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Abstract. In this paper we propose new heuristic numerical algorithm for deter-
mination of the optimal wires diameters in electrical cables. Two multilevel parallel
versions of the optimization algorithm are constructed. The first algorithm is based
on master-slave technique and the second algorithm uses the data-parallel strategy.
Multilevel structure of the algorithms gives a possibility to adapt them to parallel
architecture, for example, cluster of multicore computers. Some results of numerical
experiments are presented which agree well with theoretical analysis.

Key words: Parallel algorithms, optimization, finite volume method, electrical
cables, mathematical modelling.

1 Introduction

In modern cars electrical and electronic equipment is of great importance. One
of the main tasks for engineers is to determine optimal conductor cross-sections
in bundles of electric cables in order to minimize the total weight of cables. A
quantitative description of the thermo-electrical characteristics in the electri-
cal cables can be obtained by using mathematical models based on parabolic
partial differential equations. In our previous papers (see, [5, 11]) we have
proposed efficient parallel numerical algorithms for simulation of temperature
distribution in electrical cables and have solved an inverse problem for fitting
the diffusion coefficient of the air-isolation material mixture to the experimen-
tal data. In this paper we solve the optimization problem and minimize the
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total weight of cables.
The rest of the paper is organized as follows. In Section 2, the global op-

timization problem is formulated. The goal is to minimize the total mass of
the metal in all wires under the constraint that the temperatures of the wires
remain bounded by some given maximal value. Two different strategies of
wires distribution, i.e. pessimistic and average, are considered. In the follow-
ing subsections, first, the mathematical model of the temperature distribution
in the bundle of electrical wires is described. Then, following [5], the Finite
Volume (FV) discretization and sequential numerical solution algorithm are
shortly presented. Next, the parallel version of the algorithm (proposed in
[11]) is described. The parallel solution algorithm is based on the domain de-
composition. Here we add the theoretical scalability analysis and study the
performance of the algorithm on the hybrid parallel system used for computa-
tional experiments in this paper - cluster of multicore nodes. In Section 3 the
optimization problem is solved. Since the formulated optimization problem
is NP-hard [8] we restrict to heuristic algorithm which is based on a greedy
type search method [1]. Parallel multilevel algorithms are developed using the
master-slave and data decomposition paradigms. In the following subsections
results of computational experiments are presented and the efficiency of the
proposed parallel algorithms is investigated. The last example of this section
gives the optimization results (distribution of wires diameters) for the bundle
of electrical cables consisting of 32 wires. Some final conclusions are given in
Section 4.

2 Problem Formulation

Let G = {dk, k = 1, . . . , K} be a set of feasible diameters of wires and
D = (dk1

, . . . , dkM
), dkm

∈ G, m = 1, . . . , M - a set of diameters in a bundle
from M cables. The critical scenarios of loads of electrical cables are defined
by

Sj = { Im
j , m = 1, . . . , M }, j = 1, . . . , J,

where Im
j defines the current applied to the m-th wire in the j-th scenario.

These scenarios are selected from a set of regimes which are important for the
design of a specific car.

The objective function W defines the total mass of metal in all wires. It is
defined by the following formula

W (dk1
, . . . , dkM

) =
ρπ

4

M∑

m=1

d2

km
,

where ρ is the density of the metal.
Our aim is to solve the following optimization problem

min
dkm

∈G, s.t. T≤TMax

W (dk1
, . . . , dkM

) = W (d0

k1
, . . . , d0

kM
). (2.1)

Here TMax is the given critical (e.g., melting) temperature, T is the maximal
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temperature of electrical wires with respect to all load scenarios

T = max
1≤j≤J

max
1≤m≤M

Um(Sj),

and Um(Sj) denotes the simulated temperature of the m-th wire when Sj load
scenario is used.

Temperatures Um(Sj) depend also on the packing of cables inside the bun-
dle. This packing is practically not controlled in real bundles, therefore, in our
optimization problem we consider two packing strategies to estimate the worst
and average cases: pessimistic and average. With pessimistic strategy, for each
scenario Sj, we define the distribution of wires Ωj

P = ΩP (Sj) using the greedy
packing heuristic. First, all wires are sorted according to their densities of loads

ηm =

(
4Im

j

πd2

km

)2

, m = 1, . . . , M.

