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Abstract. In the present paper, two methods for the solution of an initial valued
first ordered fuzzy differential equation are presented and applied in a fuzzy EOQ
model. The constructed model is a bi-level inventory problem involving wholesaler-
retailers-customers. The wholesaler buys and sells the item instantaneously to several
retailers. In the next level, the retailers sell the units to customers with a time
dependent imprecise demand, which introduce the fuzzy nature in the differential
equation. The selling price of the item is a step-wise time dependent decreasing
function. The fuzzy objectives are transformed into crisp one following fuzzy extension
principle and centroid formula. The model is illustrated through Interactive Fuzzy
Decision Making (IFDM) and Multi Objective Genetic Algorithm (MOGA) and the
results from two methods are compared.

Key words: Fuzzy differential equation, Bi-level inventory, Newsboy problem, In-

teractive fuzzy decision making method, Multi-Objective Genetic Algorithm.

1 Introduction

In 1965, the first publication in fuzzy set theory by Zadeh [16] showed the
intention to accommodate uncertainty in the non-stochastic sense. After that
Bellman and Zadeh [1] defined a fuzzy decision making problem as the con-
fluence of fuzzy objectives and constraints operated by max–min operators.
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Recently, fuzzy set theory has been applied to several fields like project net-
work, reliability, production planning, inventory control, etc.

The topic on fuzzy differential equations has been rapidly growing in the
recent years. The concept of fuzzy differential was introduced by Chang and
Dye [3].The initial value problem for fuzzy differential equation has been studied
by Seikkala [15]. In multi-objective decision making (MODM) problems, the
problem is summarized as follows:

1. The DM has imprecise information;

2. The DM expresses his preferences subjectively,

3. The statistical inference from historical data and their stability is doubt-
ful.

Many authors suggested different methods to deal with these problems.
Sakawa and Yano [14] treated this problems by considering the membership
functions of those preferences and uses α-level cut to defuzzy the Fuzzy MODM
problem and solve it a by using a suitable technique Dey and Maiti [6] has
accept this technique.

Since the development of classical economic order quantity (EOQ) model
by Harris [11], a lot of research works on inventory control system has been
reported in the literature by several authors (cf. Donaldson [3] Chang and
Dye [7]) to make the models more realistic. A real-life inventory control model
can not be formulated without uncertainty in the parameters and/or variables.
Again, this uncertainty may be defined in stochastic and non-stochastic (fuzzy)
sense and attempts are being made to formulate and analyze such models (cf.
Lee et. al. [4]), Chiang et. al. [12]).

Gallego and Moon [10] defined the newsboy problem as the tool to decide
the stock quantity of an item when there is a single purchasing opportunity
before the start of the selling period, and the demand for the item is random.
The classical newsboy model assumes that if the order quantity is larger than
the realized demand, a single discount is used to sell the excess inventory or
that excess inventory is disposed off. On the other hand, if the order quantity
is less than demand, then profit is lost. The objective is to find the optimum
tradeoff between the risk of overstocking (incurring disposal cost) and the risk
of under stocking (losing profit). The newsboy problem is a classical inventory
problem that is very significant in terms of both theoretical and practical con-
siderations. Items that can be classified under single-period inventory systems
include Christmas trees, new-year greeting cards, and of course daily newspa-
pers. The newsboy problem is often used to aid decision-making in fashion,
sporting industry, and apparel industry.

Now-days, the computing methods like Genetic Algorithms (GAs) or Sim-
ulated Annealing are used as optimization techniques for the near optimum
solution of decision making problems. The genetic algorithms are executed it-
eratively on a set of coded solutions (called populations) with three operators
–selection or reproduction, crossover and mutation. Recently, GAs have been
applied in different areas like neural network, numerical optimization, pattern
recognition, inventory control (cf. Mondal et. al. [13]).
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In each town, normally there exist several small markets connected with a
wholesale market, a wholesaler receives an item, say fish, a particular variety
of vegetable, or fruit, etc from outside suppliers early in the morning and
almost immediately sells the quantities to the retailers of the small markets.
After that, these retailers sell the whole amount of the item for the whole day
in their respective markets against their imprecise demand in the localities.
This situation is observed in the business of fishes, fruits, vegetables, etc. At
wholesaler’s levels, the problem is of news-boy type, and at retailers level, the
problem is an EOQ model in fuzzy environments.

In this paper, we look at a specific problem of first order fuzzy differential
equation with one initial value. Our objective is to circulate an economic way
of representing such fuzzy dynamical system to the nonfuzzy system. We want
to apply this method to a bi-level inventory model consisting of single whole-
saler and multi-retailers and considered in fuzzy environment. The wholesaler
replenishes instantaneously and disposes those to the retailers immediately,
adopting push-sale, if required. Retailers purchase the items from the whole-
salers and sell to the customers in a day-market until the whole quantity is
sold. The demand of the goods here are considered as a fuzzy function. So
in inventory level a fuzzy differential equation arise. This equation is solved
in analytical method. After that a set of objective functions is formulated.
It is optimised using the Fast and Elitist Multi-Objective Genetic Algorithm
(MOGA) and the Interactive Fuzzy Decision Making (IFDM) method. The
model is illustrated with some numerical data and results from two methods
are compared. Details of presentation are as follows. First, the model is formu-
lated and solved in fuzzy differential or integral form. Then MOGA is developed
and we discuss the method of IFDM. Numerical examples are presented to il-
lustrate the model. Discussion of the model and results have been presented.
Finally conclusions and suggestions for future research are given.

