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1 Introduction

The Kontorovich-Lebedev transformation is defined as follows (cf. [9, 15, 18,
19, 20])

Kix[f ] =

∫ ∞

0

Kix(y)f(y) dy, x > 0. (1.1)

The kernel of the transformation (1.1) is a particular case of the modified Bessel
function Kµ(z) [4], which in turn, is an independent solution of the differential
equation

z2 d2u

dz2
+ z

du

dz
− (z2 + µ2)u = 0.

When µ = ix, x ∈ R, z = y > 0, then Kix[f ] is real valued and even function
with respect to x. If f ∈ L2(R+; y dy), then Kix[f ] ∈ L2(R+; x sinhπxdx) (see
[18, 19]), and the Parseval formula holds

∞
∫

0

x sinh(πx) |Kix[f ]|2 dx =
π2

2

∞
∫

0

|f(y)|2y dy. (1.2)

In this case integral (1.1) converges in the mean square sense and can be writ-
ten, making necessary truncations at zero and infinity. Moreover, the inverse
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transform has the form

yf(y) =
2

π2

∫ ∞

0

x sinhπxKix(y)Kix[f ] dx, (1.3)

where integral (1.3) is in the mean square sense with the necessary truncation
at infinity.

On the other hand, if f ∈ L1(R+; K0(y) dy), where K0(y) is the modified
Bessel function of the index zero, then inversion formula (1.3) can be interpreted
at each Lebesgue point of f (see in [20]) as

yf(y) =
4

π2
lim

α→π
2 −

∫ ∞

0

x sinhαx cosh
πx

2
Kix(y)Kix[f ] dx. (1.4)

If also Kix[f ] ∈ L1(R+; x cosh πx
2 dx), then we can pass to the limit in (1.4)

under the integral sign and we get (1.3) in Lebesgue integrable sense.

The modified Bessel function has the following asymptotic behavior

Kµ(z) =
( π

2z

)1/2

e−z[1 + O(1/z)], z → ∞, (1.5)

and near the origin

z|Reµ|Kµ(z) = 2µ−1Γ (µ) + o(1), z → 0, µ 6= 0, (1.6)

K0(z) = − log z + O(1), z → 0. (1.7)

Meanwhile, when x is restricted to any compact subset of R+ and τ tends to
infinity we have the following asymptotic (see, [18], p. 20)

Kiτ (x) =

(

2π

τ

)1/2

e−πτ/2 sin

(

π

4
+τ log

2τ

x
−τ

)[

1 + O
(1

τ

)

]

, τ → ∞. (1.8)

The modified Bessel function can be represented by the integrals of the Fourier
and Mellin types [4, 12, 15, 18, 20], respectively

Kµ(x) =

∫ ∞

0

e−x cosh u coshµu du, (1.9)

Kµ(x) =
1

2

(x

2

)µ
∫ ∞

0

e−t− x2

4t t−µ−1dt,

sinh
πτ

2
Kiτ (x) =

∫ ∞

0

sin(x sinhu) sin τudu, (1.10)

cosh
πτ

2
Kiτ (x) =

∫ ∞

0

cos(x sinh u) cos τudu.

The main aim of the paper is to establish the so-called uncertainty principles
for the operator (1.1), which say that a nonzero original and its image under
transformation (1.1) cannot be simultaneously too small in the pointwise or
integrable decay. This comes as a generalization of the classical Heisenberg
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uncertainty principle. It was extended to the Fourier transform in [5, 6, 7, 11].
The corresponding principles have been proved also for the Jacobi transform
[2, 10], the Y -transform [1], the Dunkl transform [13] and recently for the
Hankel transform [14, 17].

The structure of the paper is as follows: in Section 2 we will prove Hardy’s
type theorem for the Kontorovich-Lebedev transformation, which will give as a
corollary the corresponding Hardy uncertainty principle. Section 3 of the paper
will be devoted to the Beurling, Cowling-Price and Gelfand-Shilov theorems.
Finally in Section 4 we will prove the Donoho-Stark theorem.

