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Abstract. The problem of minimization of a smoothing functional under inequality
constraints is considered in a hyperplane. The conditions of the existence of a solution
are obtained and some properties of this solution are investigated. It is proved that
the solution is a spline. The method for its construction is suggested.
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1 Smoothing Histosplines

Let a mesh △n : a = t0 < t1 < . . . < tn = b be given for the interval [a, b],
and let F = {f1, . . . , fn} be a corresponding histogram, i.e. fi is the frequency
for the interval [ti−1, ti], where i = 1, . . . , n. The mesh sizes are denoted by
hi = ti − ti−1, i = 1, . . . , n.

In many practical applications it is of interest to have a function g that
satisfies the area matching histopolation conditions

ti
∫

ti−1

g(t)dt = fihi, i = 1, . . . , n.

We will take into account that the information on frequencies fi, i = 1, . . . , n,

is obtained in practice as a result of measuring, experiment or preliminary
calculations and it may be inexact. Hence for given numbers εi ≥ 0, i =
1, . . . , n, we consider more general histopolation conditions

∣

∣

∣

ti
∫

ti−1

g(t)dt − fihi

∣

∣

∣
≤ εi, i = 1, . . . , n. (1.1)
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Let us formulate the following problem.

Problem 1

b
∫

a

(

g(q)(t)
)2

dt −→ min
g∈D1(ε)

,

D1(ε) =
{

g ∈ W
q
2 [a, b] :

∣

∣

∣

ti
∫

ti−1

g(t)dt − fihi

∣

∣

∣
≤ εi, i = 1, . . . , n

}

,

where W
q
2 [a, b] is the Sobolev space. In the case of exact information (i.e. εi = 0

for all i) we have a histopolation problem the solution of which is a spline s

(called a histospline) from the space S(△n) of integral splines of degree 2q and
defect 1 over the mesh △n (see, e.g. [5]):

S2q,1(△n) =
{

s ∈ W
q
2 [a, b] :

ti
∫

ti−1

g(t) dt = 0, i = 1, . . . , n,

=⇒

b
∫

a

g(q)(t)s(q)(t) dt = 0 for all g ∈ W
q
2 [a, b]

}

.

In the case of inexact information (i.e. εi > 0 for some i) it is a problem of
smoothing histopolation. If n ≤ q, then any polynomial of degree q − 1, which
satisfies the condition of histopolation (1.1), gives the solution of Problem 1.
If n > q and no algebraic polynomial of degree q − 1 satisfies the inequalities
(1.1), then Problem 1 has a unique solution (e.g. [5]). This solution is a spline
from the space S2q,1(△n), which minimizes the smoothing functional under
restrictions. This spline is called a smoothing histospline. Such problem is
investigated in [2].

The main purpose of the present paper is to consider Problem 1 with one
additional restriction. We formulate the following problem.

Problem 2

b
∫

a

(

g(q)(t)
)2

dt −→ min
g∈D2(ε)

,

D2(ε)=
{

g ∈ W
q
2[a, b] :

b
∫

a

g(t) dt = 1,
∣

∣

∣

ti
∫

ti−1

g(t) dt − fihi

∣

∣

∣
≤ εi, i = 1, . . . , n

}

.

The condition
b
∫

a

g(t)dt = 1 appears under approximation of a given normalized

histogram F with frequencies fi, i = 1, . . . , n. We investigate this problem in a
more general case in a Hilbert space (see Problem 3) and obtain the existence
and the characteristics of its solution. We reduce Problem 3 to the problem
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of "almost" linear programming problem with some nonlinear conditions (see
Problem 5) and propose the method for finding its solution by one modification
of the simplex algorithm.

2 The Generalization of the Problem of Smoothing His-

topolation

Let X , Y be Hilbert spaces and assume that a linear operator T : X → Y and
linear functionals ki : X → IR, i = 1, . . . , n, are continuous. For given vectors
r = (r1, . . . , rn) and ε = (ε1, . . . , εn) with εi ≥ 0, i = 1, . . . , n, we consider the
following conditional minimization problem.

Problem 3

‖ Tx ‖Y −→ min
x∈D3(ε)

,

D3(ε) =
{

x :
∣

∣kix − ri

∣

∣ ≤ εi, i = 1, . . . , n,

n
∑

i=1

kix =

n
∑

i=1

ri

}

.