2 Basic Concepts in Fuzzy Sets

Definition 1 [Fuzzy function]. Let X and Y be the universes and P̃ (Y ) the

set of all fuzzy sets in Y (power set), f̃ : X → P̃ (Y ) is a mapping. Then f̃ is
a fuzzy function iff

µ
ef(x)(y) = µ

eR
(x, y), ∀(x, y) ∈ X × Y

where µ
eR
(x, y) is the membership function of the fuzzy relation.

Example 1. Let X be the set of all workers of a plant, f̃ the daily customer
who buy a product and y be the demand of the product item. A fuzzy function
could then be constructed as f̃(x) = y (cf. Zimmermann [17]).

Definition 2 [α-cut]. The α-level set or α-cut of a fuzzy set Ã of X is a non-
fuzzy set denoted by Aα and defined as a subset of X such that µ

eA
(x) ≥ α, i.e.

Aα = {x : µ
eA
(x) ≥ α and x ∈ X}.

Math. Model. Anal., 13(4):493–512, 2008.
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Definition 3 [Fuzzy extension principle]. Let X be a Cartesian product of uni-

verses X = X1, X2, . . . , Xr and Ã1, Ã2, . . . , Ãr be fuzzy sets in X1, X2, . . . , Xr

respectively. Assume that f is a mapping from X to a universe Y, y =
f(x1, . . . , xr). Then the extension principle allows us to define a fuzzy set

B̃ in Y by

B̃ = {(y, µ
eB
(y)) : y = f(x1, . . . , xr), (x1, . . . , xr) ∈ X)},

where

µ
eB
(y) =





sup
x∈f−1(y)

µ
eA
(x), if f−1(y) 6= ∅,

0 otherwise.

Example 2. Let Ã = {(−1, 0.5), (0, 0.8), (1, 1), (4, 0.4)} and f(x) = x2. Then by
applying the extension principle we get that

B̃ = f(Ã) = {(0, .8), (1, 1), (4, .4)}.

Definition 4 [Fuzzy differential equation]. Let us examine a system whose
state at the given moment t may only be described by the fuzzy set X(t) ∈ En.
If someone else was fortunate enough to describe the relation between system
state and its rate of change as a function f : R × En → En, then in the sense
of FIFO we come to the notion of the first order fuzzy differential equation

dX̃(t)

dt
= f(t, X̃(t)) X̃(0) = k̃. (2.1)

Solution Procedure 1. According to Friedman, Ming and Kandel [9],
in order to solve initial value problem (2.1), we find out a general solution of

the differential equation without initial condition, i.e. we get X̃(t) = g(c̃, t),
where c̃ is a constant coming from the first-order differential equation. Then c̃
is derived from the initial condition X̃(0) = k̃.

Solution Procedure 2. According to Buckley [2], first find out the so-

lution X(t) of the crisp differential equations dX(t)
dt

= f(t, X(t)), with initial

condition X̃(0) = k̃.
Then following the knowledge of α–cut, the solution of the fuzzy differential

equation will be [XL(t), X(t), XR(t)], where

XL(t) = min
{

X̃(α, t) : µ
eX
(X) = 1, µ

eX
(X −∆LX) = 0

}
,

XR(t) = max
{

X̃(α, t) : µ
eX
(X) = 1, µ

eX
(X + ∆RX) = 0

}
.

2.1 Interactive Fuzzy Decision Making (IFDM) technique

Considering the imprecise nature of the decision maker’s (DM’s) judgements,
it is natural to assume that the DM may have fuzzy or imprecise goals for
each of the objective functions max(f1(x), f2(x), f3(x), . . . , fm(x)). Let a goal
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assigned by the DM to an objective is stated as "somewhat larger than A". This
type of a statement can be quantified by eliciting a corresponding membership
function.

To derive the membership function µfr(x) for each of the objective functions
fr(x), (r = 1, 2, 3, . . . , m) we first calculate individual minimum fmin

r (x) and
maximum fmax

r (x) values under the given constraints. With the help of these
individual minimum and maximum values, the DM can select his membership
functions from different types of membership functions (i.e., linear, quadratic,
exponential etc.). The membership function for each of the objective functions
fr(x), (r = 1, 2, 3, . . . , m) may be written as

µfr
(x) =





0, for Lr > fr(x),

dr(fr(x)), for Lr ≤ fr(x) ≤ Ur,

1, for fr(x) > Ur,

where Lr and Ur are chosen such that fmin
r (x) ≤ Lr ≤ Ur ≤ fmax

r (x), dr(fr(x))
is a strictly monotone increasing continuous function of fr(x) which may be
linear or non-linear.

