . p)f' ' m>1,n>1and0<p<1.
(b) The sequence space m(M, ¢, A%, p)¥' is a complete metric space with
the metric

mn

106Y) = 33063 +int {p> 01 aup -
% (I%(:T(M(E(A%X;; A%Yk)))p)ﬁ - 1},

for X, Y e m(M, ¢, A% . p)Y' ' m>1,n>1and1<p< oco.

Proof. (a). Clearly, m(M, ¢, A", p)F" is a metric space with the metric 7,
defined above. We have to prove that it is a complete metric space. Let (X))

be a Cauchy sequence in m(M, ¢, A”,p)F such that X = (X,(f))c’o Let

n=1"
e > 0 be given. For a fixed xo > 0, choose > 0 such that M (*5%) > 1. Then
there exists a positive integer ng = no(e) such that n(X @, XW)) < ¢/(ray), for
all 7, 7 > ng. By the definition of 7, we get:

mn _ . 1
Zd(XT(Z),XT(j))+inf{p> 0: sup —
—1 s>1l,0€p5 ¢s

X %(M(E(AZX;&;AZX&)))Y < 1} <e, foralli,j>ng, (3.1)

which implies that, E(X,Ei), X,Ej)) < g, for all 4, j > ng and finally we get

r=1

d(XW,x0) <e, foralli,j>ng, r=1,2,3,...,mn.
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Hence (X,Ei)) is a Cauchy sequence in R([]), so it is convergent in R(I), by the
completeness property of R(I), for r = 1,2,3,...mn. Let,

lim X(z) =X,, forr=1,23,...mn. (3.2)
1 d(A™ X(i) A X(j)
sup — (M( (A5 Xy A X )))ng for all ,§ > ng.  (3.3)
s>1,0€ps Skeo P

For s =1 and o varying over ps, we get,

TFiAn v An ()
Z(M<d(A;E§@>’ )A(Z*)))(k )))p < o1, for all 4, § > no
keo ’

=M

d(Ag X", A x )
( n(X @, xX0))
Using the continuity of M, we get,

)) < g7 <M(T;O), for all 4,7 > no.

) B0 0), ez
= d(anx anx) < S0~ 2 for all é,j > no,
2 rxg 2

which implies that (A", X ,gz)) is a Cauchy sequence in R(I) and so it is conver-
gent in R(I) by the completeness property of R(I).
Let, lim A”mX,S) =Y} € R(I), for each k € N. We have to prove that

ImX® =X and X ¢ m(M, ¢, A", p)F.
For k =1, we get from (1.1) and (3.2) that

thg)nJrl mn+1, form>1,n>1.

Hence we get that lim X]S) = Xy, for each k € N. Also, lim A%X,gi) = A" X,
for each k € N. Using the continuity of M, we get, from (3.3),

1 A(A" XD AR X\ P
oy, ST (AR
s>1,0€p: Ps P

for some p > 0 and i > ng. Now on taking the infimum of such p’s and using
(3.1), we get

inf{p >(0: sup LZ(M(E(A”mXS),A”ka)))P < 1} <eg,

s>1,0€ps S keo P

for all i > ng. Hence we get,

1
Zd X(l) X))+ inf{p>0 sup —
s>1,0€p; ¢s
d(Ar X, An X
e

keo
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for all i > ng, which implies that,

XD X) <2, Vi>ng, = limX® =X,

Now, we shall prove that X € m(M, ¢, A" ,p)¥'. We know that,
n(X,0) <n(X™, X)+n(X™ 0) < e+ M, for all n > no(e),

i.e. 1(X,0) is finite, which implies that, X € m(M,¢, A", p)¥". Hence the
space m(M, ¢, A" . p)¥ is a complete metric space. This completes the proof
of (a) part of the theorem. The (b) part can be proved by following similar
techniques. 0O

Theorem 2. The sequence space m(M, ¢, A", p)¥ is not solid in general, for
0<p<oo.

Proof. The result follows from the following example.

Example 1. Let m =3, n=2, p=2. Let X;, =k, forall k € N and ¢, = s for

all s € N. Let M(x) = |z|, for all z € [0,00). Then, we have, d(A3X},0) = 0,

for all k € N. Hence, we have,

1 d(A3Xy,0
Z(M( (43X, 0)

sup -
p

2
)) < 00, for some p > 0,
s>1,0€0, S

co

which implies that, (Xj) € m(M,s, A2,2)F. Consider the sequence (ay) of
scalars defined by,

1, for kis even, k, for kis even,
= apXE =

A = . = .
{0, otherwise 0, otherwise,

which implies that,

“up 1 (M(E(Aga;;Xk,ﬁ)

2
)) = 00, for any fixed p > 0,
s>1,0€ps S

keo

which shows that, (axXy) & m(M,s, A2, 2)F. Hence m(M, ¢, A", p)¥ is not
solid in general, for 0 < p < oo.
O

Theorem 3. The sequence space m(M, ¢, A", p)¥' is not symmetric in general,
for 0 < p < o0.