2 Hardy Uncertainty Principle

Hardy’s classical theorem for the Fourier transform [6, 16] says, that if |f(y)| ≤
Ce−ay2

and |(Fcf)(x)| ≤ Ce−
x2

4a , a > 0, then f(y) is a multiple of e−ay2

. Here
C > 0 is a universal constant, which is different in distinct places and

(Fcf)(x) =

√

2

π

∫ ∞

0

f(y) cos(xy) dy, (2.1)

is the cosine Fourier transform.
Let us suppose that transformation (1.1) admits the following series expan-

sion with respect to an index of the modified Bessel functions

Kix[f ] =
C

cosh(πx/2)

∞
∑

n=0

αn

[

Ki( x
2 +n)

(a

2

)

+ Ki( x
2 −n)

(a

2

)]

, a > 0, (2.2)

where
∑∞

n=0 |αn| < ∞. We have

Theorem 1. Let Kix[f ] satisfy (2.2) and |f(y)| ≤ Ce−
y2

4a . Then f(y) is a

multiple of e−
y2

4a .

Proof. Taking (1.9), we find

Ki( x
2 +n)

(a

2

)

=

∫ ∞

0

e−
a
2 cosh u cos

(x

2
+ n

)

u du. (2.3)

Hence
∣

∣

∣
Ki( x

2 +n)

(

a
2

)

∣

∣

∣
≤ K0

(

a
2

)

, and clearly series (2.2) is uniformly convergent

on R+. Moreover, we can calculate the cosine Fourier transform of the function
cosh(πx/2)Kix[f ] by changing the order of integration and summation. Indeed,
using (2.3) we obtain

Fc(cosh
(πt

2

)

Kit[f ])(x)=C
∞
∑

n=0

αn

∫ ∞

0

[

Ki( t
2+n)

(a

2

)

+Ki( t
2−n)

(a

2

)]

cos(xt) dt

=
C

2

∞
∑

n=0

αn

∫ ∞

−∞

[

Ki( t
2−n)

(a

2

)

+ Ki( t
2+n)

(a

2

)]

eixt dt

= 2πCe−
a
2 cosh(2x)

∞
∑

n=0

αn cos(2xn).
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Therefore

|Fc(cosh(πt/2)Kit[f ])(x)| ≤ Ce−
a
2 cosh(2x) = O

(

e−a sinh2 x
)

.

Further, it is easily seen under conditions of the theorem and asymptotic be-
havior of the modified Bessel function (1.5), (1.7), that f ∈ L1(R+; K0(y) dy).
Moreover, by virtue of the asymptotic formula with respect to an index (1.8),
we verify that Kix[f ] ∈ L1(R+; x cosh πx

2 dx). Consequently, calling (1.3), (1.4)
we find

yf(y) =
4

π2

∫ ∞

0

x sinh
πx

2
cosh

πx

2
Kix(y)Kix[f ] dx. (2.4)

However, since sinh πx
2 Kix(y) is bounded for any y > 0 (see (1.8)), we take the

representation (1.10) and substitute it in (2.4). As a result we obtain

yf(y) =
4

π2
lim

N→∞

∫ N

0

x cosh
πx

2
Kix[f ]

∫ ∞

0

sin(y sinhu) sin(xu) du dx

=
4

π2
lim

N→∞

∫ N

0

x cosh
πx

2
Kix[f ]

∫ ∞

0

sin(yv) sin(x log(v +
√

v2 + 1))
dv dx√
v2 + 1

.

Via Abel’s test we observe, that the latter integral is uniformly convergent with
respect to x ∈ [0, N ]. Thus inverting the order of integration, we come out with

yf(y)=
4

π2
lim

N→∞

∫ ∞

0

sin(yv)√
v2 + 1

∫ N

0

x cosh
πx

2
Kix[f ] sin(x log(v +

√

v2 + 1)) dx dv.

