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Abstract. Nonlinear phenomena originating in volume free electron laser (VFEL)
are investigated by methods of mathematical modelling using computer code VOLC.
It was demonstrated the possibility of excitation of quasiperiodic oscillations not far
from threshold values of electron beam current density and VFEL resonator length.
It was investigated sensibility of numerical solution to initial conditions for different
VFEL regimes of operation. Parametric maps with respect to electron beam current
and detuning from synchronism condition present complicated root to chaos with
windows of periodicity in VFEL. Investigation of chaotic lasing dynamics in VFEL
is important in the light of experimental development of VFEL in Research Institute
for Nuclear Problems.
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1 Introduction

Chaotic dynamics means the tendency of a wide range of systems to transition
between different states with deterministic periodic and non-periodic behavior.
Under modern concept of deterministic chaos [29] dynamical system under
changing of external control parameters gives series of bifurcations leading to
meshing of self-oscillations right up to stochastic oscillations with continuous
spectrum. Examples of such nonlinear physical systems are nonlinear optical
devices, lasers, particle accelerators, free electron lasers (FELs) etc.

Nonlinearity is necessary but non-sufficient condition for chaos in the sys-
tem. The main origin of chaos is the exponential divergence of initially close
trajectories in the nonlinear systems. This is so-called the Butterfly effect [25].
The heart of the problem is the sensibility of the system to initial condition.

Different types of FELs are the main object for analysis of its chaotic nature
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in this paper. FELs are tunable high-power sources of coherent radiation. This
radiation can be obtained in different wavelength ranges and it is the result of
transformation of kinetic energy of a high energy electron beam. FELs go back
to Madey [26] who investigated stimulated emission of bremsstrahlung by a
relativistic electron into a single electromagnetic mode of a parallel light beam.
Electron and light beam were considered moving through a periodic transverse
magnetic field. In 1976 a group of Stanford University under the direction of
Madey demonstrated first lasing of the FEL first prototype at a wavelength of
3.4 mm [12].

The main principle of electronic devices such as FEL [28], [21] the same
as traveling wave tubes (TWT), backward wave tubes (BWT), backward wave
oscillators (BWO) and other vacuum electronic devices [19] is based on radia-
tion of bunches of charged particles which are under conditions of synchronism
moving uniformly in the slow-wave structure (resonator or undulaotr). Dis-
tributed feedback provides coupling between electromagnetic field and electron
beam.

Interaction of electron beam and electromagnetic field under distributed
feedback is the main origin of self-oscillations in vacuum electronic devices
[18, 23, 20]. In [8, 11] theoretical and experimental investigations of the super-
ACO FEL have been made to observe clear bifurcation and chaos sequences in
the response of the FEL to a detuning modulation that is a changing of the
synchronism between the electron beam and the optical pulse. In [24] different
regimes of so-called "weak" chaos and "hyperchaos" or self-oscillations were
investigated for BWT. In [23] it was investigated a nonlinear dynamics of BWT
in the presence of energy dissipation at wave transmission, field of space charge,
wave reflection at system edges. It was depicted main principles of chaos control
in BWT via suppression of self-modulation. In [13] methods based on the re-
shaping the inner topology of the single-particle phase-space to stabilize the
oscillations of the FEL intensity in the deep saturated regime are proposed.
In [9] the chaotic sea model for FEL dynamics is considered for investigation
of phase space portraits of evolution of FEL radiation intensity at different
times. Three main routes to chaos for nonlinear systems such as FEL and
driven plasma diodes under changes of control parameters were investigated
[20, 22]. There are period doubling, quasiperiodicity and intermittency. So,
investigation of chaos in electronic devices is of great interest in modern physics.

One of possible types of FELs is volume free electron laser (VFEL). First
lasing of VFEL in mm wavelength range obtained recently [14] put the begin-
ning of experimental developing of new type of electronic generators. Their
functioning is based on principles of multi-wave volume (non-one-dimensional)
distributed feedback (VDFB) where electromagnetic waves and electron beam
spread angularly one to the other [3]. Usually in FEL, TWT, BWT the dis-
tributed feedback is one-dimensional when electron beam and electromagnetic
waves move in one line. In VFEL operation the linear stage investigated ana-
lytically [2] quickly changes into the nonlinear one where most of the electron
beam energy is transformed into electromagnetic radiation. In [1] it is empha-
sized that VFELs are one of several attractive alternatives to ordinary FELs,
because they are more compact devices capable to operate from submillimeter
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to X-ray wavelength ranges. We faced the challenge of oscillations in VFEL
simulation. In VFEL chaotic dynamics is induced by interaction of electron
beam and electromagnetic field under VDFB.