1
Proof. Letm=1, n=1, p= 3 and M(z) = 22, for all x € [0,00). Let

¢s = s, for all s € N. Let Xj, = k, for all k € N. Then, d(AX},0) = 1, for
all k € N. Hence (Xj,) € m(M, s, A, $)7. Let (Y}) be a rearrangement of (Xj)
such that,

(Vi) = (X1, X2, X4, X3, Xo, X5, X16, X6, Xo5 .. .).
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Then d(AY},0) ~ k — (k — 1)? =~ k2, for all k € N, which shows that,

o (0 (15

s>1,0€p: S0 p

for some p > 0. Hence, (Y) € m (M,S,A, %)F Thus, m(M, ¢, A7, p)¥" is not
symmetric in general, for 0 < p < oco. 0O
)F

Proposition 1. The sequence space m(M, ¢, A% . p)' is not convergence-free

in general.

Proof. Let m = 4,n = 1,p = . Let M(z) = 2%, for all z € [0,00). Let

¢s = s, for all s € N. Consider the sequence (X}) defined as follows:

1+kt for te[-1/k0],
Xp(t)={1—kt for tel0,1/K,

0 otherwise.
Then,
k(k+4) 2k +4
1+ —=t for te|[——,0
kgt o telg ¥
Ay X(t) = 1_k(k+4)t for 1 e 10 2k +4
gl o telbggag)
0 otherwise.
_ — 2k + 4 2 4
Thus we have that, d (A4Xk, 0) = R + Then it

k(k+4) (k+1)  k(k+4)
follows that
E(A4Xk,6)

1
))2 < oo, Vp>0.
p

sup EZ(M(

s>l,0€ps 5 ko

Thus, (Xx) € m (M, s, Ay, %)F Now, let us take another sequence (Y}) such
that,
14+t/k? for tec[—k20],
i { / 4,0

1—t/k? for tel0,k?.

So that,
t
1+ ———— —(2k2 1
+2k2+8k+16 or te[—(2k*+8k+16),0],
AYit)={;_ L %2 1
P rshrie t €0, (2k* + 8k + 16)],
0 otherwise.

But, d (A4Y%,0) = (2k? + 8k + 16), for all k € N, which implies that,

- — 1/2
1 ALY

sup —Z(M(L : mo))) — o,

s>1,0€ps Sk P

€o
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for some p > 0. Thus, (Vi) € m(M, s, Ay, %)F Hence m(M, ¢, A%, p)f is not
convergence-free, in general. O

Proposition 2. m(M, ¢, A?)E' C m(M, ¢, A%, p)¥', for all 1 < p < <.

Proof. Let X € m(M, ¢, A")F, then we have,

1 d(Ar, X, 0
sup _ZM (M) =K < oo,

s>1,0€ps Qbs keo P

for any fixed p > 0. Hence, for each fixed s and o € p,, we have, for p > 0:

S (50) e, [ (BB,

keo |Jc€a

1
1 d(A" X, 0N\ |7
sup  — Z{M(M)} < K < o0,
s>1,0€p5 (bs kco P

which implies that, X € m(M, ¢, A", p)¥’, for 1 < p < co. This completes the
proof. O

Proposition 3. m(M, ¢, A%, p)f' C m(M,, A", p)¥', if and only if

sup(ﬁ) < oo, for 0<p<oo.
s>1 s

Proof. First, suppose that st>1;1) (ﬁ) = K < oo, then we have, ¢, < K.
5> s

Now, if (X3) € m(M, ¢, A%, p)F' | then

1 E(A;;Xk,ﬁ)> }p
sup — M <7 < 00,
s>1,0€p5 ¢S Z { P

keo

sup 1 E(A"Xk,ﬁ) P
M [ DEm Ak )
éle,aepsKwsz{ < p < %9,

keo

i'e' (Xk) e m(M’ 1/15 A%’p)F' Hence7 m(M7 ¢’ A%’p)F g m(M’ 1/15 A%’p)F'
Conversely, suppose that m(M, ¢, A" p)¥ € m(M,, A", p)¥'. We should
prove that sup <%) = sup(ns) < oo. Suppose that sup(ns) = co. Then there
s>1 Q/Js s>1 s>1
exists a subsequence (ng,) of (ns) such that, lim (ns,) = oo. Then for (X}) €

m(M, ¢, A”m,p)F, we have,

1 E(A%Xk,6)> }p
sup — E M (7
s>1,0€p5 Z/Js kco { P

2 o () (v (TR ) =

keo
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1 E(A;ng,G)) }”
sup — M (7 = 00,
s>1,0€p5 Z/Js Z { P

ke€o

i.e.

which implies that (Xz) ¢ m(M, v, A”,p)F', a contradiction. This completes
the proof. O

Corollary 1. m(M, ¢, A", p)¥" = m(M, ), A", p)¥', if and only if

sup(ns) < oo and sup(ngl) < 00,
s>1 s>1

where 75 = ¢ /15, for 0 < p < 0.

