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Abstract. A Dirichlet problem is considered for a system of two singularly per-
turbed parabolic reaction–diffusion equations on a rectangle. The parabolic bound-
ary layer appears in the solution of the problem as the perturbation parameter ε

tends to zero. On the basis of the decomposition solution technique, estimates for
the solution and derivatives are obtained. Using the condensing mesh technique and
the classical finite difference approximations of the boundary value problem under
consideration, a difference scheme is constructed that converges ε-uniformly at the
rate O

`

N−2
ln

2 N + N
−1
0

´

, where N = mins Ns, s = 1, 2, Ns + 1 and N0 + 1 are the
numbers of mesh points on the axis xs and on the axis t, respectively.

Key words: initial–boundary value problem, problem on a rectangle, perturbation

parameter ε, system of parabolic equations, reaction–diffusion equations, finite dif-

ference approximation, parabolic boundary layer, decomposition solution technique,

a priori estimates, ε-uniform convergence.

1 Introduction

In the present paper, finite difference approximations for a Dirichlet problem
are considered for a system of two singularly perturbed parabolic reaction–
diffusion equations on a rectangle. The highest-order derivatives in the differ-
ential equations are multiplied by the perturbation parameter ε2; the parameter
ε takes arbitrary values in the open-closed interval (0, 1]. For ε = 0, the system
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of Ireland in Cork, and by the Mathematics Applications Consortium for Science and
Industry in Ireland (MACSI) under the Science Foundation Ireland (SFI) Mathematics
Initiative.

mailto:Lida@convex.ru;shishkin@imm.uran.ru


252 L. Shishkina and G. Shishkin

of the parabolic second-order equations degenerates into a system of ordinary
differential equations. Equations in the system are coupled by terms that do not
include derivatives. For small values of ε, a parabolic boundary layer appears
in a neighbourhood of the boundary. Using the condensing mesh technique and
the classical finite difference approximations of the boundary value problem,
we construct a difference scheme that converges ε-uniformly. A description of
such a method one can found, e.g., in [1, 2, 5, 7, 9].

To analyze conditions that ensure the required smoothness of the solution
of the boundary value problem, and when deriving a priori estimates, and
justifying the convergence of the special difference scheme, we apply a technique
similar to that of [12] which considers a system of singularly perturbed elliptic
equations on a rectangle with the vector perturbation parameter ε. Here, unlike
[12], the perturbation parameter ε is scalar.

2 Problem Formulation. The Aim of Research

2.1. In the domain G:

G = G
⋃

S, G = D × (0, T ], (2.1a)

where D is the rectangle1

D = D
⋃

Γ, D = D(2.1) = {x : 0 < xs < ds, s = 1, 2}, (2.1b)

we consider the Dirichlet problem for a system of singularly perturbed parabolic
equations

Lu(x, t) = f(x, t), (x, t) ∈ G, (2.2a)

u(x, t) = ϕ(x, t), (x, t) ∈ S. (2.2b)

Here S = SL
⋃

S0, where SL and S0 are the lateral and lower parts of the
boundary S, SL = Γ × (0, T ], S0 = S0;

Lu(x, t) = L(ε)u(x, t) ≡

{

ε2 L2 − C(x, t) − P (x, t)
∂

∂t

}

u(x, t),

L2 =

(

L1
2 0

0 L1
2

)

, L1
2 =

∑

s=1,2

∂2

∂x2
s

,

C(x, t) =

(

c11(x, t) c12(x, t)
c21(x, t) c22(x, t)

)

, P (x, t) =

(

p1(x, t) 0
0 p2(x, t)

)

,

and u(x, t), f(x, t) and ϕ(x, t) are vector functions, for example,

u(x, t) = (u1(x, t), u2(x, t))T , (x, t) ∈ G.