Then the greedy packing algorithm takes wires with the highest density one
by one and puts them to the center of a bundle of electrical cables as close
as possible. Due to the maximum principle, we expect that such a distribu-
tion of cables leads to temperatures of wires close to maximum. For a given
distribution of wires Ωj

P , we find a discrete stationary solution

U(Ωj
P ) = {Uik, Xik ∈ Dh(Ωj

p) }

of the nonlinear heat conduction problem and define Um(Sj), m = 1, . . . , M .
Here Dh(Ωj

p) is a discrete grid defined on the domain of a cable bundle D(Ωj
P ).

A short description of the mathematical model and the discrete finite-volume
scheme for numerical solution of this problem will be presented in the next
subsection.

With the average strategy, for each scenario Sj , we define a set Ωj of random
distributions of wires Ωj = {Ωj

l = Ωl(Sj), l = 1, . . . , L} and compute Um(Sj)
as an average of temperatures for different distributions of wires

Um(Sj) =
1

L

L∑

l=1

Um(Ωj
l ), m = 1, . . . , M. (2.2)

Thus, in order to compute a value of objective function W , we generate J or
JL different distributions of wires and for each distribution we solve the given
stationary heat conduction problem.

2.1 Mathematical model

For a given bundle of electrical cables we consider a domain D× (0, tF ], where
D = {X = (x1, x2) : x2

1
+ x2

2
≤ R2}, R is the outer radius of the bundle.

Let T (X, t) describe a distribution of the temperature in electrical cables. The
mathematical model consists of the parabolic differential equation [5, 10]:

ρ(X)c(X, T )
∂T

∂t
=

2∑

i=1

∂

∂xi

(
k(X)

∂T

∂xi

)
+ f(X, T ), (X, t) ∈ D × (0, tF ], (2.3)
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subject to the initial and boundary conditions

T (X, 0) = Ta, X ∈ D̄ = D ∪ ∂D, (2.4)

k(X, T )
∂T

∂η
+ αk(T )

(
T (X, t) − Ta

)
+ εσ

(
T 4 − T 4

a

)
= 0, X ∈ ∂D. (2.5)

The continuity conditions

[T (x, t)] = 0,
[
k

∂T

∂xi

]
= 0

are specified at the points of discontinuity of coefficients.
In the model, c(X, T ) is the specific heat capacity, ρ(X) is the density, k(X)

is the heat conductivity coefficient. The density of the energy source f(X, T ) is
defined as f =

(
I/A

)2
ρ0

(
1 + αρ(T − 20)

)
, here I is the density of the current,

A is a area of the cross-section of the cable, ρ0 is the specific resistivity of the
conductor, Ta is the temperature of the environment.

2.2 Finite volume discrete scheme

The computational grid D̄h = Dh ∪ ∂Dh is obtained by constructing the aux-
iliary grid D̃h = Ωh ∩ D̄, which is defined as intersection of the equidistant
rectangular grid Ωh with the computational domain D̄ and deleting from it
those nodes Xij , for which both neighbours in some direction does not belong
to D̃h. In D̄h we define discrete functions Un

ij = U(x1i, x2j , t
n), Xij ∈ D̄h, here

tn = nτ and τ is the discrete time step.
Integrating the differential equation over the control volume and approxi-

mating the obtained integrals with an individual quadrature for each term, the
differential problem is discretized by the conservative scheme

Sijρijcij(U
n
ij)

Un
ij − Un−1

ij

τ
=

3∑

k=0

δijkJijk(Un
ij)U

n
ij + Sijfij(U

n
ij), Xij ∈ D̄h,

where Jn
ijk(Un

ij)U
n
ij is the heat flux through a surface of the control volume

eijk = ek(Xij). More details on this approximation are given in [5].
The derived finite difference scheme defines a system of nonlinear equations.

