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Abstract. A mathematical model is developed here with an aim to study the pul-
satile flow of blood through an arterial segment having a time-dependent stenosis.
Blood is considered to consist of a core layer where erythrocytes are concentrated
and a peripheral plasma layer that is free from erythrocytes. The plasma layer is
taken to behave as a Newtonian fluid,while the core layer is represented by as a Cas-
son fluid (non-Newtonian) model. The pulsatile flow is analyzed by considering a
periodic pressure gradient, which is a function of time. A perturbation analysis is
employed to solve the governing differential equations by taking the Womersley fre-
quency parameter to be small (α < 1). This is a realistic assumption for physiological
fluid flows, particularly for flow of blood in small vessels. Using appropriate bound-
ary conditions, analytical expressions for the velocity profile, the volumetric flow rate,
the wall shear stress and the flow resistance have been derived. These expressions
are computed numerically and the computational results are presented graphically, in
order to illustrate the variation of different quantities that are of particular interest
in the study.

Key words: Pulsatile flow, Casson model, Two-layer model, Time-dependent steno-

sis.

1 INTRODUCTION

The laminar flow of blood in arteries with time-dependent stenosis plays an
important role in the diagnosis and clinical treatment as well as in the fun-
damental understanding of many cardiovascular diseases. To understand the
effects of stenosis in the lumen of an artery, many researchers [5, 7, 10, 13, 22, 23]
investigated the flow of blood through stenosed arteries by treating blood as
a Newtonian fluid. However, experimental studies show that in the vicinity of
a stenosis, the shear rate of blood is low and therefore the non-Newtonian be-
havior of blood is quite prominent. The non-Newtonian flow behavior of blood
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for steady flow in stenosed arteries was studied by Misra et al.[14] as well as by
Chaturani and Samy [4], by treating blood as a Herschel-Bulkley fluid model.
Shukla et al.[17] dealt with the effects of stenosis on non-Newtonian flow of
blood in an artery by considering power-law model.

Let us introduce the following notations: r∗ is the radial co-ordinate, z∗ is
the axial co-ordinate, R∗(z, t) denotes the radius of the artery, R∗

0(z, t) is the
radius of core region, R∗

p(z, t) denotes the radius of plug region, L∗ is the length
of the artery, L∗

0 is the length of the stenosis, d∗ denotes the distance of the
onset of stenosis from the vertical axis, a is the characteristic radius, ρ is the
density of blood, µ denotes the viscosity of blood, τ∗ is the shear stress of blood,
τy is the yield stress, p∗ denotes the blood pressure, α denotes the Womersley
parameter, A is the amplitude of the flow, w is the angular frequency.

It is known that blood flow in the human circulatory system is caused by
the pumping action of the heart, which in turn produces a pressure gradient
throughout the system. Tu and Deville [21] presented a theoretical analysis of
pulsatile flow of blood in stenosed arteries, where the non-Newtonian behavior
of blood was taken to be of Herschel-Bulkley type. Cassonova and Giddens [1]
as well as Young and Tsai [24] experimentally investigated the pulsatility of
blood flow through arterial stenosis, while several other researchers [3, 15, 19]
theoretically carried out the pulsatile flow of a single-layer non-Newtonian fluid
past on arterial stenosis. Sud and Sekhon [20] presented a mathematical model
of flow in a single artery subject to a pulsating pressure gradient as well as body
acceleration. A mathematical analysis was carried out by Misra and Ghosh [11]
with an aim to study the velocity field for the pulsatile flow of blood in a porous
elastic vessel of variable cross-section.

Two-layer models of steady flow of blood through stenosed arteries were
studied by Halder et al. [8] and Shukla et al. [18]. Sharan and Popel [16]
investigated a two-phase model for blood flow in narrow tubes. Gupta et al. [6]
developed a three layered semi-empirical model for blood flow and particulate
suspension through narrow tubes, while Misra and Ghosh [12] formulated and
analyzed a three layered model of blood flow in branched arteries.

The aim of the present investigation has been to study the effect of a time-
dependent stenosis on pulsatile flow of blood considered as a two-layered fluid.
The peripheral plasma layer is considered as a Newtonian fluid, while the core
layer that contains erythrocytes is represented by a Casson fluid depicting the
non-Newtonian behavior of blood, in conformity to the experimental observa-
tion of Charm and Kurland [2]. A perturbation technique has been developed
for solving the problem analytically. The derived analytical expressions are
computed in order to examine the variation of the velocity profile, the volu-
metric flow rate, the radius of the core region, the wall shear stress and the
resistance to the blood flow.

