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Abstract. Positive solutions (u(t), v(t)) are sought for the nonlocal (m-point) non-
linear system of boundary value problems, u′′ +λa(t)f(v) = 0, v′′+λb(t)g(u) = 0, for

0 < t < 1, and satisfying, u(0) = 0, u(1) =
m−2
P

i=1

aiu(ξi), v(0) = 0, v(1) =
m−2
P

i=1

aiv(ξi).

An application of a Guo-Krasnosel’skii fixed point theorem yields sufficient values of
λ for which such positive solutions exist.

Key words: nonlocal (m-point) boundary value problem, system of differential
equations, eigenvalue problem, positive solutions.

1 Introduction

We want to determine such values of the parameter λ, that the system of
nonlocal (m-point) boundary value problems,

u′′(t) + λa(t)f(v(t)) = 0, 0 < t < 1,

v′′(t) + λb(t)g(u(t)) = 0, 0 < t < 1,
(1.1)

u(0) = 0, u(1) =
m−2∑
i=1

aiu(ξi),

v(0) = 0, v(1) =
m−2∑
i=1

aiv(ξi),
(1.2)
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with 0 < ξ1 < ξ2 < . . . < ξm−2 < 1, ai ≥ 0 for i = 1, 2, . . . , m − 3, am−2 > 0,

and
m−2∑
i=1

aiξi < 1, has a solution (u(t), v(t)), such that u(t) > 0 and v(t) > 0

for 0 < t < 1.
In addition, we put the following assumptions on the functions f and g:

(A) f, g : [0,∞) → [0,∞) are continuous,

(B) a, b : [0, 1] → [0,∞) are continuous, and given any [c, d] ⊂ [0, 1], there
exist t1, t2 ∈ [c, d] such that a(t1) > 0 and b(t2) > 0,

(C) all limits

f0 := lim
x→0+

f(x)

x
, g0 := lim

x→0+

g(x)

x
, f∞ := lim

x→∞

f(x)

x
, g∞ := lim

x→∞

g(x)

x

exist as positive real numbers.

The importance of positive solutions for boundary value problems, both
theoretically as well as from the perspective of their applications in physical
and engineering sciences, has been well documented in the literature; see, for
example, [1, 5, 6, 7, 9, 12, 13, 14, 16, 20, 27]. While many of these referenced
papers have been devoted to scalar problems, there is much emerging interest
in boundary value problems for systems of differential equations [10, 11, 18,
22, 26, 28], and a good deal of research has also involved positive solutions for
multipoint nonlinear eigenvalue problems in both scalar and systems contexts
[2, 8, 18, 23]. In this paper, we extend some of the results obtained in [2] for the
system (1.1)–(1.2). Again, the main tool relied upon is the Guo-Krasnosel’skii
fixed point theorem for operators leaving a Banach space cone invariant [7].

2 Some Preliminaries

In this section, we state some preliminary lemmas and the well-known Guo-
Krasnosel’skii fixed point theorem.

Lemma 1. [25] Let ai ≥ 0 for i = 1, 2, . . . , m − 2 and
m−2∑
i=1

aiξi 6= 1. Then for

any y ∈ C[0, 1] the boundary value problem

u′′(t) + y(t) = 0, 0 < t < 1 (2.1)

u(0) = 0, u(1) =

m−2∑

i=1

aiu(ξi), (2.2)

has a unique solution given by

u(t) = −

∫ 1

0

(t − s)y(s)ds +
t

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − s)y(s)ds

+
t

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ ξi

0

(ξi − s)y(s)ds.

(2.3)
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We mention that the authors in papers [3, 4, 24] have obtained more general
solvability results than those in Lemma 1.