Type 1. Linear membership function. For each objective function, the
corresponding linear membership functions are as follows:

µfr
(x) =





0, forLr > fr(x),

1−
Ur − fr(x)

Ur − Lr

, for Lr ≤ fr(x) ≤ Ur,

1, for fr(x) > Ur.

It is given in Fig. 1(a).

a) b)

Figure 1. Different types of membership functions: a) linear, b) quadratic.

Type 2. Quadratic membership function. For each objective function,
the corresponding quadratic membership functions are as follows:

µfr
(x) =





0, forLr > fr(x),

1−

(
Ur − fr(x)

Ur − Lr

)2

, for Lr ≤ fr(x) ≤ Ur,

1, for fr(x) > Ur.

Math. Model. Anal., 13(4):493–512, 2008.



498 B. Das, N. K. Mahapatra and M. Maiti

It is given in Fig. 1(b).

Type 3. Exponential membership function. For each objective function,
the corresponding exponential membership functions are as follows:

µfr
(x) =





0, for Lr > fr(x),

αr

[
1− e

−βr

Ur − fr(x)

Ur − Lr

]
, for Lr ≤ fr(x) ≤ Ur

1, for fr(x) > Ur.

Figure 2. Exponential membership function.

The constants αr > 1 and βr > 0 can be determined by asking the DM to
specify the three points Lr, f

0.5
r (x) and Ur such that fmin

r (x) ≤ Lr ≤ f0.5
r (x) ≤

Ur ≤ fmax
r (x) where f0.5

r (x) represents the value of fr(x) such that the de-
gree of membership function µfr

(x) is 0.5. After determining the different
linear/non-linear membership functions for each of the objective functions, fol-
lowing Zimmermann [17] the given problem can be formulated as:

max λ

subject to λ ≤ µfr
(x), x ∈ S, 0 < λ ≤ 1, r = 1, 2, 3, . . . , m.

Now the DM will select the membership functions for the corresponding
objective functions. With the help of three different types of membership func-
tions given by (3.6)–(3.8), above problem can be restated as

max λ

subject to λ ≤ µfr
(x), (if r-th objective ∈ Type 1)

or λ ≤ µfr
(x), (if r-th objective ∈ Type 2)

or λ ≤ µfr
(x), (if r-th objective ∈ Type 3)

x ∈ S, 0 < λ ≤ 1.

2.2 Preference to DM’s Objective function

Now the DM will selects his most important objective function from objective
functions fr(x), (r = 1, 2, 3, . . . , m). If it is the p-th objective function, then
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problem (3.4), (3.5) is reduced to find λ = λ∗ (λ∗ is an optimal solution of (3.4)
and (3.5)).

maxs.t.Dfp(x),

D =
{
fr(x) ≤ µr, x ∈ S, r = 1, 2, 3, . . . , m

}
,

where

µr =





Lr + (Ur − Lr)(1 − λ∗), for Type 1 membership function,

Lr + (Ur − Lr)
√

(1− λ∗), for Type 2 membership function

Lr +
1

βr

(Ur − Lr) log(1 −
λ∗

αr

), for Type 3 membership function.

This new problem may be solved using a single objective optimization tech-
nique. Now the α level-curves µ

ef(x)(y) = α for all α ∈ [0, 1] and α and x

as parameter have exactly two continuous curves y = f+
α (x) and y = f−

α (x)
for α 6= 1 and only one for α = 1. f+

α (x) and f−

α (x) are defined such that,
f+

α
′ (x) ≥ f+

α (x) ≥ f(x) ≥ f−

α (x) ≥ f−

α
′ (x) for all α

′

≥ α. The integral of any

continuous α-level curve of f̃ over [a,b] always exist.

Definition 5 [Integration of fuzzy function]. Let f̃(x) be a fuzzy function from

[a, b] ⊆ R to R, i.e., f̃(x) : f(x) is the curve for which µ
ef(x)(f(x)) = 1 and for

f−

α and f+
α respectively µ

ef(x)(f
−

α ) = 0, µ
ef(x)(f

+
α ) = 0. Then integral of f̃(x)

over [a, b] is defined to be the fuzzy set

Ĩ(a, b) =

{( ∫ b

a

f−

α (x) dx +

∫ b

a

f+
α (x )dx

)
, α

}
.

This definition is consistent with the extension principle according to which

µR

b

a
f
(y) = sup

g∈Y

inf
x∈[a,b]

µf(x)(g(x)), y ∈ R, g ∈ Y, x ∈ [a, b], (2.2)

where Y = {g : [a, b]→ R, g is integrable} (see, Dubois and Prade [8]).