By using the predictor–corrector method it is approximated by the linear finite-
difference scheme of the same order of accuracy. The obtained systems of linear
equations are solved by using the BiCGSTAB iterative method with the Gauss-
Seidel type preconditioner [15]. We note that solution of such systems is a
challenging task, since the diffusion coefficient k(X) is a discontinuous function
and the jump of the coefficient is large. In such a situation the discrete values of
the temperature in the metal regions start to be non-sensitive to outside changes
of the temperature and iterations converge slowly. Extensive analysis of many
iterative algorithms for solution of such problems is given in [2, 7, 13]. The
discontinuous Galerkin method is used to approximate the PDE in [7], while in
[2] the conservative finite difference scheme is proposed. Efficient solvers of such
problems can be obtained by using multigrid algorithms, or multigrid solvers
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can be used as efficient preconditioners for Krylov type iterative algorithms.
Fore example, a multilevel additive Schwartz preconditioner is proposed in [7]
and in [16] an interface preserving coarsening multigrid algorithm is proposed
for elliptic problems with highly discontinuous coefficients.

In this work, we have investigated the dependence of the convergence rate of
BiCGSTAB iterative method on the space and time discrete steps, which define
the stiffness of the matrix, and on the values of the discontinuous coefficient
k(X). As a test problem we have computed a solution of the linearized discrete
scheme at one time step. In the isolator and the air-isolator mixture regions
the values of the diffusion coefficient were fixed to 0.17 and 0.13, respectively.
The problem was solved for different values of k(X) = k0 in the metal region,
where k0 = 401 corresponds to the copper. The outside radius of the electrical
cable is fixed to R = 0.004 and the width of the isolation layer is equal to
0.00015. The domain is covered with the auxiliary grid of dimension N × N .

In Table 1 we present the numbers of iterations required to reduce the initial
error in the discrete maximum norm by factor 10−4. First, the time step ht is
taken very large, corresponding to the solution of a stationary problem.

Table 1. Numbers of BiCGSTAB iterations for different values of N and k0.

N = 100 N = 200 N = 400 N = 800

k0 = 0.401 70 112 209 385
k0 = 4.01 75 137 270 457
k0 = 40.1 80 157 299 600
k0 = 401 99 183 371 714

When time step ht is taken smaller, the convergence rate of the iterative
algorithm is increased. In Table 2 the numbers of BiCGSTAB iterations are
presented for k0 = 401, N = 200, 400 and different values of ht.

Table 2. Numbers of BiCGSTAB iterations for different values of time step ht.

ht = 100000 ht = 100 ht = 10 ht = 1

N = 200 183 154 191 64
N = 400 371 305 180 118

2.3 Parallel version of the discrete algorithm

In this subsection we give a short description of the parallel algorithm to solve
the discrete problem obtained after approximation of the mathematical model
by the finite volume scheme. More details can be find in our paper [11].

The parallel algorithm is based on the domain decomposition method. The
discrete grid D̃h is distributed among p processors.

Math. Model. Anal., 13(4):471–482, 2008.
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The sequential algorithm consists of two parts. First, the discretization
operators are applied and the coefficients of the system of linear equations
are computed for predictor and corrector steps of the linearization algorithm.
Second, the obtained systems of linear equations are solved by the BiCGSTAB
iterative method. In order to get a scalable parallel algorithm we implement
both steps, i.e. the discretization and linear algebra steps, in parallel. It is well
known that for such type of problems the main part of CPU time is spent in
solving the systems of linear equations (see, e.g. [6, 14]).

The convergence rate of iterative methods depends essentially on the quality
of the preconditioner. The Gauss-Seidel algorithm is sequential in its nature.
For the parallel BiCGSTAB algorithm we use a Jacobi version of the Gauss-
Seidel preconditioner. Such an implementation depends only on the local part
of the matrix and no data communication is required. The convergence rate
of the modified parallel BiCGSTAB solver can be worse than the convergence
rate of the sequential iterative algorithm. Thus, in general, the complexity of
the full parallel algorithm does not coincide with the complexity of the original
sequential algorithm.