From (2.3) we notice that if y ≥ 0 and
m−2∑
i=1

aiξi < 1 (see [25])

u(t) ≤
t

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − s)y(s)ds, 0 ≤ t ≤ 1, (2.4)

and

u(1) ≥
1

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − s)y(s)ds. (2.5)

Lemma 2. [20] Let ai ≥ 0 for i = 1, 2, . . . , m−2 and
m−2∑
i=1

aiξi < 1. If y ∈ C[0, 1]

and y ≥ 0, then the unique solution u of (2.1), (2.2) satisfies

inf
t∈[ξm−2,1]

u(t) ≥ γ‖u‖,

where

γ = min

{
am−2(1 − ξm−2)

1 − am−2ξm−2
, am−2ξm−2, ξ1

}
. (2.6)

Lemma 3. [17] Suppose 0 <
m−2∑
i=1

aiξi < 1. The Green’s function for the bound-

ary value problem

− y′′(t) = 0, 0 < t < 1 (2.7)

y(0) = 0, y(1) =
m−2∑

i=1

aiy(ξi) (2.8)

is given by

G(t, s) =





s(1 − t) −
m−2∑
i=1

ai(ξi − t)s +
m−2∑
i=1

aiξi(t − s)

1 −
m−2∑
i=1

aiξi

,

0 ≤ t ≤ 1, ξi−1 ≤ s ≤ min{ξi, t}, i = 1, 2, . . . , m − 1;

t

[
(1 − s) −

m−2∑
i=1

ai(ξi − s)

]

1 −
m−2∑
i=1

aiξi

,

0 ≤ t ≤ 1, max{ξi−1, t} ≤ s ≤ ξi, i = 1, 2, . . . , m − 1.

Math. Model. Anal., 13(3):357–370, 2008.
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We note that a pair (u(t), v(t)) is a solution of the eigenvalue problem
(1.1)–(1.2) if, and only if,

u(t) = λ

∫ 1

0

G(t, s)a(s)f

(
λ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds, 0 ≤ t ≤ 1,

and

v(t) = λ

∫ 1

0

G(t, s)b(s)g(u(s))ds, 0 ≤ t ≤ 1.

Values of λ for which there are positive solutions (positive with respect to a
cone) of (1.1)–(1.2) will be determined via applications of the following fixed
point theorem.

Theorem 1. Let B be a Banach space, and let P ⊂ B be a cone in B. Assume

Ω1 and Ω2 are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

T : P ∩ (Ω2 \ Ω1) → P

be a completely continuous operator such that, either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \ Ω1).

3 Positive Solutions in a Cone

In this section, we apply Theorem 1 to obtain solutions in a cone (that is,
positive solutions) of (1.1)–(1.2). For our construction, let B = C[0, 1] with
supremum norm, ‖ · ‖, and define a cone P ⊂ B by

P =

{
x ∈ B | x(t) ≥ 0 on [0, 1], and min

t∈[ξm−2, 1]
x(t) ≥ γ‖x‖

}
.

For our first result, define positive numbers L1 and L2 by

L1 : =

1 −
m−2∑
i=1

aiξi

γ2
max

{[ m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)a(r)f∞dr
]−1

,

[ m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)b(r)g∞dr
]−1}

,

and

L2 :=
(
1 −

m−2∑

i=1

aiξi

)
min

{[∫ 1

0

(1 − r)a(r)f0dr
]−1

,
[ ∫ 1

0

(1 − r)b(r)g0dr
]−1

}
.
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Theorem 2. Assume conditions (A), (B) and (C) are satisfied. Then, for each

λ satisfying

L1 < λ < L2, (3.1)

there exists a pair (u, v) satisfying (1.1)–(1.2) such that u(t) > 0 and v(t) > 0
on (0, 1).

Proof. Let λ be as in (3.1), and let ǫ > 0 be chosen such that

1 −
m−2∑
i=1

aiξi

γ2
max

{[ m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)a(r)(f∞ − ǫ)dr
]−1

,

[ m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)b(r)(g∞ − ǫ)dr
]−1}

≤ λ

and

λ≤
(
1−

m−2∑

i=1

aiξi

)
min

{[∫ 1

0

(1−r)a(r)(f0+ǫ)dr
]−1

,

[ ∫ 1

0

(1 − r)b(r)(g0 + ǫ)dr
]−1}

.