(2.5)
Moreover, the integrability condition Kix[f ] ∈ L1(R+; x cosh πx

2 dx) and the
Abel test allow us to pass to the limit under the integral sign in (2.5). Hence
returning to the old variables we get

yf(y)=
4

π2

∫ ∞

0

sin(y sinhu)

∫ ∞

0

x cosh
πx

2
Kix[f ] sin(ux) dx du

= − 4

π2

∫ ∞

0

sin(y sinhu)
d

du

∫ ∞

0

cosh
πx

2
Kix[f ] cos(ux) dx du. (2.6)

We note, that the differentiation under the integral sign in (2.6) is motivated
by the uniform convergence by u ∈ R+ of the latter integral with respect
to x. Hence, integrating by parts in (2.6) and eliminating the outer terms
owing to the Riemann-Lebesgue lemma we take into account (2.1) to derive
the representation

f(y) =
2
√

2

π
√

π

∫ ∞

0

cos(y sinhu) coshuFc(cosh(πt/2)Kit[f ])(u)du.

Appealing to the above estimates and the value of an elementary integral, we
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find for any complex variable z, |z| = r,

|f(z)| < C

∫ ∞

0

cosh(r sinhu) coshu|Fc(cosh(πt/2)Kit[f ])(u)| du

≤ C

∫ ∞

0

cosh(r sinhu) e−a sinh2 u coshu du

= C

∫ ∞

0

cosh(rt)e−at2 dt = Ce
r2

4a .

Thus f(
√

z) is an entire function, which is O(e
|z|
4a ) for all z ∈ C and f(

√
y) =

O(e−
y
4a ), y ∈ R+. Therefore according to [16], Theorem 128, f(y) = Ce−

y2

4a .
Theorem 1 is proved. ⊓⊔

Corollary 1. Under conditions of Theorem 1

Kix[f ] = C sech(πx/2)Kix/2

(a

2

)

= O(e−
3π
4 x), x → +∞.

Proof. Indeed, substituting the value f(y) = Ce−
y2

4a into (1.1) we just call the
relation (2.16.8.3) from [12], Vol. 2, to get the result. The required asymptotic
behavior at infinity immediately follows from (1.8). Corollary 1 is proved. ⊓⊔

Remark 1. As we see, Kix[f ] from the corollary admits the representation (2.2)
with α0 6= 0, αn = 0, n = 1, 2 . . . .

As a consequence we are ready to state an analog of the Hardy uncertainty
principle for the Kontorovich-Lebedev transformation (1.1).

Corollary 2. Let |f(y)| ≤ Ce−by2

, b > 1
4a . Then f(y) = 0.

This principle can be formulated in terms of composition Fc(cosh(πt/2)Kit[f ]).

Corollary 3. One cannot have both

|f(y)| ≤ Ce−ay2

, a > 0, |Fc(cosh(πt/2)Kit[f ])(x)| ≤ Ce−b sinh2 x, b > 0,

where ab > 1
4 unless f(y) = 0.

As a consequence of Theorem 1 and Corollary 1 we get

Corollary 4. Let |f(y)| ≤ Ce−ay2

, a > 0 and |Fc(cosh(πt/2)Kit[f ])(x)|
≤ Ce−b sinh2 x, b > 0, where 0 < ab ≤ 1

4
. If |Kix[f ]| ≤ Ce−cx, x > 0,

c >
3π

4
, then f(y) = 0.

Math. Model. Anal., 13(2):289–302, 2008.
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3 Beurling, Cowling-Price and Gelfand-Shilov Theorems

The Beurling condition related to the cosine Fourier transform (2.1) says (cf.
[7]), that if f ∈ L1(R+; dy) and

∫

R+

∫

R+

|f(y)(Fcf)(x)|exy dx dy < ∞, (3.1)

then f = 0. Here we will prove an analog of the Beurling theorem for the
Kontorovich-Lebedev transformation (1.1).

Theorem 2. Let f ∈ L1(R+; K0(y) dy) and

∫

R+

∫

R+

|f(y)Kix[f ]|Kx(y) dx dy < ∞, (3.2)

then f = 0.

Proof. We can assume that f(y) 6= 0 on a set of the positive measure K0(y)dy,
for otherwise there is nothing to prove. Since representation (1.9) for the
modified Bessel function yields the inequality Kx(y) ≥ K0(y), condition (3.2)
implies

∞ >

∫

R+

∫

R+

|f(y)Kix[f ]|Kx(y) dx dy ≥
∫

R+

|f(y)|K0(y) dy

∫

R+

|Kix[f ]| dx.