Mathematical model and numerical methods for VFEL nonlinear stage sim-
ulation were proposed in [4, 5]. They are implemented in computer code VOLC
[6]. Different VFEL geometries were investigated numerically in [7, 30]. All
numerical results are in good agreement with analytical predictions. Experi-
ments on VFEL go on [15] and need optimal geometry determination and result
processing.

So, investigation of chaos in VFEL is important in the light of its experi-
mental development. As more than ten control parameters are in the system it
is very complicated to investigate the full picture of possible chaotic behaviour.
In [6, 7, 30] a gallery of different chaotic regimes for VFEL laser intensity with
corresponding attractors and Poincaré maps was proposed. There are periodic,
quasiperiodic regimes and chaotic self-oscillations. Solution bifurcation points
corresponding to transitions between different regimes of generation were in-
vestigated.

In this paper new attempts were undertaken to investigate numerically the
root reason to chaos in VFEL. This is necessary to detect and validate some
new and complex phenomena that cannot be examined through analytical in-
vestigation.

2 VFEL Mathematical Formulation

Functioning of experimental installations [14] and [15] can be reduced to the
following theoretical scheme of VFEL. It was proposed firstly in [4]. So, let us
assume that a relativistic electron beam with electron velocity u passes through
a spatially periodic resonator of the length L. Under diffraction conditions some
strong electromagnetic waves can be excited in the resonator. If simultaneously
electrons of the beam are under synchronism condition, they emit electromag-
netic radiation in directions depending on diffraction conditions. System of
equations describing VFEL is obtained from Maxwell equations in the slowly
varying envelope approximation under following assumptions. The initial elec-
tromagnetic field is uniform over the entire electron beam or can follow to
Gaussian distribution or can be equal to zero. In the last case we deal with
regime of oscillator of VFEL. The resonator is quite large in transverse direc-
tions so the slippage effects at the edges of the system are ignored. Electron
charge density is uniform or can follow to Gaussian distribution too.

For two-wave VFEL the system of equations have the following form:

∂E

∂t
+ a1

∂E

∂z
+ b11E + b12Eτ = Φ

∫

2π

0

2π − p

8π2
(exp(−iΘ(t, z, p)

+ exp(−iΘ(t, z,−p))dp,

∂Eτ

∂t
+ a2

∂Eτ

∂z
+ b21E + b22Eτ = 0, (2.1)
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d2Θ(t, z, p)

dz2
= Ψ

(

k −
dΘ(t, z, p)

dz

)3

Re (E(t − z/u, z) exp(iΘ(t, z, p)) ,

E|z=0 = E0, Eτ |z=L = E1,

E|t=0 = 0, Eτ |t=0 = 0, Θ(t, 0, p) = p,
dΘ(t, 0, p)

dz
= k − ω/u,

where t > 0, z ∈ [0, L], p ∈ [−2π, 2π]. Amplitudes of electromagnetic fields
are denoted as E(t, z), Eτ (t, z), function Θ(t, z, p) describes phase of electrons
of the beam relative to electromagnetic wave, k is a projection of wave vector
on axis z, ω is a field frequency. We suppose that all functions are smooth,
bounded and slowly changing.

Three-wave VFEL was considered in [6], where principles of multi-wave
VFEL simulation were proposed. In [18, 23, 24] and other papers the following
system of equations is used to simulate different vacuum electronic devices:

∂F

∂τ
−

∂F

∂ζ
= −

1

π

∫

2π

0

exp(−iθ)dθ0, (2.2)

∂2θ

∂ζ2
= −Re (F exp(iθ)) ,

F |ζ=L = 0, θ|ζ=0 = θ0,
∂θ

∂ζ
|ζ=0 = 0.

System (2.2) is versatile in the sense that it remains the same within some
normalization for a wide range of electronic devices (FEL, BWT, TWT etc). In
(2.2) dynamics of electron beam is determined by time t0 of electron incoming
in the interaction zone and by corresponding phase θ0 = ωt0.

We take into account an extra spatially transverse coordinate of electron
incoming in the interaction zone. Then the right-hand side of the first equation
of system (2.1) is obtained by averaging over these two phases. So, this allows
to simulate electron beam dynamics more precisely. Such consideration is very
important when electron beam moves angularly to electromagnetic waves.

It is clear that the full three-dimensional model realized in computer code
could allow to obtain ideal agreement between experimental and numerical
data. But simplified 1D or 2D models like [10] or ours taking into account the
principle physical mechanisms are also very efficient.

3 Numerical Tool for VFEL Simulation

There exists a wide range of FEL experimental setups functioning of which
is simulated by multiple computer codes [16, 17, 27] and others. Along with
the particle-in-cell method, a slowly varying envelope approximation [16] is
widely used in FEL simulation and in computer codes such as MEDUSA [17]
or GENESIS [27].