2 Formulation of the Problem

Let us consider an axially symmetric, laminar, pulsatile and fully developed
flow of blood through a circular artery having a stenosis (see Fig.1). Cylindrical
polar coordinates (r∗, φ∗, z∗), with the pole located on the axis of artery have
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been used to analyze the problem.
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Figure 1. Schematic diagram of multiphase blood flow in a stenosed artery.

The momentum equation is given by

ρ
∂u∗

∂t∗
= −∂p∗

∂z∗
− 1

r∗
∂(r∗τ∗)

∂r∗
. (2.1)

The Casson constitutive equation describing the non-Newtonian behavior of
blood may be written as

τ∗
1

2 =
[

− µ
∂u∗

∂r∗

]
1

2

+ τ
1

2

y , τ∗ > τy, (2.2)

− ∂u∗

∂r∗
= 0, τ∗ ≤ τy. (2.3)

The theoretical analysis takes care of the two-phase flow of blood, the periph-
eral plasma layer is considered to be Newtonian, while the core region that
is supposed to contain all the erythrocytes contained in the blood inside the
artery is treated as non-Newtonian. The mathematical model that is developed
here is formulated by the following set of equations:

τ∗ = −µ
∂u∗

∂r∗
, if R∗

0(z
∗, t∗) < r∗ < R∗(z∗, t∗), (2.4)

τ∗
1

2 =
[

− µ
∂u∗

∂r∗

]
1

2

+ τ
1

2

y , if R∗

p(z
∗, t∗) < r∗ < R∗

0(z
∗, t∗), (2.5)

− ∂u∗

∂r∗
= 0, if 0 < r∗ < R∗

p(z
∗, t∗), (2.6)

along with the boundary conditions

u∗ = 0 at r∗ = R∗(z∗, t∗), (2.7)

τ∗ is finite at r∗ = 0. (2.8)

These equations are to be supplemented by the condition of continuity of u∗

and τ∗ at the interfaces r∗ = R∗

0(z
∗, t∗) and r∗ = R∗

p(z
∗, t∗).

The pressure gradient which is a function of z∗ and t∗, is represented as

∂

∂z∗
p∗(z∗, t∗) = −q∗(z∗)f(t∗)
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with q∗(z∗) = − ∂

∂z∗
p∗(z∗, 0), f(t∗) = 1 + A sin(wt∗).

For the analysis presented in the sequel, we use the following non-dimen-
sional variables

z =
z∗

a
, r =

r∗

a
, R(z, t) =

R∗(z∗, t∗)

a
, R0(z, t) =

R∗

0(z
∗, t∗)

a
,

Rp(z, t) =
R∗

p(z
∗, t∗)

a
, τ =

2τ∗

q0a
, θ =

2τy

q0a
, u =

u∗

q0a2/4µ
, t = t∗w,

Q(z, t) =
Q∗(z, t)

πq0a4/8µ
, d =

d∗

a
, δ =

δ∗

a
, L0 =

L∗

0

a
, L =

L∗

a
,

α2 =
a2w

µ/ρ
, q(z) =

q∗(z∗)

q0
. (2.9)

where q0 is a constant pressure gradient (which is negative).
In terms of these non-dimensional variables, equation (2.1) reads

α2 ∂u

∂t
= 4q(z)f(t) − 2

1

r

∂(rτ)

∂r
, 0 < r < R(z, t), (2.10)

while the equations (2.4)–(2.8) take the forms

−∂u

∂r
= 2τ, R0(z, t) < r < R(z, t), (2.11)

−∂u

∂r
= 2

[

θ + τ − 2
√

τθ
]

, Rp(z, t) < r < R0(z, t), (2.12)

−∂u

∂r
= 0, 0 < r < Rp(z, t), (2.13)

u = 0 at r = R, τ is finite at r = 0. (2.14)

Also u and τ have be continuous at r = R0(z, t) and r = Rp(z, t). The geometry
of the stenosis in non-dimensional form is given by

R(z, t) =







1 − A1(t)
[

L
(m−1)
0 (z − d) − (z − d)m

]