In the case εi = 0, i = 1, . . . , n, a solution of this problem is called an
interpolating spline for a vector r and it belongs to the space

S(T, A) =
{

s ∈ X : < Ts, Tx >= 0 for all x ∈ KerA
}

,

corresponding to the operators T and A = (k1, . . . , kn). In the case of inexact
information (εi > 0) Problem 3 without the last condition defines splines in a
convex set (in the special case smoothing splines) [5, 6]. Such splines belong to
the space S(T, A), also.

Let us suppose that Im A = IRn, Im T = Y and the sum KerT + KerA

is closed. Under these assumptions for each vector r ∈ IRn there exists an
interpolating spline s ∈ S(T, A). Let us denote

Zr =
{

z ∈ IRn :

n
∑

i=1

zi =

n
∑

i=1

ri

}

, Xr =
{

x ∈ X : Ax ∈ Zr

}

,

Pr,ε =
n

∏

i=1

[

ri − εi, ri + εi

]

, Cr,ε =
{

x ∈ Xr : Ax ∈ Pr,ε

}

.

We rewrite Problem 3 in the form

||Tx||Y −→ min
x∈Cr,ε

and state the following results.

Theorem 1. A solution of Problem 3 exists. An element σ ∈ Cr,ε is a solution

of this problem if and only if there exists an element λ ∈ IRn such that

T ∗T (σ) = A∗λ and < λ, ω − Aσ >≥ 0 for all ω ∈ Pr,ε ∩ Zr.

Math. Model. Anal., 13(4):461–470, 2008.
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Proof. This theorem is a particular case of Theorem 2 from [6] (p. 10). To
prove it we check that under our assumptions the sum Cr,ε + KerT is closed,
thus in this case all conditions of Theorem 2 are true.

Taking into account that T−1(T (Cr,ε)) = Cr,ε + KerT it is sufficient to
prove that the set T (Cr,ε) is closed. We rewrite Cr,ε as the sum

Cr,ε = Sr,ε + KerA.

Here Sr,ε is the class of splines from the space S(T, A) described by taking
splines s1, . . . , sn ∈ S(T, A), which satisfy the conditions

kjsi = δij , j = 1, . . . , n, i = 1, . . . , n,

where δij is the Kronecker symbol. Under these notations

Sr,ε =
{

n
∑

i=1

wisi ∈ S(T, A) : w ∈ Pr,ε ∩ Zr

}

.

Here the spline
n
∑

i=1

wisi is interpolating for w = (w1, . . . , wn) ∈ Pr,ε ∩ Zr .

Then

T (Cr,ε) = T (Sr,ε + KerA) = T (Sr,ε) + T (KerA) and T (Sr,ε) ⊥ T (KerA).

It is known that T (KerA) is closed if and only if KerA+KerT is closed. Taking
into account also that the set

T (Sr,ε) =
{

n
∑

i=1

wiT (si) : w ∈ Pr,ε ∩ Zr

}

is closed, we prove that T (Cr,ε) is closed, so the sum Cr,ε + KerT is closed
too. ⊓⊔

Corollary 1. A solution of Problem 3 belongs to the space of splines S(T, A).

In the remaining part of the paper, we suppose that εi > 0, i = 1, . . . , n.

Theorem 2. An element σ ∈ Cr,ε is a solution of Problem 3 if and only if

there exist elements λ ∈ IRn and γ ∈ IR such that

T ∗Tσ = A∗λ, (2.1)

λi = γ if |kiσ − ri| < εi,

λi ≥ γ if kiσ − ri = −εi,

λi ≤ γ if kiσ − ri = εi, for i = 1, . . . , n.