Define the integral operator T : P → B by

Tu(t) := λ

∫ 1

0

G(t, s)a(s)f

(
λ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds, u ∈ P . (3.2)

We seek suitable fixed points of T in the cone P . By Lemma 2, TP ⊂ P .
In addition, standard arguments show that T is completely continuous. Now,
from the definitions of f0 and g0, there exists an H1 > 0 such that

f(x) ≤ (f0 + ǫ)x and g(x) ≤ (g0 + ǫ)x, 0 < x ≤ H1.

Let u ∈ P with ‖u‖ = H1. We first have from (2.4) and choice of ǫ,

λ

∫ 1

0

G(s, r)b(r)g(u(r))dr ≤ λ
t

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − r)b(r)g(u(r))dr

≤ λ
1

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − r)b(r)(g0 + ǫ)u(r)dr

≤ λ
1

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − r)b(r)dr(g0 + ǫ)‖u‖ ≤ ‖u‖ = H1.

Math. Model. Anal., 13(3):357–370, 2008.
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As a consequence, using again (2.4), and the choice of ǫ, we have

Tu(t) = λ

∫ 1

0

G(t, s)a(s)f

(
λ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds

≤ λ
t

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − s)a(s)f

(
λ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds

≤ λ
t

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − s)a(s)(f0 + ǫ)λ

∫ 1

0

G(s, r)b(r)g(u(r))drds

≤ λ
1

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − s)a(s)(f0 + ǫ)H1ds ≤ H1 = ‖u‖.

So, ‖Tu‖ ≤ ‖u‖. If we set Ω1 = {x ∈ B | ‖x‖ < H1}, then

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1. (3.3)

Next, from the definitions of f∞ and g∞, there exists H2 > 0 such that

f(x) ≥ (f∞ − ǫ)x and g(x) ≥ (g∞ − ǫ)x, x ≥ H2.

Let H2 = max
{
2H1,

H2

γ

}
. and u ∈ P with ‖u‖ = H2. Then,

min
t∈[ξm−2,1]

u(t) ≥ γ‖u‖ ≥ H2.

As v satisfies the assumptions of Lemmas 1 and 2 by (2.5) and the choice of ǫ,
we have for all s ∈ [ξm−2, 1]

v(s) ≥ γ‖v‖ ≥ γv(1)

≥ λ
γ

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)b(r)g(u(r))dr

≥ λ
γ

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)b(r)(g∞ − ǫ)u(r)dr

≥ λ
γ2

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)b(r)(g∞ − ǫ)dr‖u‖ ≥ ‖u‖ = H2,

and so, from (2.5) and the choice of ǫ, we take

Tu(1) ≥ λ
1

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − s)a(s)f



Positive Solutions for m-Point BVPs 363

×

(
λ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds

≥λ
1

1−
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1−s)a(s)(f∞−ǫ)λ

×

∫ 1

0

G(s, r)b(r)g(u(r))drds

≥ λ
1

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − s)a(s)(f∞ − ǫ)H2ds

≥ λ
γ2

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − s)a(s)(f∞ − ǫ)H2ds ≥ H2 = ‖u‖.

Hence, ‖Tu‖ ≥ ‖u‖. So, if we set Ω2 = {x ∈ B | ‖x‖ < H2}, then

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2. (3.4)

Applying Theorem 1 to (3.3) and (3.4), we obtain that T has a fixed point
u ∈ P ∩ (Ω2 \ Ω1). As such, and with v defined by

v(t) = λ

∫ 1

0

G(t, s)b(s)g(u(s))ds,

the pair (u, v) is a desired solution of (1.1)–(1.2) for the given λ. The proof is
complete. ⊓⊔

Prior to presenting our next result, we define positive numbers L3 and L4

by

L3 :=

1 −
m−2∑
i=1

aiξi

γ
max

{[ m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)a(r)f0dr
]−1

,

[ m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)b(r)g0dr
]−1}

,

and

L4 :=
(
1 −

m−2∑

i=1

aiξi

)
min

{[∫ 1

0

(1 − r)a(r)f∞dr
]−1

,

[ ∫ 1

0

(1 − r)b(r)g∞dr
]−1}

.