At the domain distribution step we solve the load balancing problem. First,
since the computational complexity of the algorithm is proportional to the max-
imum number of grid points in local sub-domains, the aim is to divide the grid
into subdomains with equal number of points. Second, due to the stencil of dis-
cretization, the computational domains of processes overlap. The information
belonging to the overlapped regions should be exchanged between processes.
This is done by the additional halo layers of so called ghost-cells. The time costs
of such data exchanges are contributing to the additional costs of the parallel
algorithm. Thus, a second goal of defining the optimal data mapping is to min-
imize the overlapping regions. It is well known that such global minimization
problems belong to the class of NP-hard (nondeterministic polynomial-time
hard) problems and thus we must restrict ourself to some heuristic algorithms.
For data distribution we use the multilevel partitioning method from METIS
software library [12]. This algorithm produces partitions of high quality and it
has a linear algorithmic complexity.

Next, we estimate the complexity of the parallel algorithm. The matrices
and right-hand side vectors are assembled element by element. This is done
locally by each process. The time required to calculate all coefficients of the
discrete problem is given by Wp,coeff = c1n/p, here n is the number of elements
in the grid.

All ghost values of the vectors belonging to overlapping regions are ex-
changed between processes. The data communication can be done in parallel
between different pairs of processes. Thus, we estimate the costs of data ex-
change operation as Wexch = α + βm, where m is the number of items sent
between two processes, α is the message startup time and β is the time required
to send one element of data.

The sequential BiCGSTAB algorithm is modified to the parallel version in a
way such that its convergence properties are not changed during the paralleliza-
tion process. The only exception is due to the block Jacobi implementation of
the Gauss-Seidel preconditioner B. Then each process computes B

−1 by using
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only a local part of matrix A. Four different operations of the BiCGSTAB
algorithm require different data communications between processes. Compu-
tation of vector saxpy (i.e. ~y = α~x + ~y) operation is done in parallel and only
local parts of vectors are used, the complexity of this operation is estimated by
Wp,saxpy = c2n/p. Before computation of matrix-vector multiplication, vectors
are updating information at ghost points, then all computations are done in
parallel, thus the complexity of matrix-vector multiplication is given by

Wp,mv =
c3n

p
+ 2(α + βm(p)).

The computation of inner product or norm requires Wp,dot = c4n/p+R(p)(α+
β). Here R(p) defines the complexity of the global reduction operation and
it depends on the given computer network. It is implemented by using MPI
function Allreduce.

The computation of the preconditioner B and application of this precondi-
tioner is done locally by each process without any communication operation,
the cost of this step is given by Wp,D = c5n/p. Summing up all the estimates,
we obtain the theoretical model of the complexity of the parallel algorithm:

Wp = K
(
c6

n

p
+ c7(α + βm(p))

)
(2.6)

+ N(p)
(
c8

n

p
+ c9R(p)(α + β) + c10(α + βm(p))

)
,

where K is the number of time steps, and N = N(p) is a total number of
BiCGSTAB iterations. As was explained above N depends on p. The presented
theoretical complexity model enables us to make a scalability analysis, similar
to one presented in [6].

At the end of this subsection we present some results of computational
experiments. Computations were performed on Vilkas cluster of computers
at Vilnius Gediminas Technical University, consisting of nodes with Intel(R)
Core(TM)2 Quad processor Q6600. Four processing cores are running at 2.4
GHz each and sharing 8 MB of L2 cache and a 1066 MHz Front Side Bus. Each
of the four cores can complete up to four full instructions simultaneously.

The discrete problem was solved on 500×500 and 750×750 reference grids.
In Table 3 for each number of nodes and cores in the node - nd ×nc the values
of the algorithmic speedup coefficient Sp = T1/Tp and efficiency Ep = Sp/p are
presented (here the total number of processes p = ndnc).

The presented results give us a possibility to make the scaling analysis the
efficiency of the parallel algorithm. In the case when only one core per node is
used, the efficiency is improved, when the size of the problem is increased. It
can be recommended to use till two cores per one node in practical simulations.
In the case of four cores per node data reading/writing operations start to be
a bottle-neck of the parallel BiCGSTAB algorithm, since the discrete scheme
defines very sparse matrix.

