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1 Introduction

The paper deals with the question on the existence and uniqueness of a solution
of a non-local boundary-value problem for linear functional differential equa-
tions of the general form. More precisely, we consider the system of functional
differential equations

u′
k(t) = (lku)(t) + qk(t), t ∈ [a, b], k = 1, 2, . . . , n, (1.1)
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subjected to the non-local boundary conditions

uk(a) = hk(u), k = 1, 2, . . . , n, (1.2)

where −∞ < a < b < +∞, n ∈ N,

lk : D([a, b], Rn) → L1([a, b], R), k = 1, 2, . . . , n,

are linear operators, {qk | k = 1, 2, . . . , n} ⊂ L1([a, b], R) are given functions,
and hk : D([a, b], Rn) → R, k = 1, 2, . . . , n, are continuous linear functionals.
Here, D([a, b], Rn) and L1([a, b], R) are, respectively, the Banach spaces of ab-
solutely continuous and Lebesgue integrable vectors functions on the interval
[a, b]. By a solution of problem (1.1), (1.2), as usual (see, e. g., [1]), we mean
a vector function u = (uk)n

k=1 : [a, b] → R
n whose components are absolutely

continuous, satisfy system (1.1) almost everywhere on the interval [a, b], and
possesses property (1.2).

It should be noted that equations (1.1) may contain terms with derivatives
and, thus, the statements presented in what follows are applicable, in particular,
to neutral type linear functional differential equations.

The aim of this note is to prove the unique solvability of problem (1.1),
(1.2) on the assumption that the linear operators lk, k = 1, 2, . . . , n, appearing
in (1.1) can be estimated by certain other linear operators generating problems
with conditions (1.2) for which the statement on the integration of differential
inequality holds. The precise formulation of the property mentioned is given
by the following definition.

Definition 1. A linear operator l = (lk)n
k=1 : D([a, b], Rn) → L1([a, b], Rn) is

said to belong to the set Sa,h([a, b], Rn) if the boundary value problem (1.1),
(1.2) has a unique solution u = (uk)n

k=1 for any {qk | k = 1, 2, . . . , n} ⊂
L1([a, b], R) and, moreover, the solution of (1.1), (1.2) possesses the property

min
t∈[a,b]

uk(t) ≥ 0, k = 1, 2, . . . , n, (1.3)

whenever the functions qk, k = 1, 2, . . . , n, appearing in (1.1) are non-negative
almost everywhere on [a, b].

Note that Sa,h([a, b], R) contains the set Ṽ +
ab(h) defined in the paper [6],

where certain efficient conditions sufficient for the inclusion l ∈ Ṽ +
ab(h) are

established in the case where the linear operator l admits a continuous extension
to the space of continuous functions.

2 Notation

The following notation is used throughout the paper.

1. R := (−∞,∞), N := {1, 2, 3, . . .}.

2. ‖x‖ := max1≤k≤n |xk| for x = (xk)n
k=1 ∈ R

n.
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3. L1([a, b], Rn) is the Banach space of all the Lebesgue integrable vector-
functions u : [a, b] → R

n with the standard norm

L1([a, b], Rn) ∋ u 7−→

∫ b

a

‖u(ξ)‖ dξ.

4. mes A is the Lebesgue measure of a set A ⊂ R.

5. D([a, b], Rn) is the Banach space of the absolutely continuous functions
[a, b] → R

n equipped with the norm

D([a, b], Rn) ∋ u 7−→ ‖u(a)‖ +

∫ b

a

‖u′(ξ)‖ dξ.

6. If h = (hk)n
k=1 : D([a, b], Rn) → R

n are certain operators, then the symbol
Dh([a, b], Rn) denotes the set of all u = (uk)n

k=1 from D([a, b], Rn) for
which uk(a) = hk(u), k = 1, 2, . . . , n.

7. The set Dh,1([a, b], Rn) is defined by the formula

Dh,1([a, b], Rn) :=
{

u = (uk)n
k=1 ∈ Dh([a, b], Rn) | min

ξ∈[a,b]
uk(ξ) ≥ 0

for all k = 1, 2, . . . , n
}

. (2.1)

8. The set Dh,2([a, b], Rn) is introduced by the formula

Dh,2([a, b], Rn) :=
{

u = (uk)n
k=1 ∈ Dh([a, b], Rn) | min

ξ∈[a,b]
uk(ξ) ≥ 0

and vrai min
ξ∈[a,b]

u′
k(ξ) ≥ 0 for all k = 1, 2, . . . , n

}

. (2.2)

3 Main Theorem

The following theorem provides general conditions sufficient for the existence
and uniqueness of a solution of problem (1.1), (1.2).