Math. Model. Anal., 13(3):357–370, 2008.
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Theorem 3. Assume conditions (A)–(C) are satisfied. Then, for each λ sat-

isfying

L3 < λ < L4, (3.5)

there exists a pair (u, v) satisfying (1.1)–(1.2) such that u(t) > 0 and v(t) > 0
on (0, 1).

Proof. Let λ be as in (3.5) and ǫ > 0 be chosen such that

1 −
m−2∑
i=1

aiξi

γ
max





[
m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)a(r)(f0 − ǫ)dr

]−1

,

[
m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)b(r)(g0 − ǫ)dr

]−1


 ≤ λ

and

λ ≤
(
1 −

m−2∑

i=1

aiξi

)
min

{[∫ 1

0

(1 − r)a(r)(f∞ + ǫ)dr

]−1

,

[∫ 1

0

(1 − r)b(r)(g∞ + ǫ)dr

]−1
}

.

Let T be the cone preserving, completely continuous operator that was
defined by (3.2). From the definitions of f0 and g0, there exists H3 > 0 such
that

f(x) ≥ (f0 − ǫ)x and g(x) ≥ (g0 − ǫ)x, 0 < x ≤ H3.

Also, from the definition of g0 and the continuity of g it follows that g(0) = 0
and so there exists an H3 with 0 < H3 < H3 such that

λg(x) ≤

H3

(
1 −

m−2∑
i=1

aiξi

)

∫ 1

0
(1 − r)b(r)dr

, 0 ≤ x ≤ H3.

Choose u ∈ P with ‖u‖ = H3. Then, in view of (2.3) for any s ∈ [0, 1] we have

v(s) = λ

∫ 1

0

G(s, r)b(r)g(u(r))dr ≤ λ
s

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − r)b(r)g(u(r))dr

≤ λ
1

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − r)b(r)g(u(r))dr

≤

1

1−
m−2
P

i=1

aiξi

∫ 1

0
(1 − r)b(r)H3dr

1

1−
m−2
P

i=1

aiξi

∫ 1

0
(1 − r)b(r)dr

= H3.
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Hence, in view of Lemmas 1 and 2 for v in place of u and y(t) = λb(t)g(v(t))
we have

Tu(1) ≥ λ
1

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − s)a(s)f
(
λ

∫ 1

0

G(s, r)b(r)g(u(r))dr
)

≥ λ
1

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − s)a(s)×

× (f0 − ǫ)λ
1

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)b(r)g(u(r))drds

≥ λ
1

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − s)a(s)×

× (f0 − ǫ)λ
γ

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − r)b(r)(g0 − ǫ)‖u‖drds

≥ λ
1

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − s)a(s)(f0 − ǫ)‖u‖ds

≥ λ
γ

1 −
m−2∑
i=1

aiξi

m−2∑

i=1

ai

∫ 1

ξm−2

ξi(1 − s)a(s)(f0 − ǫ)‖u‖ds ≥ ‖u‖.

So, ‖Tu‖ ≥ ‖u‖. If we put Ω3 = {x ∈ B | ‖x‖ < H3}, then

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω3. (3.6)

Next, by definitions of f∞ and g∞, there exists H4 such that

f(x) ≤ (f∞ + ǫ)x and g(x) ≤ (g∞ + ǫ)x, x ≥ H4.

Clearly, since g∞ is assumed to be a positive real number, it follows that g is
unbounded at ∞ and so, there exists H̃4 > max{2H3, H4} such that g(x) ≤

g(H̃4), for 0 < x ≤ H̃4. Set

f∗(t) = sup
0≤s≤t

f(s), g∗(t) = sup
0≤s≤t

g(s), for t ≥ 0.