1 The notation L(j.k) (G(j.k), M(j.k)) means that these operators (domains, constants) are
introduced in formula (j.k).
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We shall use both the vector form of the boundary value problem and the scalar
form

Li
u(x, t) = f i(x, t), (x, t) ∈ G,

ui(x, t) = ϕi(x, t), (x, t) ∈ S, i = 1, 2,
(2.2c)

where the operator Li = Li
(2.2c) is defined by the relation

Li
u(x, t) = ε2 L1

2 ui(x, t) −
∑

j=1,2

cij(x, t)uj(x, t) − pi(x, t)
∂

∂t
ui(x, t).

The functions cij(x, t), pi(x, t), f i(x, t), and ϕi(x, t) are assumed to be suffi-
ciently smooth on the set G and on the boundary S, respectively. Assume also
that the following conditions are satisfied2

p0 ≤ pi(x, t) ≤ p0, (x, t) ∈ G, p0 > 0; (2.3a)

cii(x, t) ≥ c0, mcii(x, t) ≥ |cij(x, t)|, (x, t) ∈ G, (2.3b)

i, j = 1, 2, i 6= j, c0 > 0, m = m(2.3) < 1.

The parameter ε takes arbitrary values in the open-closed interval (0, 1].

L
(i)
(2.4) ≡ ε2 L1

2 − cii(x, t) − pi(x, t)
∂

∂t
, (x, t) ∈ G, i = 1, 2, (2.4)

that include the differential part of the operator Li
(2.2c) are monotone, moreover,

the elements of the matric C(2.2)(x, t) have the strong diagonal dominance.
Such properties of the operator L(2.2) allow us to estimate the solution using
the data of the problem (2.2), (2.1).

u ∈ C2,1(G) that is continuous on G and satisfies the differential equation
(2.2a) on G and the boundary condition (2.2b) on S.

We assume that the solution of the problem is sufficiently smooth.
When ε tends to zero, a parabolic boundary layer appears in a neighbour-

hood of the set SL.

2.2. Even in the case of the scalar reaction–diffusion equation, the classi-
cal difference schemes cannot produce ε-uniformly convergent solutions (see,
e.g., [9]). Boundary value problems for systems of parabolic equations on a
strip were considered, for example, in [10, 11] (for reaction–diffusion equations
in [10], and for convection–diffusion equations in [11]); problems for systems in
domains with piecewise smooth boundaries have not been studied.

Our aim for the boundary value problem (2.2), (2.1) is to construct a
difference scheme that converges ε-uniformly.

3 Preliminary Considerations

3.1. Let us formulate the conditions imposed on the data of the problem (2.2),
(2.1) that guarantee the required smoothness of the solution.

2 Here and below M, Mi (or m) denote sufficiently large (small) positive constants which
do not depend on ε and on the discretization parameters.

Math. Model. Anal., 13(2):251–261, 2008.
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We denote by Γj , Γ =
⋃

Γj , j = 1, 2, 3, 4 the sides of the rectangle D; the
sides Γs, Γs+2 are orthogonal to the xs-axis, for s = 1, 2; the sides Γ1 and Γ2

pass through the point (0, 0), moreover, the Γj are closed sets; Γ c is the set of
corner points. Set

Sj = Γj × (0, T ], j = 1, . . . , 4. (3.1a)

We denote by Sc the set of “edges”, i.e., Sc is formed by taking pairwise in-
tersection of the faces in the parabolic boundary S (i.e., the lateral sides and
lower basis of the set G):

Sc = SLc⋃Sc
0, (3.1b)

where SLc and Sc
0 are the set of the lateral and lower “edges” respectively:

SLc =
⋃4

j=1 Sc
j,j+1, Sc

j,j+1 = Sj

⋂

Sj+1,

Sc
0 = S

L⋂
S0, Sj+1 = S1 for j = 4.