Therefore Kix[f ] ∈ L1(R+; dx). The latter condition guarantees the existence
of the cosine Fourier transform of Kix[f ]. We will show that

(FcKit[f ])(λ) =

√

π

2

∫ ∞

0

e−y cosh λf(y) dy. (3.3)

Indeed, denoting by h(λ) the right-hand side of (3.3) we find

∫

R+

|h(λ)| dλ ≤
√

π

2

∫

R+

∫

R+

e−y cosh λ|f(y)| dy dλ =

√

π

2

∫

R+

|f(y)|K0(y) dy < ∞.

So h ∈ L1(R+; dλ) and (Fch)(x) can be now easily calculated by using (1.9)
and Fubini’s theorem. Thus we obtain

(Fch)(x) =

∫ ∞

0

cosxλ

∫ ∞

0

e−y cosh λf(y) dy dλ =

∫ ∞

0

Kix(y)f(y) dyKix[f ].

Since Kix[f ] ∈ L1(R+; dx) the inversion theorem for the cosine Fourier trans-
form gives (FcKit[f ])(λ) = h(λ) and we establish equality (3.3).

Let us verify the Beurling condition (3.1) for Kix[f ], (FcKit[f ]). We have

∫

R+

∫

R+

|Kix[f ](FcKit[f ])(λ)|exλ dx dλ <
√

2π

∫

R+

∫

R+

|Kix[f ]| coshxλ

×
∫ ∞

0

e−y cosh λ|f(y)| dy dx dλ
√

2π

∫

R+

∫

R+

|f(y)Kix[f ]|Kx(y) dx dy < ∞.
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Thus Kix[f ] = 0. Combining with (3.3) the latter condition yields
∫ ∞

0

e−y cosh λf(y) dy = 0, λ ∈ R+ (3.4)

for any f ∈ L1(R+; K0(y) dy). We will show that in this case f = 0. In fact,
choosing any λ0 > 1 we treat the left-hand side of equality (3.4) as the Laplace
integral (Lf)(coshλ), where

(Lf)(z) =

∫ ∞

0

e−yzf(y) dy,

which is zero via (3.4) at least at the countable set of points satisfying the
condition coshλn = λ0 + jn, j > 0, n = 1, 2, . . . . Moreover, since (see (1.5),
(1.7))

∫ ∞

0

e−y cosh λn |f(y)| dy < ∞, n = 1, 2, . . . ,

then by virtue of [3], Chapter I we get that f(y) = 0 almost for all y ∈ R+, i.e.
f = 0 in the Lebesgue sense. Theorem 2 is proved. ⊓⊔

Let us prove an analog of the Gelfand-Shilov uncertainty principle for the
transformation (1.1). Indeed, it was shown in [5] that if

∫

R+

|f(y)|e(ay)p/p dy < ∞,

∫

R+

|(Fcf)(x)|e(bx)q/q dx < ∞,

with 1 < p, q < ∞, p−1 + q−1 = 1 and ab > 1/4, then f = 0. We have
accordingly

Theorem 3. Let 1 < p, q < ∞, p−1 + q−1 = 1, [q] be an integer part of q and

∫

R+

|f(y2)|e
(2([q]+1))!

4y2 dy < ∞,

∫

R+

|Kix[f ]| exp/p dx < ∞. (3.5)

Then f = 0.

Proof. By using the Young inequality xy ≤ xp

p
+

yq

q
and representation (1.9)

for the modified Bessel function we derive

Kx(y) =

∫ ∞

0

e−y cosh u coshxudu ≤
∫ ∞

0

e−y cosh u+xu du

≤ exp/p

∫ ∞

0

e−y cosh u+ uq

q du = exp/p

(
∫ 1

0

+

∫ ∞

1

)

e−y coshu+ uq

q du. (3.6)

Meanwhile,

∫ 1

0

e−y cosh u+uq/qdu < e

∫ 1

0

e−y cosh udu < eK0(y),

∫ ∞

1

e−y cosh u+uq/qdu < ([q] + 1)

∫ ∞

1

e−y cosh u+u[q]+1

u[q] du.