The determination of the integral Ĩ(a, b) becomes easier if the fuzzy function
is assumed to be the LR type. In our paper the fuzzy demand is assumed
exponentially over the time interval [0, ti] which follow the definition of LR

fuzzy function, so it has the form f̃(x) = (f(x), l(x), r(x)). Dubois and Prade
[8] have shown that under these conditions

Ĩ(a, b) =

{∫ b

a

f(x) dx,

∫ b

a

l(x) dx,

∫ b

a

r(x) dx

}
.

Then, it is sufficient to integrate the mean value and the spread functions of
f̃(x) over [a,b] and the result will again be an LR fuzzy number.

3 Application: Fuzzy Inventory Model

Here, a single item wholesaler-retailers problem is considered for a single period
in fuzzy environment under the following assumptions and notations.

Math. Model. Anal., 13(4):493–512, 2008.
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3.1 Assumptions

(i) The replenishment is instantaneous to the wholesaler.

(ii) Demands at retailers’ level are time dependent which are assumed to be
fuzzy in nature (fuzzy LR-type).

(iii) At retailers’ level, the item is sold completely within the time period and
at wholesaler’s level, units are sold immediately after replenishment using
push-sale, if required.

(iv) The item deteriorates, at a constant deterioration rate θ.

(v) Shortages are not allowed to retailers but considered for wholesaler.

(vi) There are n retailers in the system.

Notations. We also will use the following notations: ti denotes the time
length of the i-th retailer, Q̃/Q̃i is the order quantity of the wholesaler/i-th

retailer, D̃i(t) is the fuzzy demand at any time t to the i-th retailer, where

D̃i(t) = (Di(t), DLi(t), DRi(t)), with mean demand Di(t), P denotes a unit
cost of the item to the wholesaler, S/Sa is a normal/push-selling price per unit
of the item of the wholesaler, si(t) = s0i(1− bi(t)/100) is the unit selling price
of the retailer at time t with initial price s0i and positive decreasing rate bi,
hi/hw is the unit inventory holding cost of the i-th retailer/wholesaler, gi/gw is
the unit deteriorating cost of the i-th retailer/wholesaler, c2w denotes the unit
shortage cost of the wholesaler, δ is a fraction amount of stock and push-sale /
shortage for wholesaler, ηi is a fraction amount of stock to be received by the
i-th retailer.

3.2 Model description

It is assumed that retailers sell the item under the EOQ model with imprecise
demands, therefore demands and order quantities also be fuzzy in nature for
both retailers and the wholesaler.

3.2.1 The wholesaler problem

Wholesaler purchases Q̃w = (Qw, QLw, QRw) units of item (which is fuzzy in
nature) from outside suppliers and sells these units to different retailers. It is
assumed that, δ fraction of the total inventory are either used for push-sale or
occurs as shortage quantity. Then the following two different cases arise and
corresponding wholesaler’s profits are given as:

Case 1: δ ≥ 0, (Stock and push-sale). In this case, δQ̃ amount of item are
used for push-sale with a reduced price Sa. The inventory situation is presented
in Figure 3. Therefore, wholesaler’s profit (P̃Fw) is given by

(P̃F )w = S(Q̃w − δQ̃w)− PQ̃w + (Sa − hw)δQ̃w.
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Figure 3. Wholesaler’s inventory/shortage level.

Case 2: δ < 0, (Shortages allowed). In this case, shortages are allowed,
but shortage quantities are not backlogged. This situation is also described in
Figure 3. Therefore in the case of shortage the imprecise profit is:

(P̃F )w = SQ̃w − PQ̃w + c2w(δQ̃w).

Hence for the both cases, the Total Profit of the wholesaler is equal to the sum
of revenues from normal sale and push-sale (in Case 1) minus the purchasing
and holding costs (in Case 1) and minus the shortage cost (in Case 2), i.e.,

(P̃F )w =S{Q̃w −max(δ, 0)Q̃w} − PQ̃w + (Sa − hw){max(δ, 0)Q̃w}

+ c2w{min(δ, 0)Q̃w} = (PFw, PFLw, PFRw),

where PFw is the mean profit, (PFw−PFLw) and (PFRw−PFw) are the left
and right spreads about PFw respectively. The centroid of the profit (PFc)w

for wholesaler is given by:

(PFc)w =
1

3
(PFw + PFLw + PFRw). (3.1)

3.2.2 Retailers Problem

Let i-th retailer purchases Q̃i units from wholesaler at a time and start the
business. Therefore in retailer’s level, the fuzzy differential equation governing
the stock status q̃i(t) at any time t is given by

dq̃i

dt
= −D̃i(t)− θq̃i, 0 ≤ t ≤ ti with boundary condition q̃i(ti) = c̃i. (3.2)

The fuzzy demand function is given in the form D̃i(t) = (Di(t), DLi(t), DRi(t)),
where Di(t) = D0ie

−t is the mean demand function at any time t, and DLi(t),
DRi(t) are possible minimum and maximum demands with respective spreads
∆L, ∆R to the constant D0i. To describe the model, the mean demand is
assumed to vary exponentially with time t, i.e.