Theorem 1. Let there exist linear operators pi = (pik)n
k=1 : D([a, b], Rn) →

L1([a, b], Rn), i = 0, 1, satisfying the inclusions

p1 ∈ Sa,h([a, b], Rn), p0 + p1 ∈ Sa,h([a, b], Rn), (3.1)

and such that the inequalities

|(lku)(t) − (p1ku)(t)| ≤ (p0ku)(t), t ∈ [a, b], k = 1, 2, . . . , n, (3.2)

hold for an arbitrary non-negative absolutely continuous vector function u :
[a, b] → R

n with property (1.2). Then the boundary value problem (1.1), (1.2)
has a unique solution for arbitrary {qk | k = 1, 2, . . . , n} ⊂ L1([a, b], R).

Math. Model. Anal., 13(2):241–250, 2008.
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Theorem 1 generalises [7, Theorem 3.3]. Note that assumption (3.1) in
Theorem 1 can not be replaced neither by the condition

(1 − ε) p1 ∈ Sa,h([a, b], Rn), p0 + p1 ∈ Sa,h([a, b], Rn), (3.3)

nor by the condition

p1 ∈ Sa,h([a, b], Rn), (1 − ε) (p0 + p1) ∈ Sa,h([a, b], Rn), (3.4)

where ε is an arbitrarily small positive number. Indeed, let us fix some ε ∈ [0, 1)
and consider the homogeneous Cauchy problem

u1(a) = 0, u2(a) = 0, (3.5)

for the system

u′
1(t) =

1

2 (b − a)
(u1(b) − u2(b)) , (3.6)

u′
2(t) = −

1

2 (b − a)
(u1(b) − u2(b)) , t ∈ [a, b]. (3.7)

It is clear that (3.5), (3.6), (3.7) is a particular case of problem (1.1), (1.2),
where n = 2, q1 = q2 = 0,

(liu)(t) =
(−1)i+1

2(b − a)
(u1(b) − u2(b)) , t ∈ [a, b], i = 1, 2,

and h1 = h2 = 0. Problem (3.5), (3.6), (3.7) has the family of solutions

ui(t) = λ (−1)
i
(t − a) , t ∈ [a, b], i = 1, 2,

where λ ∈ R is arbitrary. However, condition (3.4) in this case is satisfied for
all ε ∈ (0, 1) with

p1 := 0, p0u :=
1

2 (b − a)

(

u1(b) + u2(b)
u1(b) + u2(b)

)

,

because initial value problem (3.5) for the system

u′
1(t) =

1 − ε

2 (b − a)
(u1(b) + u2(b)) + q1(t),

u′
2(t) =

1 − ε

2 (b − a)
(u1(b) + u2(b)) + q2(t), t ∈ [a, b],

as it is easy to see, has a unique solution for any qi ∈ L1([a, b], R), i = 1, 2, and
this solution is non-negative for non-negative qi, i = 1, 2.

In a similar way, one can specify an example showing the optimality of
condition (3.3).
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4 Corollaries

Theorem 1 allows one to formulate several corollaries.

Definition 2. A linear operator l = (lk)n
k=1 : D([a, b], Rn) → L1([a, b], Rn) is

said to have positive restriction on Dh([a, b], Rn) if the inequality

vrai min
t∈[a,b]

(lku)(t) ≥ 0, k = 1, 2, . . . , n, (4.1)

is true for any u = (uk)n
k=1 from Dh,1([a, b], Rn). An operator l = (lk)n

k=1 :
D([a, b], Rn) → L1([a, b], Rn) is said to be positive if (4.1) holds for any non-
negative u = (uk)n

k=1 from D([a, b], Rn).

Note that an operator l : D([a, b], Rn) → L1([a, b], Rn) having positive re-
striction on Dh([a, b], Rn) need not be positive. This is the case, in particular,
for the operator l = (lk)n

k=1,

(lku)(t) = (pku)(t) + hk(u) − uk(a), t ∈ [a, b], k = 1, 2, . . . , n,

where p = (pk)n
k=1 : D([a, b], Rn) → L1([a, b], Rn) is positive and

mes {t ∈ [a, b] | (pk∗
v)(t) < vk∗

(a) − hk∗
(v)} 6= 0

for some v = (vk)n
k=1 ∈ D([a, b], Rn) and k∗ ∈ {1, 2, . . . , n}. The latter property

is present, e. g., if

vk(t) = (t − a)(b − a)−1, hk(u) = −uk(b),

(pku)(t) =

n
∑

j=1

αkj(t)uj(ωkj(t)), k = 1, 2, . . . , n, t ∈ [a, b],

for all u = (uk)n
k=1 from D([a, b], Rn) where the integrable functions αki :

[a, b] → R and the measurable functions ωi : [a, b] → [a, b], k = 1, 2, . . . , n,
i = 1, 2, . . . , n, satisfy the condition

min
k=1,2,...,n

mes
{

t ∈ [a, b]
∣

∣

n
∑

j=1

αkj(t)(ωkj(t) − a) < b − a
}

6= 0.

The following statement generalises the results from [2, Theorem 2.2].