Math. Model. Anal., 13(2):289–302, 2008.
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Therefore an elementary inequality coshu >
u2([q]+1)

(2([q] + 1))!
gives the following

estimation of the latter integral

∫ ∞

1

e−y cosh u+ uq

q du < ([q] + 1)

∫ ∞

1

e−y cosh u+u[q]+1

u[q] du

< ([q] + 1)

∫ ∞

1

e−
yu2([q]+1)

(2([q]+1))!
+u[q]+1

u[q]du

=

∫ ∞

1

e−
yv2

(2([q]+1))!
+v dv <

C√
y
e(2([q]+1))!/(4y).

Combining with (3.6) and taking into account the asymptotic formulas (1.5),
(1.7), we obtain the estimate

e−xp/pKx(y) < eK0(y) +
C√
y
e(2([q]+1))!/(4y) <

C√
y
e(2([q]+1))!/(4y).

Consequently, with conditions (3.2), (3.5) and since via (3.5) we have that
f ∈ L1(R+; K0(y) dy), it yields

∫

R+

∫

R+

|f(y)Kix[f ]|Kx(y) dx dy

< C

∫

R+

|Kix[f ]| exp/p dx

∫

R+

|f(y)|e(2([q]+1))!/(4y) dy√
y

= C

∫

R+

|Kix[f ]| exp/p dx

∫

R+

|f(y2)|e(2([q]+1))!/4y2

dy < ∞.

Applying Theorem 2 we get that f = 0. Theorem 3 is proved. ⊓⊔

Finally in this section we establish the Cowling-Price theorem for the Kontorovich-
Lebedev transform (1.1). This will be an analog of the following result for the
Fourier transform (2.1) (cf. [11]: if 1 ≤ p, q < ∞ and

∥

∥

∥
eax2

f(x)
∥

∥

∥

Lp(R+)
+
∥

∥

∥
ebλ2

(Fcf)(λ)
∥

∥

∥

Lq(R+)
< ∞

with ab > 1/4, then f = 0. We have

Theorem 4. If

∥

∥

∥
eax2

Kix[f ]
∥

∥

∥

Lp(R+)
< ∞,

∥

∥

∥
e6b2/y2

f(y2)
∥

∥

∥

L1(R+)
< ∞,

where p ∈ [1,∞) and ab > 1/4, then f = 0.

Proof. Indeed, choosing a0, b0 such that 0 < a0 < a 0 < b0 < b, a0b0 > 1/4
we easily find, that

a0x
2 + b0y

2 ≥ 2
√

a0b0 xy ≥ xy.
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Furthermore, with the Hölder inequality it gives
∫

R+

|Kix[f ]| ea0x2

dx ≤
∥

∥

∥
eax2

Kix[f ]
∥

∥

∥

Lp(R+)

∥

∥

∥
e−(a−a0)x

2
∥

∥

∥

Lp′(R+)
< ∞,

where p′ is the conjugate exponent (p−1 + p′−1 = 1). Taking (3.2) we deduce
similar to (3.6)

∫

R+

∫

R+

|f(y)Kix[f ]|Kx(y) dx dy

<

∫

R+

|Kix[f ]| ea0x2

dx

∫

R+

|f(y)|
∫ ∞

0

e−y cosh u+b0u2

du dy

< C
∥

∥

∥
eax2

Kix[f ]
∥

∥

∥

Lp(R+)

∫

R+

|f(y)|
(
∫ 1

0

+

∫ ∞

1

)

e−y cosh u+b0u2

du dy.

But

(
∫ 1

0

+

∫ ∞

1

)

e−y cosh u+b0u2

du < CK0(y) + 2

∫ ∞

1

e−y u4

4! +bu2

u du

= CK0(y) +

∫ ∞

1

e−y v2

4! +bvdv < C
e6b2/y

√
y

.