We also use this approximation in VFEL simulation (see [4] and our pre-
vious works cited there). Numerical methods for all possible two-wave and
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three-wave VFEL geometries including external reflectors proposed in previous
works [4, 5] are implemented in computer code VOLC, version 1.0 [6]. VOLC
means "VOLume Code". It was developed on the basis of multiple Fortran
codes, created in 1991—2005 years. Dimensionality of the model is 2D (one
spatial coordinate and one phase space coordinate) plus time. Three-wave
geometries were considered to confirm all main VFEL physical laws and mech-
anisms. A good agreement between results of simulation and experimental data
was obtained in many cases [15].

Figure 1. Interface of computer code VOLC.

New version 2.0 of VOLC allows for two-wave VFEL geometries to obtain
distributions of VFEL intensities with respect to electron beam current density
j, resonator length L, diffraction asymmetry factor, different system parame-
ters, detuning from synchronism condition δ, as well as dynamical regimes
recognition and intensity Fourier transforms. Reduction of VOLC possibilities
to two-wave case is connected with geometry of experimental installation [15]
for which VOLC simulation was designed. Interface of VOLC, version 2.0 is
presented in Fig.1. It is a stand alone program written in Borland C++ Builder
for use in the Windows Operating environment. The given interface allows to
define input parameters, check their validity with corresponding messages, call
the main routine for VFEL simulation and it also presents the output of some
results in the window including 2D plots and a summary table of results. The
main routine for VFEL simulation was elaborated in Compaq Visual Fortran
and can operate without VOLC interface. In this case only the file with input
parameters should be filled. Numerical results are written in specified files.

VOLC interface uses the standard MS Windows dialog and are supplied by
screen tips. All wrong user actions are stopped with corresponding messages.
Computation of distributions of intensities with respect to some parameters
can take much of computer time, so at any moment user can stop computation
without losses of calculated data.

Math. Model. Anal., 13(2):263–274, 2008.



268 S. Sytova

4 Numerical Investigation of Chaos

Analytical investigation of chaos in the system (2.1) seems to be impossible
because of its strong nonlinearity. There exists a wide range of external control
parameters. Electron beam moving through resonator in VFEL leads to a
diversity of features of generation dynamics that is due to non-local nature
of interaction between electron beam and electromagnetic field under VDFB.
Here the chaotic behavior in two-wave VFEL was investigated for the following
set of parameters: wavelength λ = 3 cm, L = 10 ÷ 40 cm, j = 400 ÷ 3000
A/cm2, δkL = −20 ÷ 20.

In VFEL theory there exist some threshold points that are bifurcation
points. First threshold point corresponds to beginning of electron beam in-
stability. Here regenerative amplification starts while the radiation gain of
generating mode is less than radiation losses. Parameters at which radiation
gain becomes equal to absorption correspond to the second threshold point af-
ter that generation progresses actively. Numerical results demonstrating tran-
sition between these points were obtained in [4]. Such threshold points exist
with respect to the length of the resonator L too.

a) b)

Figure 2. Transition between different regimes of VFEL intensity (a) and corresponding
phase space portrait (b) for resonator length L equal to (1) 16 cm, (2) 18 cm, (3) 19 cm, (4)
21 cm and (5) 23 cm for j = 2000 A/cm2.

In simulations an important VFEL feature due to VDFB was shown. This
is the initiation of quasiperiodic regimes at relatively small values near thresh-
old points with respect to current density and length of the resonator. In
Fig. 2 the possibility of such initiation at relatively small resonator length is
demonstrated. The threshold value is equal in this case to 13 cm. In the fig-
ure the transition from periodic to quasiperiodic regime, than through chaotic
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self-oscillations to periodic regime again is presented.
Unfortunately, it seems to be impossible to investigate analytically the sta-

bility and convergence of the solution of the difference system to the solution
of the initial integro-differential problem because of strong nonlinearity of the
given problem. So, the principal question in VFEL simulation just as in any
simulations is the following. Either obtained oscillations are due to real chaotic
nature of the system either they are induced by some miscalculations or finite
order of approximation of difference system. One of the possible answers is to
test the sensibility to initial conditions of numerical solutions because the main
origin of chaos is the exponential divergence of initially close trajectories in the
nonlinear system. If we obtain instability with respect to initial conditions for
chaotic regimes and stability for periodic ones, this will be a good verification
of numerical algorithms proposed. Let us consider numerical results in Fig.3.
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Figure 3. Sensibility to initial conditions for different VFEL regimes: (a) periodic, (b)
and (c) chaotic, (d) quasiperiodic.