Di(t) = D0ie
−t, DLi(t) = (D0i −∆L)e−t, DRi(t) = (D0i + ∆R)e−t.

Math. Model. Anal., 13(4):493–512, 2008.
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Now the different sub-cases inventory situation depending on the values of c̃i

are given by

Sub-case 1. The retailer has no inventory at time ti. Pictorial representation
of this inventory situation is presented in Fig. 4.

Figure 4. Inventory ends with neither shortage nor stock.

Sub-case 2. When some excess inventory are in stock at time ti, they are
sold immediately at a reduced price sai. This inventory pattern is presented in
Fig. 5.

Sub-case 3. When some shortages occur at time ti, there is a penalty cost.
This inventory pattern is presented in Fig. 6.

Figure 5. Inventory ends with stock. Figure 6. Inventory ends with short-
age

For finding a solution we use Procedure 2. Let us consider the demand
function Di(t) = D0ie

−t, its membership value is 1. Then the reduced crisp
differential equation

dqi

dt
= −Di(t)− θqi 0 ≤ t ≤ ti with boundary condition, qi(ti) = ci
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has a solution

qi(t) = cie
θ(ti−t) + (D0i

e−θt

1− θ
)(e−t(1−θ) − e−ti(1−θ))

+ (D0i

e−t

1− θ
)(1 − e−(1−θ)(ti−t)). (3.3)

Then we fuzzify qi with the assumptions c̃i ≥ 0, D̃oi > 0 since

dqi

dci

= eθ(ti−t) > 0,
dqi

dDoi

=
1− e(1−θ)ti

1− θ
> 0

and after fuzzifying qi, we get the fuzzy inventory level at any time t as:

q̃i(t) = (qi(t), qLi(t), qRi(t)), 0 ≤ t ≤ ti

qLi(t) = min
{
qi(t, ci, D0i) : ci ∈ c̃i[α], D0i ∈ D̃0i[α]

}
,

qRi(t) = max
{
qi(t, ci, D0i) : ci ∈ c̃i[α], D0i ∈ D̃0i[α]

}
.

Particularly, when α = 0 we get the solution following Procedure 1.

Inventory cost and Components. At the beginning of the interval (0, ti)

fuzzy order quantity to each retailer is Q̃i = (Qi, QLi, QRi), 0 ≤ t ≤ ti, where

Qi = cie
θti +

D0i

1− θ
(1− e−ti(1−θ)),

QLi = min
{
Qi(ci, D0i) : ci ∈ c̃i[α], D0i ∈ D̃0i[α]

}
,

QRi = max
{
Qi(ci, D0i) : ci ∈ c̃i[α], D0i ∈ D̃0i[α]

}
.

Therefore the total deterioration G̃i during the period is:

G̃i = Q̃i −

∫ ti

0

D̃i(t) dt = Q̃i +
(
D0ie

−ti(1− eti),

(D0i −∆L)e−ti(1− eti), (D0i + ∆R)e−ti(1− eti)
)

and the inventory holding cost, H̃i during the period [0, ti] is:

H̃i =

∫ ti

0

hiq̃i(t) dt = (Hi, HLi, HRi), (3.4)

where

Hi = ci

hi

θ
(eθti − 1) +

hiD0i

1− θ
{(1− e−ti) +

1

θ
e−ti(1− eθti)},

HLi(t) = min
{
Hi(ci, D0i) : ci ∈ c̃i[α], D0i ∈ D̃0i[α]

}
, (3.5)

HRi(t) = max
{
Hi(ci, D0i) : ci ∈ c̃i[α], D0i ∈ D̃0i[α]

}
. (3.6)

Math. Model. Anal., 13(4):493–512, 2008.
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Also the sale proceeds S̃P i of the i-th retailer is (see Appendix A):

S̃Pi =

∫ ti

0

si(t)D̃i(t) dt = (SP i, SPLi, SPRi). (3.7)

Therefore the total profit P̃F i of the inventory system of i-th retailer is:

(P̃Fi) = {S̃Pi − S min{Q̃i, (Q̃i − ηiδQ̃i)} − Sa max{0, ηiδQ̃i} − H̃i − giG̃i}

= (PF i, PFLi, PFRi), (3.8)

where

PF i = {SPi − S min{Qi, (Qi − ηiδQi)} − Sa max{0, ηiδQi} −Hi − giGi},

PFLi = {SPLi − S min{QRi, (QRi − ηiδQRi)} − Sa max{0, ηiδQRi}

−HRi−giGRi,

PFRi = {SPRi − S min{QLi, (QLi − ηiδQLi)} − Sa max{0, ηiδ.QLi}

−HLi−giGLi.