Hence as in Theorem 3

∫

R+

∫

R+

|f(y)Kix[f ]|Kx(y) dx dy < C
∥

∥

∥
eax2

Kix[f ]
∥

∥

∥

Lp(R+)

∫

R+

|f(y)|e
6b2/y

√
y

dy

= C
∥

∥

∥
eax2

Kix[f ]
∥

∥

∥

Lp(R+)

∥

∥

∥
e6b2/y2

f(y2)
∥

∥

∥

L1(R+)
< ∞.

Thus the Beurling type condition (3.2) holds, and by virtue of Theorem 2 f = 0.
Theorem 4 is proved. ⊓⊔

4 Donoho-Stark Theorem

It is shown in [19], when f ∈ L2(R+; y dy), then Kix[f ] ∈ L2(R+; x sinhπxdx)
and vice versa. Moreover, by virtue of (1.2)

‖Kix[f ]‖L2(R+;x sinh πx dx) =
π√
2
‖f‖L2(R+;y dy)

and the Kontorovich-Lebedev integrals (1.1), (1.3) can be interpreted accord-
ingly in the mean convergence sense with respect to the related norm

Kix[f ] ≡ g(x) = l.i.m.N→∞

∫ N

1/N

Kix(y)f(y) dy,

f(y) =
2

π2
l.i.m.N→∞

∫ N

0

x sinhπx
Kix(y)

y
Kix[f ] dx. (4.1)

Math. Model. Anal., 13(2):289–302, 2008.
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Let X = [0, X ], Y = [1/Y, Y ] the Lebesgue measurable sets and |X|, |Y| be
their Lebesgue measures. Denoting by PX the operator

(PXg)(x) =

{

g(x), if x ∈ X,

0, if x /∈ X,

we have

||g − PXg||L2(R+;x sinh πx dx) ≤ εX,

and this means that g is εX-concentrated on the set X. Plainly ||PX|| = 1.
Another auxiliary operator is given by the formula

(QYg)(x) =

∫

Y

Kix(y)f(y) dy,

where f is the reciprocal inverse Kontorovich-Lebedev transform (4.1). If h =

QYg the transform (4.1) ĥ(y) is equal to

ĥ(y) =

{

f(y), if y ∈ Y,

0, if y /∈ Y.

Meanwhile by Parseval’s equality (1.2) we find

∥

∥

∥
f − ĥ

∥

∥

∥

L2(R+;y dy)
=

√
2

π
‖g − QYg‖L2(R+;x sinh πx dx) , (4.2)

and f is ε-concentrated on Y if, and only if, ‖g − QYg‖L2(R+;x sinh πx dx) ≤ εY.

Moreover, we can show that ‖QY‖ = 1.
Now we are ready to prove the following analog of the Donoho-Stark un-

certainty principle (cf. [8]).

Theorem 5. Let g is εX-concentrated on X = [0, X ] and its Kontorovich-

Lebedev reciprocity f is εY-concentrated on Y = [1/Y, Y ]. Then

|X|3/2 |Y| ≥ π7/4
√

24

Γ 2(1/4)
(1 − (ε2

X
+ ε2

Y
)1/2)2, (4.3)

where Γ (z) is Euler’s gamma-function.

Proof. Without loss of generality we suppose that Y > 1. Since g is εX-
concentrated on X integral (1.3) exists as a Lebesgue integral and is uniformly
convergent with respect to y ∈ Y. Hence we calculate the following composition
of operators (PXQYg)(x). Indeed, we derive

(PXQYg)(x) =
2

π2
PX

∫

Y

Kix(y)

y

∫ ∞

0

t sinhπtKit(y)g(t) dt dy

=
2

π2
PX

∫ ∞

0

t sinhπt g(t)

∫

Y

Kix(y)Kit(y)
dy

y
dt =

∫ ∞

0

K(x, t)g(t) dt,
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where

K(x, t) =







2

π2
t sinhπt

∫

Y

Kix(y)Kit(y)
dy

y
, if x < X,

0, if x ≥ X.