In each plot there are two curves (black and grey) corresponding to the
following sets of parameters: (a) j = 500 A/cm2, |E0| = 1 and |E0| = 1.1; (b)
j = 2300 A/cm2, |E0| = 1 and |E0| = 1 + 10−15 , (c) j = 2000 A/cm2 and
j = 2000+10−8 A/cm2, (d) j = 1950 A/cm2 and j = 1960 A/cm2. It is obvious
that for periodic and quasiperiodic regimes (Fig.3a and Fig.3d) deviation up to
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ten percents doesn’t lead to divergence of numerical results while for a chaotic
case calculations with double precision and a change of the last digit in the
value of current density leads to the Butterfly effect (Fig.3b).

Parametric maps demonstrating root to chaotic lasing in VFEL were ob-
tained numerically with respect to electron beam current and detuning from
synchronism condition δ expressed in relative units δkL for L = 20 cm . They
are depicted in Fig.4 and Fig.5.

Figure 4. Two-parametric maps of chaotic lasing for transmitted wave. 0 depicts a domain
under beam current threshold. P, Q, C correspond to periodic regimes, quasiperiodicity and
chaos, respectively. M describes domains with transitions between large-scale and small-scale
amplitudes. I stands for intermittency.

On edges of each chart the most typical dependencies of fields intensities
on time (in ns) are presented. 0 depicts a domain under generation threshold
where generation of electromagnetic radiation is not realized. After overcoming
this threshold by parameters j and δ the radiation gain of generating mode
becomes equal to absorption and generation begins and develops actively. All
main dependencies of different threshold points were investigated analytically
in [2] and numerically in [4, 7].

After small overcoming of this threshold the periodical self-oscillations are
developed. This is illustrated in Fig.4 via black strip separating threshold zone
from the remaining domain. Then the initiation of quasiperiodic regimes for
transmitted wave is possible in VFEL. This is demonstrated in Fig.4 via grey
strip near black one. Then transitions from periodic to quasiperiodic regimes
and through non-periodical chaotic self-oscillations with some lines in spec-
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Figure 5. Two-parametric maps of chaotic lasing for diffracted wave. Notation is the same
as in Fig.4.

trum to periodic regimes again are founded. For diffracted wave quasiperiodic
regimes are realized at relatively large values of parameters.

Plots 1 and 12 in Fig.4 and plots 1 and 9–12 in Fig.5 demonstrate different
periodic regimes realizing far from threshold. Plots 2, 8 and 9 in Fig.4 and 2,
4, 8 in Fig.5 depict examples of quasiperiodic regimes. Plots 2, 4, 8 are results
of traditional Hopf bifurcation introducing new incommensurate frequency in
the spectrum. Plot 9 is developed in consequence of disappearance of large
number of frequencies from continuous chaotic spectrum. Plots 6 demonstrate
intermittency. Plots 4, 7, 10, 11 (Fig.4) the same as plot 7 (Fig.5) are examples
of different chaotic regimes.

In [24] BWT with strong reflections parametric maps with large-scale and
small-scale amplitude regimes were adduced. In VFEL modelling besides do-
mains with simply large-scale and small-scale amplitudes (compare plots 1 and
4 in both figures) we obtained domains with transitions between them (see
plots 3, 5 in Fig.4-5). After such transition regimes with periodicity, quasi-
periodicity and chaos can be established. Last type of transition is realized
as a result of tangent bifurcation from chaotic attractor to another one. In
the case of transition from large-scale to small-scale amplitudes regime when
quasiperiodic regime is obtained, we deal with the tangent bifurcation from
chaotic attractor to quasiperiodic movement on the torus. All this can be
explained by the nonlinear mode competition mechanism in the system.

It follows from the presented simulations that the domain with small de-
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tuning δ from synchronism condition |ω − ku| ≤ δω and quite large values of
current density j is most rich for transitions between different regimes.

5 Conclusions

Mathematical models and computer code VOLC described here can be used
effectively in modelling of nonlinear regimes of VFEL operation.

In particular, it was demonstrated the possibility of excitation of quasiperi-
odic oscillations not far from threshold values of electron beam current density
and resonator length. It was investigated sensibility of numerical solution to
initial conditions for different regimes of VFEL operation that was a good ver-
ification of numerical algorithms. Parametric maps with respect to electron
beam current and detuning from synchronism condition present complicated
root to chaos in VFEL with windows of periodicity and quasiperiodicity.

Investigation of chaotic dynamics showed the possibility to choose more
precisely domains with periodic self-modulation instead of chaotic one. They
will be useful for providing experiments on VFEL on the installations created
at the Research Institute for Nuclear Problems of Belarusian State University.
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