, if d ≤ z ≤ d + L0,

1, otherwise

with

A1(t) =
δ
[

1 − e(−t/T )
]

m
m

m−1

aLm
0 (m − 1)

, m 6= 1

here δ denotes the maximum height of the stenosis, the maximum height being
attained at z = d + L0/m1/m−1. The volumetric flow rate is given by

Q(z, t) = 4

∫ R(z,t)

0

ru(z, r, t)dr.
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3 Analytical Solution of the Problem

Considering the Womersley parameter to be small, the velocity u, shear stress
τ as well as R0 and Rp can be expressed in the following form

u(z, r, t) = u0(z, r, t) + α2u1(z, r, t) + · · · (3.1)

τ(z, r, t) = τ0(z, r, t) + α2τ1(z, r, t) + · · · (3.2)

R0(z, r, t) = R00(z, r, t) + α2R10(z, r, t) + · · · (3.3)

Rp(z, r, t) = R0p(z, r, t) + α2R1p(z, r, t) + · · · (3.4)

Using (3.1) and (3.2) in (2.10), we have

∂

∂r
(rτ0) = 2rq(z)f(t), (3.5)

∂u0

∂t
= −2

r

∂

∂r
(rτ1). (3.6)

Integrating (3.5) and using the boundary condition (2.14), we have

τ0 = q(z)f(t)Rp, 0 ≤ r ≤ Rp. (3.7)

In the regions Rp ≤ r ≤ R0 and R0 ≤ r ≤ R, the continuity of τ0 at R0p and
R00 yields

τ0 = q(z)f(t)r. (3.8)

Introducing (3.1) and (3.2) into equations (2.11)–(2.13) and equating like pow-
ers of α we obtain

−∂u0

∂r
= 2τ0, −∂u1

∂r
= 2τ1, if R0 ≤ r ≤ R, (3.9)

−∂u0

∂r
= 2

[

θ + τ0 − 2
√

θτ0

]

,

−∂u1

∂r
= 2τ1

[

1 −
√

θ

τ0

]

, if Rp ≤ r ≤ R0, (3.10)

∂u0

∂r
= 0,

∂u1

∂r
= 0, if 0 ≤ r ≤ Rp. (3.11)

The boundary conditions for u0 and u1 are:

u0 = 0, u1 = 0 at r = R, (3.12)

u0, u1 are continuous at R00 and R0p.

From (3.8), (3.9) and (3.12) we have

u0 = q(z)f(t)(R2 − r2), R0 ≤ r ≤ R. (3.13)

Using (3.12) in (3.8) and (3.10), one can find

u0 = 2θ(R00 − r) + q(z)f(t)(R2
00 − r2) − 8

3

√

θq(z)f(t)(R
3/2
00 − r3/2)

+ q(z)f(t)(R2 − R2
00), Rp ≤ r ≤ R0. (3.14)
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Now from (3.8),(3.11), (3.12) and (3.14) we have

u0 = 2θ(R00 − R0p) + q(z)f(t)(R2
00 − R2

0p) −
8

3

√

θq(z)f(t)(R
3/2
00 − R

3/2
0p )

+ q(z)f(t)(R2 − R2
00), 0 ≤ r ≤ Rp. (3.15)

Neglecting the squares and higher powers of α in (3.4) and using (3.7), one
obtains

r
∣

∣

τ0=θ
= R0p :=

θ

q(z)f(t)
. (3.16)

Again, making use of the regularity condition that τ1 is finite at r = 0, equation
(3.15) along with (3.6) gives

τ1=−
[

θ(R00−R0p)+
q(z)f ′(t)

2
(R2

00−R2
0p)−

4

3

√

θq(z)

f(t)
f ′(t)(R

3/2
00 −R

3/2
0p )

]

R0p

− q(z)f ′(t)R0p

4
(R2 − R2

00), 0 ≤ r ≤ Rp.