(3.1c)

We give a definition of a compatibility condition on the set Sc
0(3.1), following

to [4]. Set ϕ0(x) = ϕ(x, t), (x, t) ∈ S0. Let the function ϕ(x, t), (x, t) ∈ S,
satisfy the condition ϕ(·, 0) ∈ Cl0(D) (ϕ0 ∈ Cl0(D)), and for the function

ϕ(x, t), considered on S
L
, the derivatives (∂k0/∂tk0) ϕ(x, t), where (x, t) ∈ Sc

0,
are defined for k0 ≤ l/2, l0 = l + α, l ≥ 0 is the integer, α ∈ (0, 1). Using the
function ϕ0(x) prescribed on the set S0 and the equation (2.2a), we find the
derivative in t of the function u(x, t) on S0. We denote it by (∂/∂t)ϕ0,t=0(x).
Furthermore, differentiating the equation (2.2a) in x1, x2 and t, we find the
derivatives in t up to order k0 ≤ [l/2], where [a] is the integer part of the number
a ≥ 0; we denote these derivatives by (∂k0/∂tk0) ϕ0,t=0(x), x ∈ D. We say that
the data of the boundary value problem satisfy a compatibility condition on the
set Sc

0 guaranteeing the continuity of the derivatives in t up to order K0 of the
function u(x, t), or, briefly, the problem data satisfy a compatibility condition
on Sc

0 for the derivatives in t up to order K0 [4], if one has the condition

∂k0

∂tk0
ϕ(x, t) =

∂k0

∂tk0
ϕ0,t=0(x), (x, t) ∈ Sc

0, 0 ≤ k0 ≤ K0. (3.2)

Under the conditions given above, we have K0 ≤ [l/2], where [l/2] is the integer.
In the case when the data of the problem (2.2), (2.1) satisfy the conditions

C(2.2), P, f ∈ H l(1)+α(G), l(1) ≥ 0, (3.3a)

ϕ ∈ H l(2)+α(Sj), ϕ ∈ H l(2)+α(S0), ϕ ∈ C(S), (3.3b)

j = 1, 2, 3, 4, l(2) ≥ 2, α ∈ (0, 1),

then the solution of this problem satisfies the inclusion (see [3, 4]):

u ∈ H l(3)+α1(G)
⋂

Hα1(G), where l(3) = min[l(1) + 2, l(2)], α1 ∈ (0, 1).

Let
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the data of the problem (2.2), (2.1) on the set Sc
0

satisfy compatibility conditions,

for the derivatives in t up to order [l(4)/2], l(4) ≤ l(3).

(3.3c)

Thereby, the derivatives in t satisfy the inclusion

∂k0

∂tk0
u ∈ Hα1

(

G
)

, k0 ≤ K0, where K0 ≤ [l(4)/2], l(4) = l
(4)
(3.3).

3.2. If the data of the problem (2.2), (2.1) satisfy the condition (3.3) with

l(1) = l(2) = l(4) = l + 2, l ≥ 0, (3.4a)

and also the conditions

∂k

∂xk1
1 ∂xk2

2

P (x, t) = 0,
∂k

∂xk1
1 ∂xk2

2

C(x, t) = 0, (x, t) ∈ S
Lc

,

1 ≤ k ≤ 2([l/2]− 1) for l ≥ 4;

for l ≤ 3 (l ≥ 0), restrictions to the derivatives

of the matrix-functions P (x, t), C(x, t), (x, t) ∈ S
Lc

, are not imposed;

(3.4b)

∂k

∂xk1
1 ∂xk2

2

f(x, t) = 0, k ≤ l,

∂k1

∂xk1
1

ϕ(x, t) =
∂k2

∂xk2
2

ϕ(x, t) = 0, k1, k2 ≤ l + 2, (x, t) ∈ S
Lc

,

(3.4c)

then one has u(·, t) ∈ Cl+2+α(D), t ∈ [0, T ], that implies the following inclu-
sion [3, 4]:

u ∈ H l+2+α(G). (3.5)