Clearly f∗, g∗ are nondecreasing real valued functions for which it holds

lim
x→∞

f∗(x)

x
= f∞, lim

x→∞

g∗(x)

x
= g∞.

Math. Model. Anal., 13(3):357–370, 2008.
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Hence, there exists H4 ≥ H4 such that

f∗(x) ≤ f∗(H4), g∗(x) ≤ g∗(H4), for 0 < x ≤ H4.

Choosing u ∈ P with ‖u‖ = H4, by (2.4) we have

Tu(t) = λ

∫ 1

0

G(t, s)a(s)f
(
λ

∫ 1

0

G(s, r)b(r)g(u(r))dr
)
ds

≤ λ
t

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − s)a(s)f∗
(
λ

∫ 1

0

G(s, r)b(r)g(u(r))dr
)
ds

≤ λ
1

1−
m−2∑
i=1

aiξi

∫ 1

0

(1−s)a(s)f∗
(
λ

1

1−
m−2∑
i=1

aiξi

∫ 1

0

(1−r)b(r)g∗(u(r))dr
)
ds

≤ λ
1

1−
m−2∑
i=1

aiξi

∫ 1

0

(1 − s)a(s)f∗
(
λ

1

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1−r)b(r)g∗(H4)dr
)
ds

≤ λ
1

1−
m−2∑
i=1

aiξi

∫ 1

0

(1−s)a(s)f∗
(
λ

1

1−
m−2∑
i=1

aiξi

∫ 1

0

(1−r)b(r)(g∞+ǫ)H4dr
)
ds

≤ λ
1

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − s)a(s)f∗(H4)ds

≤ λ
1

1 −
m−2∑
i=1

aiξi

∫ 1

0

(1 − s)a(s)(f∞ + ǫ)H4 ds ≤ H4 = ‖u‖,

and so ‖Tu‖ ≤ ‖u‖. For this case, if we let Ω4 = {x ∈ B | ‖x‖ < H4}, then

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω4. (3.7)

In either of the cases, application of part (ii) of Theorem 1 yields a fixed
point u of T belonging to P ∩ (Ω4 \ Ω3), which in turn yields a pair (u, v)
satisfying (1.1)–(1.2) for the chosen value of λ. The proof is complete. ⊓⊔

4 Discussion

In this section we discuss briefly some other types of m-point boundary value
problems. A natural generalization of the m-point boundary value problem
(1.1)–(1.2) is system (1.1) with the following boundary conditions ([19]):

u(0) = 0,

∫ β

α

h(t)u(t) = u(1),

v(0) = 0,

∫ β

α

h(t)v(t) = v(1),

(4.1)
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where [α, β] ⊂ (0, 1), h ∈ C([α, β], [0,∞)),

∫ β

α

h(t)tdt 6= 1 and β

∫ β

α

h(t)dt < 1.

By using the same method we can prove eigenvalue results for the system (1.1)–
(4.1).

Similar results to that of problem (1.1)–(1.2) can be obtained for other types
of m-point boundary value problems, as for example for the following system
of m-point boundary value problems for the system of equation (1.1) with the
following boundary conditions ([15]):

u(0) = 0, u′(1) =
m−2∑
i=1

aiu
′(ξi),

v(0) = 0, v′(1) =
m−2∑
i=1

aiv
′(ξi),

(4.2)

or, for the following more general m-point boundary value problem (1.1) with
the following boundary conditions ([21]):

u′(0) =
m−2∑
i=1

aiu
′(ξi), u(1) =

m−2∑
i=1

aiu(ξi),

v′(0) =
m−2∑
i=1

aiv
′(ξi), v(1) =

m−2∑
i=1

aiv(ξi),

(4.3)

where ai > 0, i = 1, 2, . . . , m − 2 and 0 < ξ1 < . . . < ξm−2 < 1.
For the interested reader we cite below some key relations concerning the

problems (1.1)–(4.2) and (1.1)–(4.3).
The Green’s function for (1.1)–(4.2) is given by