Therefore the centroid of the profit to each retailer is equal to

(PFc)i =
1

3
(PF i + PFLi + PFRi) (3.9)

Now the problem is to find out the quantities to be delivered/distributed to
each retailers, from the wholesaler which maximizes the profits of wholesaler
and retailers respectively.

i.e., maximize (PFc)w (from equation (3.1)) and (3.10)

maximize (PFc)i (from equation (3.9)) ∀i (3.11)

Here as wholesaler and retailers are different persons, their interests i.e., profits
are maximized separately. The problem posed by (3.10) – (3.11) is a multi-
objective problem. Normally, a multi-objective problem is first converted to
an equivalent single objective problem using e.g. the Utility Function Method
(UFM), Goal programming method or Goal Attainment method. Weight sum
method is a particular case of UFM. There is a soft computing method, MOGA
developed by Deb et al. [5], which is applied to solve multi-objective problem
directly. It optimizes the objectives simultaneously giving equal importance
to each objective and gives a set of Pareto optimum solutions. However, de-
pending on the situation, if DM prefers to give different importance to different
objectives, then IFDM technique is most suitable.

4 Multi-objective Genetic Algorithm

4.1 Non-dominated sorting of a population

Most evolutionary multi-objective optimization algorithms require to find only
the best non-dominated front in a population. These algorithm classify the pop-
ulation into two sets. i.e. the non-dominated set and the remaining dominated
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set. However, there exist some algorithms which require the entire population
to be classified into various non-dominated levels. In such algorithms, the pop-
ulation needs to be sorted according to an ascending level of non-domination.
The best non-dominated solutions are called non-dominated solutions of level
1. In order to find solutions for the next level of non-domination, there is a
simple procedure which is usually followed. Once the best non-dominated set
is identified, they are temporarily disregarded from the population. The non-
dominated solutions of the remaining populations are then found and are called
non-dominated solutions of level 2. In order to find the non-dominated solu-
tions of level 3, all non-dominated solutions of levels 1 and 2 are disregarded
and new non-dominated solutions are found. This procedure is continued until
all population members are classified into a non-dominated level. We note, that
non-dominated solutions of level 1 are better than non-dominated solutions of
level 2, and so on. The following approach describes a step-by-step procedure
for non-dominated sorting.

• Step 1: Set all non-dominated sets Pj , (j = 1, 2, . . .) as empty sets. Set
non-domination level counter j = 1.

• Step 2: Use any one of the Approaches 1 to 3 to find the non-dominated
set P

′

of population P .

• Step 3: Update Pj = P
′

and P = P\P
′

.

• Step 4: If P 6= ∅, increment j by one and go to Step 2. Otherwise, stop
and declare all non-dominated sets Pi, for i = 1, 2, . . . , j.

4.1.1 Fast nondominated sorting approach(FNDS)

In this case, for each solution we calculate two entities: (1) domination
count np, the number of solutions which dominate the solution Xp, and (2)
Sp, a set of solutions that the solution Xp dominates. All solutions in the first
nondominated front will have their domination count as zero. Now, for each
solution Xp with np = 0, we visit each member Xq of its set Sp and reduce its
domination count by one. In doing so, if for any member Xq the domination
count becomes zero, we put it in a separate list Q. These members belong to
the second nondominated front. Now, the above procedure is continued with
each member of Q and the third front is identified. This process continues
until all fronts are identified. For each solution Xp in the second or higher level
of nondomination, the domination count np can be at most POPSIZE − 1.
Thus, each solution Xp will be visited at most POPSIZE − 1 times before
its domination count becomes zero. At this point, the solution is assigned a
nondomination level and will never be visited again. The algorithm of FNDS
is given below:

Procedure FNDS(P)

begin
for each Xp ∈ P
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Sp = φ
np = 0
for each Xq ∈ P

if (Xp ≺ Xq) then //if Xp dominates Xq

Sp = Sp ∪ {Xq}
else if (Xq ≺ Xp) then

np = np + 1
endif

endfor
if np = 0 then //Xp belongs to the first front

prank = 1
F1 = F1 ∪ {Xp}

endif
endfor
i=1 //initialize the front counter
while Fi 6= φ

Q = φ // used to store the members of the next front
for each Xp ∈ Fi

for each Xq ∈ Sp

nq = nq + 1
if nq = 0 then // Xq belongs to the next front

qrank = i + 1
Q = Q ∪ {Xq}

endif
endfor

endfor
i=i+1
Fi = Q

endwhile
end

Procedure MOGA
begin

t← 0
initialize Population P(t)
evaluate Population P(t)
while(not terminate-condition) do
begin

t← t + 1
select parents from Population P(t-1)
create offsprings C(t) by altering(using crossover and

mutation) the selected parents
P1(t)← P (t− 1) ∪ C(t)
split P1(t) into nondominated fronts F1, F2, . . . using FNDS
P2(t)← F1 ∪ F2 ∪ . . . ∪ Fi, where i is the greatest integer such

that order of P2(t) ≤ POPSIZE
if order of P2(t) < POPSIZE then



Initial-Valued First-Order Fuzzy Differential Equation 507

select (POPSIZE - order of P2(t)) number of chromosomes
from the front Fi+1 and then add these to P2(t)