Further,

‖PXQYg‖L2(R+;x sinh πx dx) ≤ ‖PXQY‖ ‖g‖L2(R+;x sinh πx dx)

and the norm of composition PXQY does not exceed its Hilbert-Schmidt norm,
which is equal to

(
∫ ∞

0

∫ ∞

0

|K(x, t)|2 x sinhπx

t sinhπt
dt dx

)1/2

.

Therefore,

||PXQY||2L2(R+;x sinhπx dx) ≤
∫ ∞

0

∫ ∞

0

|K(x, t)|2 x sinh πx

t sinhπt
dt dx

=

∫ X

0

∫ ∞

0

|K(x, t)|2 x sinhπx

t sinhπt
dt dx. (4.4)

But the inner integral with respect to t in (4.4) can be calculated by the Par-

seval equality (1.2), regarding K(x,t)
t sinh πt as the Kontorovich-Lebedev transform

(1.1) of

ϕ(y) =







2

π2

Kix(y)

y
, if y ∈ Y,

0, if y /∈ Y.

Consequently,
∫ ∞

0

|K(x, t)|2 dt

t sinhπt
=

2

π2

∫

Y

K2
ix(y)

dy

y

and we come out with

‖PXQY‖2
L2(R+;x sinhπx dx) ≤

2

π2

∫

X

∫

Y

x sinhπxK2
ix(y)

dy

y
dx. (4.5)

Let us estimate the right-hand side of (4.5). Applying twice the Schwarz in-
equality we obtain

2

π2

∫

X

∫

Y

x sinhπxK2
ix(y)

dy

y
dx≤ 2

π2

(

Y − 1

Y

)1/2∫

X

x sinhπx

(
∫

Y

K4
ix(y) dy

)1/2

dx

≤ 2

π2
√

3
|X|3/2

√

|Y|
(
∫

X

∫

Y

sinh2 πxK4
ix(y) dy dx

)1/2

.

On the other hand by relation (2.16.52.17) from [12] Vol. 2, and the Parseval
equality for the sine Fourier transform we find

∫ ∞

0

sinh2 πxK4
ix(y) dx =

π3

8

∫ ∞

0

J2
0 (2y sinh(u/2))du,
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where J0(z) is the Bessel function of the first kind. Consequently, employing
relation (2.12.31.2) from [12] Vol. 2, and the Hölder inequality we get

2

π2
√

3
|X|3/2

√

|Y|
(
∫

X

∫

Y

sinh2 πxK4
ix(y) dy dx

)1/2

≤ 1√
6π

|X|3/2
√

|Y|
(
∫

Y

∫ ∞

0

J2
0 (2y sinh(u/2)) du dy

)1/2

=
1√
3π

|X|3/2
√

|Y|
(

∫

Y

∫ ∞

0

J2
0 (v)

dv dy
√

v2 + 4y2

)1/2

≤ |X|3/2
√

|Y|√
6π

(
∫

Y

dy√
y

∫ ∞

0

J2
0 (v)

dv√
v

)1/2

=
Γ 2(1/4)

2π7/4
√

6
|X|3/2

√

|Y|
(
∫

Y

dy√
y

)1/2

≤ Γ 2(1/4)

2π7/4
√

6
|X|3/2|Y|7/8

(
∫

Y

dy

y2

)1/8

=
Γ 2(1/4)

2π7/4
√

6
|X|3/2|Y|.

Thus combining with (4.4) we derive finally the inequality

‖PXQY‖L2(R+;x sinh πx dx) ≤
Γ (1/4)

√

2
√

6π7/8
|X|3/4|Y|1/2.

But ‖PXQY‖L2(R+;x sinh πx dx) < 1, and therefore, I − PXQY is invertible in

L2(R+; x sinhπxdx) when |X|3/4|Y|1/2 <

√
2
√

6π7/8

Γ (1/4) . Moreover,

‖(I − PXQY)−1‖ ≤
∞
∑

n=0

‖PXQY‖n ≤
∞
∑

n=0

[

Γ (1/4)
√

2
√

6π7/8
|X|3/4|Y|1/2

]n

=

√

2
√

6π7/8

√

2
√

6π7/8 − Γ (1/4)|X|3/4|Y|1/2
.