Math. Model. Anal., 13(4):471–482, 2008.
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Table 3. Results of computational experiments on Vilkas cluster for different numbers
and configurations of processes (nd × nc).

(2× 1) (1× 2) (4 × 1) (2× 2) (1× 4) (8 × 1) (8× 2)

Sp(500) 1.96 1.60 3.68 3.43 1.78 5.45 6.81
Ep(500) 0.98 0.80 0.92 0.84 0.45 0.69 0.43

Sp(750) 1.98 1.50 3.94 3.27 1.65 7.25 11.49
Ep(750) 0.99 0.75 0.98 0.82 0.41 0.91 0.72

3 Optimization Algorithm

In general, optimization problem (2.1) is a NP-hard problem and exhaustive
combinatorial search procedure is not realistic even for a small number of wires
(see, [1, 8]). In order to find an approximate solution we propose the following
heuristic, which is based on a greedy search algorithm (see, Fig. 1).

OptimalSetOfWires ()
begin

(1) D = SelectInitialSetOfWires();
(2) while ( T ≤ TMax ) do

(3) SaveOptimalSetOfWires(D);
(4) oK = FindLighterSetOfWires(D, G);
(5) if ( oK == 1 ) do

(6) for ( j=0; j<J; j++ ) do

(7) Ωj = GenerateSetOfDistributions(Sj, D);
(8) Tj = ComputeTemperature(Ωj);

end for do

(9) T = max0≤j<J Tj ;
else

(10) T = 2 TMax;
end if do

end while do

end OptimalSetOfWires

Figure 1. Algorithm for solving optimization problem (2.1) .

Using notations given in the definition of problem (2.1) we put

Tj = max
1<m<M

Um(Sj), j = 1, . . . , J.

As was stated above, the pessimistic distributions of wires are generated by
the greedy packing algorithm, which again is only an heuristic and it can not
guarantee that we find the largest possible temperature Tj . Due to discrete
version of the packing algorithm and due to the nonlinearity of the mathemati-
cal model it is possible to obtain situations, when the temperature Tj decreases
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after testing a lighter set of wires. Therefore we propose a modification of the
algorithm, when temperature of the wires is computed additionally on the grid
Ωj generated for the old optimal pessimistic distribution and the radius of one
wire is changed according the selection step. Then Tj is equal to the largest
value for two investigated distributions.

3.1 Parallel optimization algorithm

The proposed above optimization algorithm has at least three parallelization
levels.

1. First, in step (6) all subproblems for different load scenarios are indepen-
dent and can be solved in parallel.

2. The second parallelization level is obtained considering the solution of
each of J subproblems. In the case of the pessimistic strategy in order
to simulate the temperatures of cables two independent distributions of
wires are generated. In the case of the average strategy (2.2) the number
of generated independent distributions of wires is equal to L.

3. At the last parallelization level the temperature inside a bundle of elec-
trical cables can be simulated by using the parallel version of the discrete
algorithm given in Section 2.

Here we consider two parallel versions of the given optimization algorithm.
The first one uses a very popular general approach to construct parallel algo-
rithms: the master – slave paradigm. It is applied in heterogeneous environ-
ments of varying computational complexity of subproblems and/or non-uniform
and non-dedicated parallel architecture (see, [3, 4, 9]). This approach intro-
duces very naturally the dynamical load-balancing techniques.

For the given optimization algorithm we use the following master – slave
template.

• The master constructs a pool of independent problems at Level 2 of the
parallel optimization algorithm and sends these problems to slaves.

• Groups of slaves solve the obtained temperature simulation problems by
using the parallel algorithm from Level 3.

The second version is based on the data distribution paradigm. Again,
we construct a multilevel parallel algorithm. First, according to the scheme
given above, all processes are divided into J groups. Each group of processes
solves the heat conduction problem for one of the scenarios. In computational
experiments, we have applied this strategy for a pessimistic variant of the wires
distribution, therefore our parallel tool is restricted to the two level algorithm
(i.e. only Levels 1 and 3 are implemented).