G(t, s) =





s +

m−1∑
i=1

ai

1 −
m−1∑
i=1

ai

t, 0 ≤ t ≤ 1, ξω−1 ≤ s ≤ min{ξω, t};

1 −
m−2∑
i=ω

ai

1 −
m−2∑
i=1

ai

t, 0 ≤ t ≤ 1, max{ξω−1, t} ≤ t ≤ ξω,

where ω = 1, . . . , m − 1, while for (1.1)–(4.3) it was proved in [21] that if(
1 −

m−2∑
i=1

bi

) (
1 −

m−2∑
i=1

ai

)
6= 0, then for any y ∈ C[0, 1] the following bound-

ary value problem
u′′(t) + y(t) = 0, 0 < t < 1,

u′(0) =

m−2∑

i=1

biu
′(ξi), u(1) =

m−2∑

i=1

aiu(ξi),

has a unique solution

u(t) = −

∫ 1

0

(t − s)y(s)ds +
t

m−2∑
i=1

bi − 1

m−2∑

i=1

bi

∫ ξi

0

y(s)ds
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+
1

1 −
m−2∑
i=1

ai

( ∫ 1

0

(1 − s)y(s)ds −
m−2∑

i=1

ai

∫ ξi

0

(ξi − s)y(s)ds

−
1

m−2∑
i=1

bi − 1

m−2∑

i=1

bi

∫ ξi

0

y(s)ds
(
1 −

m−2∑

i=1

aiξi

))
,

for which it holds
inf

t∈[0,1]
u(t) ≥ γ‖u‖,

where γ =
m−2∑
i=1

ai(1 − ξi)/
(
1 −

m−2∑
i=1

aiξi

)
, and moreover

u(t)≤
1

1−
m−2∑
i=1

ai

(∫ 1

0

(1−s)a(s)y(s)ds+

m−2∑
i=1

ai

∫ ξi

0

a(s)y(s)ds

1−
m−2∑
i=1

ai

(
1−

m−2∑

i=1

aiξi

))

and

y(0) ≥
m−2∑

i=1

ai(1 − ξi)

∫ 1

0

a(s)y(s)ds.

Using these relations and the necessary modifications we can prove similar
results to Theorems 2 and 3 for the system of m-point boundary value problems
(1.1)–(4.3).

5 Conclusions

The present paper is motivated by both, theoretical interest as well as wide
variety of applications in physics and applied mathematics. During the last
decades existence of eigenvalues yielding positive solutions for nonlinear second
order multi-point boundary value problems is in the focus of interest of many
researchers. See, for example [1, 5, 6, 7, 9, 12, 13, 14, 27]. In particular,
existence of positive solutions for systems of second order multi-point boundary
value problems was studied in [10, 11, 18, 26, 28].

The interest in this paper was focused on the existence of the multi-point
boundary value problem (1.1)–(1.2). The main results of the paper are The-
orems 2 and 3. Under some rather common conditions on the coefficients a
and b and the nonlinear functions f and g, these theorems establish intervals
of admissible eigenvalues which yield positive solutions to the boundary value
problem (1.1)–(1.2). It turns out that these intervals are determined by the be-
haviour of the functions f and g at 0 and ∞, by the integrals of the functions
(1 − r) a (r) and (1 − r) b (r) on [0, 1] and [ξm−2, 1] as well as the boundary
conditions. The main tool in the technique developed is a fixed point theo-
rem in cones for operators leaving an annular-like region in a Banach space
invariant. The appropriate integral operator needed is defined by the use of a
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Green function for the corresponding second order scalar equation. As briefly
discussed in the previous section, it turns out that the technique developed in
the present work can also be used to give existence results for boundary value
problems consisting of systems of second order differential equations along with
a great variety of boundary value conditions such as (1.1)–(4.1). Furthermore,
it will be the subject of a future work to extend and generalize the results of
the present work to systems concerning more general type of equations along
more general boundary conditions.
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