Proof. Under the assumption that there exist elements λ ∈ IRn and γ ∈ IR

such that T ∗Tσ = A∗λ and the conditions (2.1) are true we prove that

< λ, ω − Aσ >≥ 0 for all ω ∈ Pr,ε ∩ Zr .
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Taking into account the conditions on λi for i ∈ I−, I+, I0, where

I+ =
{

i : kiσ = ri+εi

}

, I− =
{

i : kiσ = ri−εi

}

, I0 =
{

i : |kiσ−ri| < εi

}

,

we obtain

n
∑

i=1

λi(ωi − kiσ) =
∑

I∈I+

λi(ωi − kiσ) +
∑

i∈I
−

λi(ωi − kiσ) +
∑

i∈I0

λi(ωi − kiσ)

≥
∑

I∈I+

γ(ωi − kiσ) +
∑

i∈I
−

γ(ωi − kiσ) +
∑

i∈I0

γ(ωi − kiσ) = γ

n
∑

i=1

(ωi − kiσ) = 0.

Therefore we get that

n
∑

i=1

λi(ωi − kiσ) ≥ 0, ∀ω ∈ Pr,ε ∩ Zr

and by Theorem 1 σ is a solution of Problem 3. Now if σ is a solution of
Problem 3, then according to Theorem 1 there exists element λ ∈ IRn such,
that

T ∗Tσ = A∗λ and < λ, ω − Aσ >≥ 0 for all ω ∈ Pr,ε ∩ Zr .

Let us fix an index i0 ∈ I+ and take i1 ∈ I− ∪ I0. By choosing ωi = kiσ for
i 6= i0, i 6= i1, ωi0 = ki0σ − δ, ωi1 = ki1σ + δ for some 0 < δ < min{εi0 , εi1} we
can show that

< λ, ω − Aσ >=

n
∑

i=1

λi(ωi − kiσ) = −λi0δ + λi1δ ≥ 0,

therefore λi1 ≥ λi0 for all i1 ∈ I− ∪ I0 and i0 ∈ I+, i.e. for every index i ∈ I+

it holds λi ≤ min{λj : j ∈ I− ∪ I0}.
Now we can fix i0 ∈ I− and take i1 ∈ I+ ∪ I0. By choosing ωi = kiσ for

i 6= i0, i 6= i1, ωi0 = ki0σ + δ, ωi1 = ki1σ − δ for some 0 < δ < min{εi0 , εi1} we
show that

< λ, ω − Aσ >=

n
∑

i=1

λi(ωi − kiσ) = λi0δ − λi1δ ≥ 0,

therefore λi1 ≤ λi0 for all i1 ∈ I+ ∪ I0 and i0 ∈ I−, i.e. for every index i ∈ I−
it holds λi ≥ max{λj : j ∈ I+ ∪ I0}.

If we fix an index i0 ∈ I0 and take i1 ∈ I0, then by choosing ωi = kiσ for
i 6= i0, i 6= i1, ωi0 = ki0σ − δ, ωi1 = ki1σ + δ for some 0 < δ < min{εi0 , εi1} we
can show that

< λ, ω − Aσ >=

n
∑

i=1

λi(ωi − kiσ) = −λi0δ + λi1δ ≥ 0,

Math. Model. Anal., 13(4):461–470, 2008.
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therefore λi0 ≤ λi1 . But by choosing ωi = kiσ for i 6= i0, i 6= i1, ωi0 = ki0σ + δ,
ωi1 = ki1σ − δ, δ > 0, we can show that

< λ, ω − Aσ >=
n

∑

i=1

λi(ωi − kiσ) = λi0δ − λi1δ ≥ 0,

so λi1 ≤ λi0 . Therefore for all i1 and i0 from I0 we have λi1 = λi0 . Let us
denote γ = λi, i ∈ I0. We have proved that

λi = γ if i ∈ I0, i.e. |kiσ − ri| < εi,

λi ≥ γ if i ∈ I−, i.e. kiσ − ri = −εi,

λi ≤ γ if i ∈ I+, i.e. kiσ − ri = εi, for i = 1, . . . , n.

⊓⊔

3 The Equivalent Problem of Quadratic Programming

Taking into account that the solution of Problem 3 is a spline, we can re-
strict the class of functions X by the space S(T, A) and rewrite the smoothing
functional ‖Tσ‖Y as a function of n new non-negative variables

zi = kiσ − ri + εi, i = 1, . . . , n. (3.1)

If we denote by si ∈ S(T, A) the spline which satisfies the conditions kjsi =
δij , j = 1, . . . , n, i = 1, . . . , n, where δij is the Kronecker symbol, then s1, . . . , sn

is a basis of the space S(T, A). Let us express the spline σ (a solution of Problem
3) with respect to z:

σ =

n
∑

i=1

(ri − εi + zi)si.