Math. Model. Anal., 13(4):471–482, 2008.
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3.2 Results of computational experiments

As the first example, we consider the computation of optimal wire distribution
in the case of average strategy, when the temperature of wires is averaged in J
experiments. The master-slave tool is used to solve this optimization problem.
In Table 4, the CPU time, the speedup coefficient Sp and the efficiency coeffi-
cient Ep of the parallel optimization algorithm are presented. The parameters
of the problem are chosen as J = 4, L = 9 and the reference grid 250 × 250 is
used for the approximation.

Table 4. Results of computational experiments using the master–slave tool.

(2× 1) (1 × 4) (5× 1) (2× 4) (5 × 2) (10× 1) (10 × 2)

Tp 10717 11060 5353 6358 2627 2383 1250
Sp 2.0 1.94 4.0 3.37 8.15 8.98 17.14
Ep 0.666 0.484 0.80 0.42 0.82 0.90 0.86

It follows from the presented results, that the master-slave algorithm dis-
tributes the work in a load-balanced way. Since all subproblems are of very
similar computational complexity the speedup is equal to the number of slaves
when each slave gets the same number of jobs. The second conclusion is that
only up to two cores of one node can be used efficiently for this type of solver
(note, that the main part of CPU time is spend by BiCGSTAB solver and the
matrix of the system is very sparse).

As the second example, we consider the computation of optimal wire dis-
tribution in the case of pessimistic strategy. The multilevel parallel algorithm
based on the data decomposition method is used to solve this optimization
problem. In Table 5, the CPU time, the speedup coefficient Sp and the effi-
ciency coefficient Ep of the parallel optimization algorithm are presented. The
finite volume scheme is constructed for the reference grid 250× 250. The num-
ber of scenarios is J = 4, therefore all processes are divided into two or four
groups, depending on the total number of processes. In Table 5 we define by
(nd × nc) the number of nodes and cores per node used in computations.

Table 5. Results of computational experiments using the data-parallel optimization
algorithm.

(4× 1) (4× 2) (8 × 1) (12× 1) (8 × 2) (12× 2)

Tp 900 506 579 557 393 371
Sp 4.0 7.11 6.21 6.46 9.16 9.7
Ep 1.0 0.89 0.78 0.54 0.57 0.41

In the last experiment we have optimized the diameters of the wires in a
bundle of 32 electrical wires. The set of feasible diameters G has K = 9 different
elements. We have restricted the search algorithm to 13 selection steps and
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the temperature of the wires was simulated for 360 seconds. The pessimistic
strategy was used to compute the maximum value of the temperature for a
given set of wires. The total mass of the initial set of wires was 7.363 and the
maximum temperature obtained in simulations was 99.1 degrees. After 13 steps
of optimization the mass of wires was reduced to 6.186, while the temperature
increased till 103.51 degrees.

4 Conclusions

In this work we have solved the optimization problem for determination of
optimal diameters of wires in bundles of electrical cables. Several heuristics
are proposed: greedy type search method and two packing strategies. Two
parallel versions of optimization algorithm were developed: master-slave and
data-parallel. In combination with parallel algorithm for the solution of heat
conduction problem, we have obtained multilevel parallel algorithms, which
can be adapted to different parallel computer architectures.
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J. Žilinskas(Eds.), Parallel Linear Algebra and Optimization: Advances and Ap-

plications. Springer Optimization and Its Applications. ISBN: 978-0-387-09706-

0, volume 27, pp. 185–196, New-York, 2009. Springer.

[15] H. Van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput.,
13(3):631–644, 1992.

[16] W. Wan. Interface preserving coarsening multigrid for elliptic problems with
highly discontinuous coefficients. Numerical Linear Algebra with Appl., 7(8):727–
742, 2000.


	Introduction
	Problem Formulation
	Mathematical model
	Finite volume discrete scheme
	Parallel version of the discrete algorithm

	Optimization Algorithm
	Parallel optimization algorithm
	Results of computational experiments

	Conclusions
	References