3.3. We shall assume that the following condition holds (we call it the con-
dition (3.6)):

The data of the problem (2.2), (2.1) satisfy the conditions (3.3), (3.4)
that guarantee the smoothness of the solution of the boundary value
problem on G, i.e. the inclusion (3.5). When constructing a priori
estimates for the regular and singular components of the solution
in representations (4.1), (4.8), (4.14) (from Section 4), the follow-
ing condition is assumed to be fulfilled in addition to the conditions
(3.3), (3.4):
C(2.2), P, f ∈ H l1+α(G), ϕ ∈ H l1+α(Sj), ϕ ∈ C(S); (3.6)

∂k

∂xk1
1 ∂xk2

2

f(x, t) = 0, (x, t) ∈ S
Lc

, k ≤ l1;

∂k1

∂xk1
1

ϕ(x, t) =
∂k2

∂xk2
2

ϕ(x, t) = 0, (x, t) ∈ S
Lc

, k1, k2 ≤ l1, l1 ≥ l,

Math. Model. Anal., 13(2):251–261, 2008.
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that guarantee the smoothness of the regular and singular compo-
nents of the solution.

The actual values of l and l1 are specified where it is required. The fulfilment
of other conditions in addition to (3.3), (3.4), (3.6) is not assumed.

4 A Priori Estimates of Solutions

4.1. Let us give some estimates that are obtained using main terms in the
asymptotic expansion of the solution (see, e.g., [6, 9]).

Write the solution of the problem as the sum of the functions

u(x, t) = U(x, t) + V(x, t), (x, t) ∈ G, (4.1)

where U(x, t) and V(x, t) are the regular and singular parts of the solution.
The function U(x, t), (x, t) ∈ G, is the restriction to G of the function U

0(x, t),

(x, t) ∈ G
0
, where the set G

0
, i.e., the extension of G beyond the S

L
, includes

G along with its m0-neighbourhood; G
0

= D
0
× [0, T ]. The function U

0(x, t)
is the solution of the problem

L0
U

0(x, t) = f
0(x, t), (x, t) ∈ G0, (4.2)

U
0(x, t) = ϕ

0(x, t), (x, t) ∈ S0.

Here L0 and f
0(x, t), (x, t) ∈ G

0
, are smooth continuations of the operator

L(2.2) (that preserve the properties (2.3)) and of the function f(x, t); the func-
tion ϕ

0(x, t), (x, t) ∈ S0, is chosen sufficiently smooth; ϕ
0(x, t) = ϕ(x, t),

(x, t) ∈ S0. Assume that the functions f
0(x, t) and ϕ

0(x, t) are equal to zero
outside an m1-neighbourhood of the set G, m1 < m0. The function V(x, t) is
the solution of the problem

L(2.2) V(x, t) = 0, (x, t) ∈ G,
(4.3)

V(x, t) = ϕ(x, t) − U(x, t) ≡ ϕ
V

(x, t), (x, t) ∈ S.

4.2. Let us give estimates of the regular and singular components in the
representation (4.1) of the solution of the boundary value problem.

4.2.1. Now we estimate the regular component of the solution. We represent
the function U(x, t) as the sum of the functions

U(x, t) =

n
∑

k=0

ε2k
Uk(x, t) + v

n
U(x, t) ≡ U

n(x, t) + v
n
U(x, t), (x, t) ∈ G, (4.4)

corresponding to the representation of the function U
0(x, t), (x, t) ∈ G

0
, which

is the solution of problem (4.2):

U
0(x, t) =

n
∑

k=0

ε2k
U

0
k(x, t) + v

n0
U (x, t), (x, t) ∈ G

0
.
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The functions U
0
k(x, t), (x, t) ∈ G

0
, i.e., components in the decomposition of

the regular part of the solution, are solutions of the problems

L(4.5) U
0
0(x, t) = f

0(x, t), (x, t) ∈ G
0
\ S0

0 , (4.5)

U
0
0(x, t) = ϕ

0(x, t), (x, t) ∈ S0
0 ;

L(4.5) U
0
k(x, t) = ε−2

{

L(4.5) − L0
(4.2)

}

U
0
k−1(x, t), (x, t) ∈ G

0
\ S0

0 ,

U
0
k(x, t) = 0, (x, t) ∈ S0

0 , k > 0,

L(4.5) = L0
(4.2)|ε=0 = −C0(x, t) − P (x, t)

∂

∂t
.