Taking into account that σ is a solution of Problem 3 by Theorem 2 there exists
an element λ(σ) ∈ IRn such that T ∗Tσ = A∗λ(σ). Using the following two
equalities

< T ∗Tσ, sj >=< A∗λ(σ), sj >=< λ(σ), Asj >= λj(σ),

< T ∗Tσ, sj >=< σ, T ∗Tsj >=< σ, A∗λ(sj) >

=< Aσ, λ(sj) >=
n

∑

i=1

kiσλi(sj)

we prove that

λj(σ) =

n
∑

i=1

(ri − εi + zi)λji, j = 1, . . . , n, (3.2)

where (λij)j=1,...,n are the coefficients of the basis spline si, i.e. λij = λj(si).
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By introducing the matrix D = (λji)i,j=1,...,n and vectors z = (zi)i=1,...,n,
and c = (ci)i=1,...,n, where

ci =

n
∑

j=1

(rj − εj)(λji + λij), h =

n
∑

i=1

n
∑

j=1

(rj − εj)(ri − εi)λji

we rewrite

‖ Tσ ‖2=< Tσ, Tσ >=< T ∗Tσ, σ >=< λ(σ), Aσ >=

n
∑

j=1

λj(σ)kjσ

=

n
∑

i=1

n
∑

j=1

(rj − εj + zj)(ri − εi + zi)λji =

n
∑

i=1

zi

n
∑

j=1

(rj − εj)(λji + λij)

+
n

∑

i=1

n
∑

j=1

zizjλji +
n

∑

i=1

n
∑

j=1

(rj − εj)(ri − εi)λji = zDzT + czT + h

and reduce Problem 3 to the matrix form.

Problem 4

zDzT + czT −→ min
z≥0, z≤2ε, (z−ε)eT =0,

where e is the vector with n unit components.

Lemma 1. The matrix D is symmetric and positive semidefinite.

Proof. Using Theorem 1 and doing simple transformations of expressions for
λij = λj(si) and λji = λi(sj) we prove that

λji = λi(sj)ki(si) =

n
∑

l=1

λl(sj)kl(si) =< Tsj, T si >,

and, similarly, that λij =< Tsi, T sj >, thus we prove the equality λji = λij .

The inequality zDzT ≥ 0 for any vector z ∈ IRn is proved by using the
identity zDzT = ‖Ts(z)‖2, where s(z) is a spline interpolating for z. This
identity is obtained by direct calculations

zDzT =

n
∑

i=1

n
∑

j=1

λjizizj =

n
∑

j=1

zj

n
∑

i=1

ziλj(si) =

n
∑

j=1

zjλj(s(z))

=

n
∑

j=1

kj(s(z))λj(s(z)) =< Ts(z), T s(z) >= ||Ts(z)||2.

⊓⊔

Thus Problem 3 is reduced to Problem 4 of quadratic programming with sym-
metric and positive semidefinite matrix under linear restrictions.

Math. Model. Anal., 13(4):461–470, 2008.
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4 The Equivalent Problem of "Almost" Linear Program-

ming under Some Nonlinear Conditions

We use Wolfe’s method (e.g. [4]) to reduce Problem 4 to the problem of "al-
most" linear programming with some nonlinear conditions. The reasoning in
this reduction is similar to that of [1, 2] and we consider only the most impor-
tant steps. We start with the Lagrange function

F (z, λ0, λ1) = zDzT + czT + λ1(z − 2ε)T + λ0(z − ε)eT ,

where λ0 ∈ IR, λ1 = (λ1
i )i=1,...,n ∈ IRn are the Lagrange multipliers. Taking

into account the necessary and sufficient conditions for z to be a solution of
Problem 4 (see, e.g. [4])

∇zF (z, λ0, λ1) ≥ 0, ∇zF (z, λ0, λ1)zT = 0, z ≥ 0;

∇
λ1F (z, λ0, λ1) ≤ 0, ∇

λ1F (z, λ0, λ1)λ1T
= 0, λ1 ≥ 0;

∇λ0F (z, λ0, λ1) = 0,

and by introducing slack non-negative variables

µT = 2(DzT ) + cT + (λ1)T + λ0eT and z̄ = 2ε− z,

we can rewrite Problem 4 as a linear programming minimization problem of
ueT for an auxiliary non-negative vector u ∈ IRn under some nonlinear restric-
tions.