Theorem 4. (,(M, Am)F C m(M, ¢, A%, p)F' C loo(M, AZ)F for 1 < p <
0.

Proof. By taking M (z) = 2P, for 1 < p < co and ¢, = 1, for alln € N, we get
that m(M, ¢, A%, p)" = £,(M, A" )T So, the first inclusion is proved. Next,
suppose that, (Xx) € m(M, ¢, A, p)F'. This implies that,

Szf}iléps i L;{M(E(A”mp)(k,ﬁ))}z)}% C K< oo

d(A7, X, 0)

Forsl,M<
p

> < K¢1,k € o, which implies that

E(A%Xk,ﬁ)) -

sup M (
p

k>1
Thus we have that X}, € £ (M, A" )F'. This completes the proof. 0O
Putting ¢, = 1, for all n € N, in Corollary 1, we get
Proposition 4. m(M, ¢, A%, p)F' = £,(M, A™)Y if and only if

sup(ps) < oo, sup(¢; ') < oo.
s>1 s>1

Corollary 2. m(M, ¢, A%, p)F = £,(M, A7) if lim (%) > 0, for 0 < p < 0.

5—00

Acknowledgement

The authors thank the referee for the careful reading of the paper and the
comments.

Math. Model. Anal., 13(4):577-586, 2008.



586 Binod Chandra Tripathy and Stuti Borgohain
References
[1] A. Esi. On some new paranormed sequence spaces of fuzzy numbers defined by
Orlicz functions and statistical convergence. Math. Model. Anal., 11:379-388,
2006.
[2] M. Et, Y. Altin and H. Altinok. On almost statistical convergence of generalized
difference sequences of fuzzy numbers. Math. Model. Anal., 10(4):345-352, 2005.
[3] O.Kaleva and S. Seikkala. On fuzzy metric spaces. Fuzzy Sets Syst., 12:215-229,
1984.
[4] H. Kizmaz. On certain sequence spaces. Canad. Math. Bull., 24(2):169-176,
1981.
[5] J.S. Kwon. On statistical and p-Cesaro convergence of fuzzy numbers. Korean
J. Compute. € Appl. Math, 7(1):195-203, 2000.
[6] J. Lindenstrauss and L. Tzafriri. On Orlicz sequence spaces. Israel J. Math.,
10:379-390, 1971.
[7] F. Nuray and E. Savas. Statistical convergence of sequences of fuzzy real num-
bers. Math. Slovaca, 45(3):269-273, 1995.
[8] D. Rath and B.C. Tripathy. Characterization of certain matrix operators. J.
Orissa. Math. Soc., 8:121-134, 1989.
[9] W.L.C. Sargent. Some sequence spaces related to ¢ spaces. J. London Math.
Soc., 35:161-171, 1960.
[10] B.C. Tripathy. Matrix maps on the power series convergent on the unit disc. J.
Analysis, 6:27-31, 1998.
[11] B.C. Tripathy. A class of difference sequences related to the p-normed space ¢P.
Demonstratio Math., 3694:867-872, 2003.
[12] B.C. Tripathy and A.J. Dutta. Fuzzy real valued double sequence spaces. Soo-
chow J. Math., 32(4):509-520, 2006.
[13] B.C. Tripathy and A. Esi. A new type of difference sequence spaces. International
Journal of Science and Technology, 1(1):11-14, 2006.
[14] B.C. Tripathy, A. Esi and B.K. Tripathy. On a new type of generalized difference
Cesaro sequence spaces. Soochow J. Math, 31:333-340, 2005.
[15] B.C. Tripathy and S. Mahanta. On a class of sequences related to the £7 space
defined by Orlicz functions. Soochow J. Math., 29:379-391, 2003.
[16] B.C. Tripathy and M. Sen. On a class of sequences related to the p-normed
space. Journal of Beijing University of Technology, 31:112—115, 2005.
[17] B.K. Tripathy and S. Nanda. Absolute value of fuzzy real numbers and fuzzy
sequence spaces. Jour. Fuzzy Math., 8(4):883-892, 2000.
[18] L.A. Zadeh. Fuzzy sets. Information and control, 8:338-353, 1965.



	Introduction
	 Definitions and Background
	Main Results
	References