The continuity of τ1 at r = R0p yields

τ1 =−
[

θ
(

R00
r

2
−r2

3

)

+
q(z)f ′(t)

2

(

R2
00

r

2
−r3

4

)

−4

3

√

θq(z)

f(t)
f ′(t)

(

R
3/2
00

r

2
−2r5/2

7

)

]

− q(z)f(t)

2

(

R2 − R2
00

)r

2
+

A2

r
, Rp ≤ r ≤ R0,

the expression for A2 is given in the Appendix.
Similarly, since τ1 is continuous at R0, we have

τ1 = −q(z)f ′(t)

2

(

R2 r

2
− r3

4

)

+
A3

r
, R0 ≤ r ≤ R,

where A3 stands for a quantity whose expression is presented in the Appendix.
Using (3.12), the equations (3.9)–(3.11) give rise to

u1 = − q(z)f ′(t)

2

(R4

4
(r2 − R2) − 1

16
(r4 − R4)

)

+ A3 log
( r

R

)

, R0 ≤ r ≤ R,

u1 =X(r), Rp ≤ r ≤ R0, (3.17)

u1 =X(R0p), 0 ≤ r ≤ Rp.

The expressions for velocity in the peripheral and core layers can now be cal-
culated by using the equations (3.1), (3.13)–(3.15) and (3.17).

We note that the yield plane, which was initially located at r = R0p will
be displaced by a distance α2R1p. The new location of the yield plane can be
described mathematically by the equation

τ2(R0p + α2R1p) = θ2.
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Expanding it in Taylor’s series about R0p and using τ0(R0p) = θ, we have

R1p = − τ1(R0p)

p(z)f(t)
= − 1

p(z)f(t)

[{

θ(R00 − R0p) +
q(z)f ′(t)

2
(R2

00 − R2
0p)

− 4

3

√

θq(z)

f(t)
f ′(t)(R

3/2
00 − R

3/2
0p )

}

R0p − q(z)f ′(t)

2
(R2 − R2

00)
]

. (3.18)

Using (3.4), (3.16) and (3.18) we have the expression for Rp as

Rp =
1

q(z)f(t)
θ − α2 1

q(z)f(t)

({

θ(R00 − R0p) +
q(z)f ′(t)

2
(R2

00 − R2
0p)

− 4

3

√

θq(z)

f(t)
f ′(t)(R

3/2
00 − R

3/2
0p )

}

R0p − q(z)f ′(t)

2
(R2 − R2

00)
)

. (3.19)

The volumetric flow rate can be computed from (18) by re-writing it in the
form

Q(z, t) = 4
(

u(z, Rp, t)
R2

p

2
+

∫ R0

Rp

ru(z, r, t) dr +

∫ R

R0

ru(z, r, t) dr
)

. (3.20)

Different expressions for u(z, r, t) can to be used for the different regions.
The value of the wall shear stress τw is a quantity that is of particular

importance from the physiological point of view. It is given by

τw =
(

τ0 + α2τ1

)
∣

∣

r=R
= q(z)f(t)R + α2

(

− q(z)f ′(t)R3

16
+

A3

R

)

.

The value of R00 in (3.3) is found by using the continuity of u0 at R00. In doing
so, we have used the Newton-Raphson method, by taking the non-dimensional
velocity in the peripheral layer at R00 as its value in the steady case, i.e. 0.03.
In order to determine the value of R10, we consider the equation

τ2(R00 + α2R10) = τ2
0 (R00). (3.21)

The value of R10 can be obtained by expanding the left side of (3.21) in Taylor’s
series about R00. The resistance to the flow can be calculated by using the
formula

λ = (P0 − PL)/Q(z, t), (3.22)

where pressure p = P0 at z = 0 and p = PL at z = L.
It may be noted that if we write u = u0 + α2u1 and use (3.13)–(3.15) and

(3.17), we find that the right hand side of (3.20) involves the unknown quantity
q(z). The quantities Q(z, t) and q(z) in (3.20) are both unknown. In order to
determine q(z) one may choose the value of Q(z, t) as its value in the steady
state. By considering θ/q(z)f(t) ≪ 1 and using (3.20), we find

q(z) =
Qs

R4
+

16

7

(θQs

R5

)
1

2

+
64θ

49R
, where R = R(z, t). (3.23)
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While computing q(z), one may take Qs = 1.0 ( cf. Shukla et al.[17]). After
q(z) is determined, Q(z, t) can be calculated from (3.20).

Integrating (3.23) with respect to z between the limits 0 to L and multi-
plying by f(t) we find the value of (P0 −PL) and then calculate the resistance
of blood flow, λ by using (3.22).