Problem 5































ueT −→ min

2DzT + cT + (λ1)T + λ0eT − µT + EuT = 0,

z + z̄ = 2ε, (z − ε)eT = 0,

µzT = 0, λ1z̄T = 0,

z ≥ 0, z̄ ≥ 0, λ1 ≥ 0, µ ≥ 0, u ≥ 0,

where E is the diagonal matrix with components 0, 1 and −1. The existence
of a non-negative solution of Problem 3 implies that zero is the solution of
Problem 5.

Theorem 3. Let Problem 3 has the unique solution. Then Problem 3 is equiv-

alent to Problem 5 in the following sense:

• Problem 5 has the unique solution too;

• The solution of Problem 3 determines the solution of Problem 5 and the

solution of Problem 5 determines the solution of Problem 3 by (3.1).

Proof. By formulating Problems 3-5 in a natural order we see that the solution
of Problem 3 determines the solution of Problem 5 by (3.1) and the system of
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restrictions of Problem 5 with u = 0. Thus we have established a connection
between the solutions of Problem 5 and Problem 3.

Let us consider the solution of Problem 5. Under the assumption that
Problem 3 is solvable for this solution we have u = 0. We denote by σ an
interpolating spline for the vector z + r− ε (see (3.1)). It is easy to show, that
σ ∈ Cr,ε. To prove that this spline gives a solution of Problem 3 we check the
necessary and sufficient conditions (2.1) from Theorem 2 for σ to be a solution
of Problem 3.

According to (3.2) and Lemma 1 for the vector λ of coefficients of spline σ

we have λ = DzT + 1
2cT . From restrictions of Problem 5 with u = 0 we obtain

2λ = 2DzT + cT = −(λ1)T − λ0eT + µT .

Now it is easy to verify the conditions (2.1) with γ = − 1
2λ0:

1. If kiσ − ri = −εi, i.e. zi = 0, z̄i = 2εi, then λ1
i = 0, µi ≥ 0 and so

λi = 1
2 (−λ0 + µi) ≥ − 1

2λ0;

2. If kiσ − ri = εi, i.e. zi = 2εi, z̄i = 0, then µi = 0, λ1
i ≥ 0 and so

λi = 1
2 (−λ1

i − λ0) ≤ − 1
2λ0;

3. If |kiσ − ri| < εi, i.e. zi 6= 0, z̄i 6= 0, then µi = 0, λ1
i = 0 and so

λi = − 1
2λ0.

By Theorem 2 a solution of Problem 5 gives the solution of Problem 3. ⊓⊔

5 The Modification of the Simplex Method

Problem 5 differs from problems of linear programming in two simple nonlinear
conditions

µzT = 0, λ(z̄)⊤ = 0.

For the solution of this new problem a modification of the simplex method
based on the Wolfe and Daugavet works ([3, 4]) is suggested. We give a short
description of this algorithm.

Initial plan. We choose z = z̄ = ε, λ = 0, µ = 0 and take an initial
value of ui as

ui =
∣

∣

∣
2(DzT )i + ci

∣

∣

∣
, i = 1, . . . , n.

The signs of ui, i = 1, . . . , n (i.e. the diagonal elements of matrix E) are chosen
in such a way that the equations

2DzT + cT + EuT = 0

are satisfied.

Iterations. Every step of the method is a transformation of the simplex
table, taking into account the lexicographic ordering (it allows us to avoid
iterative loops) and the additional conditions µz⊤ = 0, λ1z̄T = 0. We can
show that the additional nonlinear conditions do not prevent us from doing it.

Math. Model. Anal., 13(4):461–470, 2008.
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It is proved that if some simplex iteration can not be done without violation of
these nonlinear conditions then the last basic solution gives ueT = 0, i.e. we
have the solution of Problem 5.

Solution. This method gives us the values of the components of the vector
r − ε + z. The corresponding interpolating spline is the solution of Problem
3. It can be constructed by known spline interpolation methods.
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