P (t)← P2(t)
evaluate Population P(t)

end
end

5 Numerical Examples

To illustrate the proposed inventory model, a system of one wholesaler and
two retailers is considered where wholesaler sells the item to retailers instanta-
neously after replenishment and retailers again sells those to the customers as
a single period inventory model. The following input data are considered for
illustration:

c̃1 = (0,−0.2, 0.3), c̃2 = (0,−0.3, 0.2), α = 0.2, P = $22, S = $40,

Sa = $35, s01 = $50, s02 = $52, D01 = 130 units, D02 = 135 units,

b1 = 0.05, b2 = 0.05, θ = 0.08, ∆L = 0.05, ∆R = 0.07,

h1 = $2.40, h2 = $2.50, hw = $1.0, c2w = $0.4.

5.1 Solution of Fuzzy Inventory Model without DM’s preference by
MOGA:

The problem represented by (3.10) and (3.11) is solved by MOGA and the
results are presented in Tables 1 and 2. Wholesaler’s order quantity is equal
to a sum of both retailers order quantities.

Table 1. Optimum order quantities and profits obtained by Proc 2 via MOGA.

cases Ret-1’s Ret-2’s Whol’s Ret-1’s Ret-2’s
Ord.Quan. Ord.Quan. Profit ($) Profit ($) Profit ($)

34.02;35.69;37.98 37.90;39.29;41.67 1575.50 3756.61 3998.48
δ = 0 33.40;35.68;37.10 40.04;41.65;44.22 1574.39 3764.92 4121.83

34.20;36.68;38.74 37.58;40.83;42.23 1538.17 3773.62 4110.64

33.14;35.63;37.18 36.95;37.98;40.05 1390.54 3819.38 4438.58
δ = 5% 34.87;36.00;38.13 35.53;37.88;39.80 1388.71 3803.57 4458.65

33.2;35.87;37.35 36.45;38.20;39.76 1387.43 3777.99 4454.54

5.2 Solution of Fuzzy Inventory Model without DM’s preference by
IFDM

The problem given in (3.10) and (3.11) is now solved by IFDM method and
the results are presented in the following pay-off matrix of the profit functions
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Table 2. Optimum order quantities and profits obtained by Proc 1 via MOGA.

cases Ret-1’s Ret-2’s Whol’s Ret-1’s Ret-2’s
Ord.Quan. Ord.Quan. Profit ($) Profit ($) Profit ($)

33.45;35.69;39.79 37.12;39.29;42.16 1571.55 3750.12 3991.14
δ = 0 32.22;35.68;37.76 39.24;41.65;44.75 1569.03 3760.42 4117.88

33.40;36.68;39.80 36.24;40.83;44.28 1533.84 3772.36 4109.34

32.85;35.63;38.71 36.15;37.98;42.28 1390.00 3817.35 4435.20
δ = 5% 34.02;36.00;38.76 35.00;37.88;40.35 1385.00 3801.24 4455.24

33.02;35.87;38.73 36.10;38.20;40.97 1383.57 3773.25 4451.45

PFk for δ = 0 and δ = 5:




PFcw PFc1 PFc2

2401.19 2258.54 2732.891

1062.28 10604.70 2924.00

1125.08 2446.10 10412.38


 ,




PFcw PFc1 PFc2

2372.20 2258.54 2760.73

921.52 10867.66 4181.63

993.55 2558.55 10632.34


 . (5.1)

In addition to the above input data, we consider lower and upper bounds
for the profit function which are within the lower and upper bounds of the
pay-off matrix. This information is presented in Table 3.

Table 3. Input data for lower and upper values of PFk’s.

δ = 0 δ = 5%

Member Lower Upper Lower Upper

PFcw 1090.00 2020.00 1170.00 2040.00

PFc1 2960.00 4560.00 2760.00 5260.00

PFc2 2920.00 4010.00 2830.30 5100.00

With the above values, the membership functions of the objective functions
were formed of the types as given in Table 4.

Table 4. Possible types of MF for objective functions.

Objective functions Type of membership functions

PFcw Type-I or Type-II or Type-III

PFc1 Type-I or Type-II or Type-III

PFc2 Type-I or Type-II or Type-III

At the beginning, analysis is performed to find optimum values with the
membership functions for PFcw, PFc2 as linear (Type I) and PFc1 as Quadratic
(Type II). The optimum values of α are α∗ = 0.643 (for δ = 0) and α∗ = 0.779
(for δ = 5%). With these values of α∗, the objective functions are optimized
to their corresponding optimum order quantities and profits. The Generalised
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Reduced Gradient method was used for optimization. The obtained results are
presented in Table 5.