However,

I = PX + PR+\XPXQY + PXQR+\Y + PR+\X

and the orthogonality PX and PR+\X gives

‖PXQR+\Yg‖2
L2(R+;x sinh πx dx) + ‖PR+\Xg‖2

L2(R+;x sinh πx dx)

= ‖PXQR+\Yg + PR+\Xg‖2
L2(R+;x sinh πx dx).

Taking into account that ‖PX‖ = 1 we find

‖g‖2
L2(R+;x sinhπxdx) ≤ ‖(I − PXQY)−1‖2‖(I − PXQY)g‖2

L2(R+;x sinh πx dx)
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≤
(

√

2
√

6π7/8

√

2
√

6π7/8 − Γ (1/4)|X|3/4|Y|1/2

)2
[

‖PXQR+\Yg‖2
L2(R+;x sinh πx dx)

+ ‖PR+\Xg‖2
L2(R+;x sinh πx dx)

]

≤
( √

2
√

6π7/8

√

2
√

6π7/8 − Γ (1/4)|X|3/4|Y|1/2

)2

×
[

‖QR+\Yg‖2
L2(R+;x sinhπx dx) + ‖PR+\Xg‖2

L2(R+;x sinh πx dx)

]

.

Now since g is εX-concentrated then ‖PR+\Xg‖L2(R+;x sinh πxdx) ≤ εX. Further-
more, since f is εY-concentrated then owing to (4.2) we have the estimate
‖QR+\Yg‖L2(R+;x sinh πx dx) ≤ εY. Therefore considering g of unit norm we ar-
rive at the inequality

1 ≤
( √

2
√

6π7/8

√

2
√

6π7/8 − Γ (1/4)|X|3/4|Y|1/2

)2

(ε2
X

+ ε2
Y
),

which is equivalent to (4.3). Theorem 5 is proved. ⊓⊔
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Basel, Berlin, 2005.

[9] N.N. Lebedev. Sur une formule d’inversion. C.R.Acad. Sci. URSS, 52:655–658,
1946.

Math. Model. Anal., 13(2):289–302, 2008.



302 S.B. Yakubovich

[10] R. Ma. Heisenberg inequalities for Jacobi transforms. J. Math. Anal. Appl.,
332:155–163, 2007.

[11] M.G.Cowling and J.F.Price. Generalization of Heisenberg’s inequality. In Har-

monic Analysis, LNM, number 992, pp. 443–449. Springer, Berlin, 1983.

[12] A.P. Prudnikov, Yu. A. Brychkov and O. I. Marichev. Integrals and Series: Vol.

1: Elementary Functions; Vol. 2: Special Functions. Gordon and Breach, New
York, 1986.

[13] M. Rösler. An uncertainty principle for the Dunkl transform. Bull. Austral.

Math. Soc., 99:353–360, 1999.

[14] M. Rösler and M. Voit. An uncertainty principle for Hankel transform. Proc.

Amer. Math. Soc., 127(1):183–194, 1999.

[15] I.N. Sneddon. The Use of Integral Transforms. McGray Hill, New York, 1972.

[16] E.C. Titchmarsh. Introduction to the Theory of Fourier Integrals. Clarendon
Press, Oxford, 1937.

[17] Vu Kim Tuan. Uncertainty principles for the Hankel transform. Integral Trans-

forms and Special Functions, 18(5):369–381, 2007.

[18] S.B. Yakubovich. Index Transforms. World Scientific Publishing Company,
Singapore, New Jersey, London and Hong Kong, 1996.

[19] S.B. Yakubovich. On the least values of Lp-norms for the Kontorovich-Lebedev
transform and its convolution. Journal of Approximation Theory, 131:231–242,
2004.

[20] S.B. Yakubovich and Yu.F. Luchko. The Hypergeometric Approach to Integral

Transforms and Convolutions. Kluwers Ser. Math. and Appl.: Vol. 287, Dor-
drecht, Boston, London, 1994.


	Introduction
	Hardy Uncertainty Principle
	Beurling, Cowling-Price and Gelfand-Shilov Theorems
	Donoho-Stark Theorem
	References