4 Results and Discussion

The motivation behind developing this mathematical model has been to study
some aspects of multiphase flow of blood through an artery having a time-
dependent stenosis. For the purpose of numerical computation of the quantities
of interest, we have performed a thorough quantitative analysis, by taking the
following values of the different parameters involved in the present study:

a = 0.5mm, L = 30, L0 = 10, d = 10, θ = 0.05, A = 0.7,

δ = 0.1, α2 = 0.049, m = 2.0, T = 1.0.

In order to understand the complete nature of the time dependent stenosis, the
computed numerical results are plotted in Figs.2 and 3.
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Figure 2. Change of the shape of
stenosis for different values of m at
t/T = 1.0.
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Figure 3. Change in the shape of the
stenosis as time progresses (when m = 2

and T = 1.0).
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Figure 4. Radial distribution of blood
velocity at different axial distances(where
h = L0/m1/m−1, m = 2.0, A = 0.2.

−+−  present study

u

r/R

Siddiqui et al. [19]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.2  0.4  0.6  0.8  1

Figure 5. Comparison of velocities
with Siddiqui et al. [19] in the non-
stenosis region for A = 0.2, θ = 0.01,
t = 0.78.

Fig. 2 shows the shape of the stenosis for different values of the parameter
m ≥ 2 for a particular time period t/T = 1.0. It may be observed that the
geometry of the stenosis is symmetric for m = 2.0 and that the symmetry is
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disturbed as the value of m increases. In Fig. 3 we have illustrated the change
in the shape of the stenosis with the advancement of time.

Variation of the velocity of blood in the radial direction at different axial
positions and at different instants of time is shown in Fig. 4. This figure reveals
that the velocity decreases as r increases and further that the velocity decreases
as the axial distance z increases from the onset of the stenosis up to the peak
of the stenosis.

Fig.5 gives a comparison of our results with those reported by Siddiqui et
al.[19]. The reason for the differences in the results is two-fold. In our study
we have considered multi-phase flow of blood and the stenosis to be time-
dependent, while in [19], blood flow was treated as a single phase flow and the
stenosis was assumed to be independent of time.

Fig. 6 gives the variation of the volumetric flow rate with time for different
values of the amplitude (A) at a given yield stress (θ). This figure shows that
at all instants of time, the volumetric flow rate increases with the increase
in amplitude. Fig. 7 gives the time-variation of the volumetric flow rate for
different values of the yield stress for a given amplitude.
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Figure 6. Variation of volumetric flow
rate with time for different values of A at
z = d + h/2, h = L0/m1/m−1.
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Figure 7. Variation of volumetric flow
rate with time for different values of θ at
z = d + h/2, h = L0/m1/m−1.
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Figure 8. Variation of wall shear stress
with z for different values of time at A =

0.7, θ = 0.05.

δ=0.2
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A=0.7, θ=0.05 A=0.6,θ=0.04

Rp
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Figure 9. Variation of radius of plug
core layer with z for different values of A,
θ and δ.

Fig. 8 reveals that in the stenosed portion of the artery, the wall shear
stress increases with the increase in axial distance and also that at a given
distance, it increases with the passage of time. Karino and Goldsmith [9] made
an observation that the wall shear stress helps to determine the sites where the
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platelets aggregate.
The variation of the radius in the plug region of the stenosed portion is

illustrated in Fig. 9 for particular values of the amplitude and the yield stress.
This figure shows that at a particular axial distance, as the value of δ (the
height of the stenosis at t = 0) increases, the radius of the plug flow zone
decreases.

δ

λ

 
t=1.57
t=0.78
t=0.52
t=0.00

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0.05  0.1  0.15  0.2  0.25  0.3

Figure 10. Variation of resistance of the
flow with δ for different values of time at
z = d + h/2, h = L0/m1/m−1, A = 0.7,
θ = 0.05.

λ
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Figure 11. Variation of resistance of the
flow with z for different values of time at
θ = 0.05, A = 0.7.

Fig. 10 shows that the resistance to flow increases with the increase in δ and
that for a particular value of δ, the flow resistance increases as time progresses.
From Fig. 11 one may further conclude that at any instant of time, the flow
resistance attains its maximum at the throat of the stenosis. This figure also
reveals that the flow resistance in the stenosed portion of the artery increases
with time.
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Appendix
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