In the case of the condition (3.6), where

l ≥ K − 2, l1 ≥ K + 2 n, (4.6a)

n = [(K + 1)/2](3.3) − 2, K ≥ 4, (4.6b)

one has U
0 ∈ HK+α(G

0
); for the function U(x, t), we obtain

∣

∣

∣

∣

∣

∂k+k0

∂xk1
1 ∂xk2

2 ∂tk0

U(x, t)

∣

∣

∣

∣

∣

≤ M
[

1 + εK−k−2
]

, (x, t) ∈ G, k + 2k0 ≤ K. (4.7)

4.2.2. Let us consider the decomposition of the singular part.
In our constructions, we shall use a function V

d(x, t) (an approximation
of V(4.1)(x, t)) as the singular term of the decomposition of the solution. We

construct the function V
d(x, t) as the sum

V
d(x, t) =

4
∑

j=1

[

V(j)(x, t) + V(j, j+1)(x, t)
]

, (x, t) ∈ G, (4.8)

where V(j, j+1)(x, t) = V(14)(x, t) for j = 4. Here V(j)(x, t) and V(j, j+1)(x, t)
are the functions describing the one-dimensional and the corner parabolic bound-
ary layers in a neighbourhood of the sides Sj and the edges Sc

j, j+1 = Sj

⋂

Sj+1,
respectively, where Sj

⋂

Sj+1 = Sc
1 4 for j = 4. The functions V(j)(x, t) and

V(j, j+1)(x, t), (x, t) ∈ G, are the restrictions to G of the functions V
0
(j)(x, t),

(x, t) ∈ G(j) and V
0
(j, j+1)(x, t), (x, t) ∈ G(j, j+1). Here

G(j) = D(j) × [0, T ], G(j,j+1) = D(j,j+1) × [0, T ];

the set D(j) (the set D(j, j+1)) is the part of the set D
0
, which along with the

D belongs to the half-plane (the quarter–plane) whose boundary pass through
the side Γj (the sides Γj and Γj+1).

The function V
0
(j)(x, t), (x, t) ∈ G(j), is the solution of the problem

L0
V

0
(j)(x, t) = 0, (x, t) ∈ G(j),

(4.9a)
V

0
(j)(x, t) = ϕ(j)(x, t), (x, t) ∈ S(j), j = 1, 2, 3, 4,

Math. Model. Anal., 13(2):251–261, 2008.
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where L0 = L0
(4.2); ϕ(j)(x, t), (x, t) ∈ S(j), is a sufficiently smooth function

that satisfies the condition

ϕ(j)(x, t) = ϕ
V

(x, t), (x, t) ∈ Sj

⋃

S0. (4.9b)

The function V
0
(j)(x, t) exponentially decreases when moving away from the

set S(j)j (from the side of the boundary S(j) that includes Sj).

The function V
0
(j, j+1)(x, t), (x, t) ∈ G(j, j+1), is the solution of the problem

L0
V

0
(j, j+1)(x, t) = 0, (x, t) ∈ G(j, j+1),

(4.10a)
V

0
(j, j+1)(x, t) = ϕ(j, j+1)(x, t), (x, t) ∈ S(j, j+1), j = 1, 2, 3, 4;

ϕ(j, j+1)(x, t), (x, t) ∈ S(j, j+1), is a sufficiently smooth function that satisfies
the condition

ϕ(j, j+1)(x, t) = ϕV(x, t) − ϕ(j)(x, t) − ϕ(j+1)(x, t), (4.10b)

(x, t) ∈ Sj

⋃

Sj+1.

The function V
0
(j, j+1)(x, t) exponentially decreases when moving away from

the set Sj

⋂

Sj+1.