Table 5. Optimal results with priority (importance) to different objective functions.

cases Import. Ret-1’s Ret-2’s Whol’s Ret-1’s Ret-2’s
Mem. Ord.Quan. Ord.Quan. Profit ($) Profit ($) Profit ($)

PFcw 39.69 38.76 1640.94 3561.87 3468.82

δ = 0 PFc1 38.73 37.23 1508.12 4009.68 3561.87

PFc2 38.76 37.21 1507.45 3468.82 4119.00

PFcw 39.69 38.76 1466.76 3612.25 3839.56

δ = 5% PFc1 38.73 37.23 1355.60 4150.40 3839.05

PFc2 38.76 37.21 1354.91 3611.41 4240.64

6 Discussion

Table 1 gives the optimum order quantities and profits for the wholesaler and
retailers with equal priority to each of them. Moreover, through MOGA, a set of
near optimum solutions for wholesaler and retailers is presented. Here DM may
opt the optimum or any one of the near optimum solutions according to his/her
convenience considering the real-life situation. In (5.1), pay-off matrix i.e.,
lower and upper boundaries of profit function for the system are presented. It is
noted that corresponding optimum values in Table 1 stay within these extreme
values. Values in Table 3 are used to construct the membership functions for
the profit objectives. Here again DM plays a crucial role. Depending upon
his/her experience on the various objective functions, he/she selects the type
of the membership functions.

In Table 5, optimum values have been displayed for particular type of mem-
bership functions of the objectives. Comparing the results in Table 1 (with
equal importance) and Table 5(with varied importance ), it is observed that
the profits for wholesaler do not differ much. For the case with δ = 0, maxi-
mum profits for wholesaler are $1575.5 and $1640.94, respectively. Similar, in
the case of retailer-2 those values are $4119.00 and $4263.37. But, in the case
of retailer-1, maximum values differ considerably as the maximum profits are
$3773.62 in MOGA and $4009.68 in IFDM. This is because we considered the
quadratic membership function for retailer-1.

The same features are observed for the case with δ = 5%. It also reveals
that, when 5% push-sale is considered, the wholesaler loses nearly 11% of his
profit. In this situation each retailer’s profit increases between 4% to 5% for
the given input data.

7 Conclusion

In this paper, a realistic bi-level inventory problem with imprecise demand and
time dependent reducing selling price has been presented. Here, the imprecise
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demands of the customers at different locations vary with time and are met
through the retailer at that location. So the governing differential equations
and the corresponding stock status of the retailers are fuzzy in nature which
are solved in fuzzy sense. After that, the profit functions of wholesaler and
different retailers are formulated and these are also fuzzy in nature. The fuzzy
objective functions are represented in terms of mean function, left and right
spread functions and then defuzzified by the centroid of corresponding objective
function.

The problem is solved using both MOGA and IFDM technique. The IFDM
technique helps the DM to get the solution which suits him/her best. For
the first time, a real-life, inventory control problem has been formulated at bi-
level with time-dependent imprecise demand. The solution technique is based
on a fuzzy differential equation, which is formulated for the inventory control
system.

Finally, future research in this direction should consider the extension of
the present approach to the inventory control system with finite time, quantity
discount, imprecise inventory cost.

Appendix-A

It is define that,

S̃Pj = (SP , SPL, SPR)j =

∫ tj

0

sj(t)D̃j(t) dt + saj c̃j

=

∫ tj

0

s0j(1−
bj

100
[t])D̃j(t) dt + saj c̃j .

Therefore, for i equal to the integer part of tj

SP =

∫ tj

0

s0j(1 −
bj

100
[t])D0je

−t dt + saj c̃j

= s0jD0j

{ i∑

k=1

∫ k

k−1

(1 −
bj

100
(k − 1)e−tdt +

∫ tj

i

(1 −
bj

100
i)e−t dt

}
+ saj c̃j

= s0jD0j

{ i∑

k=1

(1−
bj

100
(k − 1)

∫ k

k−1

e−tdt + (1−
bj

100
i)

∫ tj

i

e−tdt
}

+ saj c̃j

= s0jD0j

{
(1−

bj

100
i)(e−i− e−tj) +

i∑

k=1

(1−
bj

100
(k − 1)e−k(e− 1)

}
+ saj c̃j ,

SPL =

∫ tj

0

s0j(1−
bj

100
[t])(D0j −∆L)e−t dt = SP −∆Ls0j

×

∫ tj

0

(1−
bj

100
[t])e−t dt = SP −∆Ls0j

×
(
(1− e−tj )−

bj

100

{ [tj ]∑

a=1

(a− 1)ea(e− 1) + [tj ]
(
e−[tj] − e−tj

)})
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and

SPR =

∫ tj

0

s0j(1−
bj

100
[t])(D0j + ∆R)e−t dt = SP + ∆Rs0j

×

∫ tj

0

(1−
bj

100
[t])e−t dt = SP+∆Rs0j

(
(1−e−tj )

−
bj

100

{ [tj ]∑

a=1

(a− 1)ea(e− 1) + [tj ]
(
e−[tj ]−e−tj

)})
.
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