4.2.3. Let us estimate the singular components in the representation (4.8).

Having an estimate of the problem (4.9) in the extended domain G(j) (the
main term in the expansion of the form (4.4) of the function V

0
(j)(x, t), (x, t) ∈

G(j), is a solution of the boundary value problem for a singularly perturbed
vector one-dimensional parabolic equation), for the function V(j)(x, t), (x, t) ∈

G, in the case of the conditions (3.6), (4.6), we obtain the estimate

∣

∣

∣

∣

∣

∂k+k0

∂xk1
1 ∂xk2

2 ∂tk0

V(j)(x, t)

∣

∣

∣

∣

∣

≤ M ε−k(j) exp
(

−m ε−1 r(x, Γj)
)

, (4.11)

(x, t) ∈ G, k + 2 k0 ≤ K, j = 1, 2, 3, 4.

Here r(x, Γj) is the distance from the point x to the set Γj , k(j) = k1 for
j = 1, 3, while k(j) = k2 for j = 2, 4, and m is an arbitrary constant from the

interval (0, m0), where m0 = c
1/2
0 (1 − m(2.3))

1/2, for c0 = c0(2.3).

4.2.4. Let us estimate the function V(j, j+1)(x, t) in the domain G(j, j+1).
Here, we need more smoothness of the components U(x, t), V(j)(x, t) com-
pared with the smoothness required for the estimates (4.7), (4.11). Assume
that the data of the boundary value problem satisfy the condition (3.6), where

l ≥ K − 2, l1 ≥ 2 K − 1; (4.12)

this condition is stronger than the condition (4.6).
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Taking into account estimates similar to (4.11), for the solution of the prob-
lem (4.10), we find the estimate

∣

∣

∣

∣

∣

∂k+k0

∂xk1
1 ∂xk2

2 ∂tk0

V(j, j+1)(x, t)

∣

∣

∣

∣

∣

≤ M ε−k exp
(

− m ε−1 r
(

x, Γj

⋂

Γj+1

)

)

,

(x, t) ∈ G, k + 2 k0 ≤ K, j = 1, 2, 3, 4, m = m(4.11). (4.13)

4.3 Let us give a decomposition of the solution of the boundary value prob-
lem that will be used in the following construction.

The solution of the boundary value problem (2.2), (2.1) can be represented
as a sum similar to (4.1):

u(x, t) = U
d(x, t) + V

d(x, t), (x, t) ∈ G, (4.14)

where U
d
(4.14)(x, t) = U(4.1)(x, t) +U

∗(x, t), V
d
(4.14)(x, t) = V

d
(4.8)(x, t).

The additional component U
∗(x, t) appears because the components of the

function V
d
(4.14)(x, t) were constructed as solutions of boundary value problems

in domains that are extensions of G. For the function U
∗(x, t), (x, t) ∈ G, in

the case of condition (4.12), we have the estimate

∣

∣

∣

∣

∣

∂k+k0

∂xk1
1 ∂xk2

2 ∂tk0

U
∗(x, t)

∣

∣

∣

∣

∣

≤ M, (x, t) ∈ G, k + 2 k0 ≤ K. (4.15)

For the component U
d
(4.14)(x, t) in the decomposition (4.14), taking into

account the estimates (4.7), (4.15), we obtain

∣

∣

∣

∣

∣

∂k+k0

∂xk1
1 ∂xk2

2 ∂tk0

U
d(x, t)

∣

∣

∣

∣

∣

≤ M
[

1 + εK−k−2
]

, (x, t) ∈ G, (4.16)

k + 2 k0 ≤ K.

For the components of the singular component V
d(x, t) in the decomposition

(4.8), the estimates (4.11), (4.13) hold.

Theorem 1. Let the data of the boundary value problem (2.2), (2.1) satisfy
the conditions (3.6), (4.12), where K ≥ 4. Then the solution components
V(j)(x, t), V(j, j+1)(x, t), for j = 1, 2, 3, 4, and U

d(x, t) in the decompositions
(4.8), (4.14) satisfy the estimates (4.11), (4.13) and (4.16).

5 Finite Difference Scheme

5.1. When constructing a finite difference scheme for the problem (2.2), (2.1),
we use a classical finite difference approximation on rectangular meshes (see,
e.g., [8]). On the set G we introduce the grid

Gh = Dh × ω0, Dh = ω1 × ω2. (5.1)
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Here ωs and ω0 are, in general, arbitrary nonuniform meshes on the intervals
[0, ds] and [0, T ] respectively. Set hi

s = xi+1
s −xi

s, xi
s, xi+1

s ∈ ωs, hs = maxi hi
s,

h = maxs hs, s = 1, 2, and hk
t = tk+1 − tk, tk, tk+1 ∈ ω0, ht = maxk hk

t .
Assume that the condition h ≤ MN−1, ht ≤ MN−1

0 is fulfilled, where N =
mins Ns, s = 1, 2, Ns + 1 and N0 + 1 are the number of nodes in the meshes
ωs and ω0, respectively.

To solve the problem, we use the implicit scheme on the grid Gh:

Λ z(x, t) = f(x, t), (x, t) ∈ Gh, z(x, t) = ϕ(x, t), (x, t) ∈ Sh. (5.2)

Here Gh = G
⋂

Gh, Sh = S
⋂

Gh,

Λ z(x, t) ≡ ε2 Λ2 z(x, t) − C(x, t) z(x, t) − P (x, t) δt z(x, t),

Λ2 =

(

Λ1
2 0

0 Λ1
2

)

, Λ1
2 =

∑

s=1,2

δxscxs, z(x, t) =
(

z1(x, t), z2(x, t)
)T

,

(x, t) ∈ Gh. Here δxscxs v(x, t)vxscxs(x, t), for s = 1, 2, and δt v(x, t) are the cen-
tral second- and the backward first-order difference derivatives on nonuniform
meshes [8].

5.2. We study the convergence of the scheme (5.2), (5.1) using the maximum
principle [8] and under the assumption that the solution of the boundary value
problem (2.2), (2.1) satisfies the estimates of Theorem 1.

Note that the operators

Λ
(i)
(5.3) ≡ ε2 Λ1

2 − cii(x, t) − pi(x, t) δt, (x, t) ∈ Gh, i = 1, 2, (5.3)

that approximate the operators L
(i)
(2.4), are monotone [8].

Let us construct a special finite difference scheme for the problem (2.2),
(2.1). On the set G we introduce the mesh

Gh = Dh × ω0, Dh = D
S

h = ω S
1 × ω S

2 , (5.4)

where ω0 is a uniform mesh on the interval [0, T ], and ω S
s = ω S

s (σs) is a
piecewise uniform mesh on the interval [0, ds]. The mesh step-sizes of ω S

s are
constant on the sets [0, σs], [ds − σs, ds] and [σs, ds − σs], and are equal,

respectively to h
(1)
s = 4σsN

−1
s and h

(2)
s = 2(ds − 2σs)N

−1
s . The value σs is

defined by

σs = σs(ε, Ns) = min
[

4−1ds, Mε lnNs

]

, s = 1, 2, M = 2m−1
(4.11).

To solve the problem (2.2), (2.1), we use the difference scheme (5.2) on the
grid (5.4). Taking into account the estimates of Theorem 1, we establish the
ε-uniform convergence of this scheme

|u(x, t) − z(x, t) | ≤ M
[

N−2 ln2 N + N−1
0

]

, (x, t) ∈ Gh. (5.5)
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Theorem 2. Let the components in the decompositions (4.8), (4.14) of the so-
lution of the boundary value problem (2.2), (2.1) satisfy the estimates of The-
orem 1 for K = 4. Then the solution of the difference scheme (5.2), (5.4)
converges to the solution of the boundary value problem ε-uniformly. The dis-
crete solution satisfies the estimate (5.5).

The authors are grateful to the participants of the 12th International Con-
ference MMA2007 (Trakai, Lithuania, 2007) for interesting helpful discussions.
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