Theorem 2. Let there exist certain linear operators li : D([a, b], Rn) →
L1([a, b], Rn), i = 0, 1, which have positive restriction on Dh([a, b], Rn), satisfy

the inclusions

l0 ∈ Sa,h([a, b], Rn), −
1

2
l1 ∈ Sa,h([a, b], Rn), (4.2)

and are such that the inequalities

|(lku)(t) + (l1ku)(t)| ≤ (l0ku)(t), t ∈ [a, b], k = 1, 2, . . . , n, (4.3)

hold for an arbitrary non-negative absolutely continuous function u : [a, b] → R
n

with property (1.2). Then the boundary value problem (1.1), (1.2) has a unique

solution for arbitrary {qk | k = 1, 2, . . . , n} ⊂ L1([a, b], R).

Math. Model. Anal., 13(2):241–250, 2008.
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Proof. It follows from assumption (4.3) and the positivity of the operator
l1|Dh([a,b],Rn) that, for any u from Dh,1([a, b], Rn), the relations

|(lku)(t) + 1
2 (l1ku)(t)| = |(lku)(t) + (l1ku)(t) − 1

2 (l1ku)(t)|

≤ (l0ku)(t) +
1

2
|(l1ku)(t)| = (l0ku)(t) +

1

2
(l1ku)(t), t ∈ [a, b], k = 1, 2, . . . , n

are true. This means that l admits estimate (3.2) with the operators p0 and p1

defined by the equalities

p0 := l0 +
1

2
l1, p1 := −

1

2
l1. (4.4)

It now remains to note that assumption (4.2) ensures the validity of inclusion
(3.1) for operators (4.4). Thus, under conditions (4.2) and (4.3), the operators
pi : D([a, b], Rn) → L1([a, b], Rn), i = 0, 1, defined by formulae (4.4) satisfy
conditions (3.1) and (3.2) of Theorem 1. Applying Theorem 1, we arrive at the
required assertion. ⊓⊔

Remark 1. Arguing similarly, one can show that the assertion of Theorem 2 is
preserved if condition (4.2) is replaced by the assumption that

l0 + (1 − 2θ) l1 ∈ Sa,h([a, b], Rn), −θl1 ∈ Sa,h([a, b], Rn) (4.5)

for a certain θ ∈ (0, 1).

Condition (4.3) is satisfied, in particular, if l can be represented in the form

l = l0 − l1, (4.6)

where l0 and l1 are certain linear operators which have positive restriction on
Dh([a, b], Rn). In the case where the operator l admits decomposition (4.6),
the following statement is also true.

Theorem 3. Let us assume that the operator l admits representation (4.6)
where li : D([a, b], Rn) → L1([a, b], Rn), i = 0, 1, are linear operators which

have positive restriction on Dh([a, b], Rn) and such that the inclusions

l0 ∈ Sa,h([a, b], Rn),
1

2
(l0 − l1) ∈ Sa,h([a, b], Rn) (4.7)

are satisfied. Then problem (1.1), (1.2) has a unique solution for arbitrary

{qk | k = 1, 2, . . . , n} ⊂ L1([a, b], R).

Proof. The positivity of the operators li|Dh([a,b],Rn), i = 0, 1, and equality
(4.6) imply that, for any u from Dh,1([a, b], Rn), the inequalities

−(l1ku)(t) ≤ (lku)(t) ≤ (l0ku)(t), k = 1, 2, . . . , n, (4.8)

are true for almost every t from [a, b]. Putting

pi :=
1

2
(l0 + (−1)il1), i = 0, 1, (4.9)
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and taking into account the obvious identities

p0 + (−1)ip1 = li, i = 0, 1,

we conclude that estimates (4.8) guarantee the fulfilment of conditions (3.1)
and (3.2) of Theorem 1 for the operators pi : D([a, b], Rn) → L1([a, b], Rn),
i = 0, 1, given by the formulae (4.9). Application of Theorem 1 completes the
proof. ⊓⊔

Remark 2. Arguing similarly to Section 3, one can show that conditions (4.2),
(4.5), and (4.7) are optimal in a certain sense.

5 Proof of the Main Theorem

The proof of Theorem 1 is based on rather general order-theoretical consider-
ations. Let us consider the abstract operator equation

Fx = z, (5.1)

where F : E1 → E2 is a mapping, 〈E1, ‖·‖E1
〉 is a normed space, 〈E2, ‖·‖E2

〉 is
a Banach space over the field R, Ki ⊂ Ei, i = 1, 2, are closed cones, and z is
an arbitrary element from E2.

The following statement is due to M. A. Krasnoselskii, E. A. Lifshits,
Yu. V. Pokornyi, and V. Ya. Stetsenko [4, Theorem 7] (see also [5, Theorem
49.4]).

Theorem 4. Let the cone K2 be normal and reproducing. Furthermore, let

Bk : E1 → E2, k = 1, 2, be additive and homogeneous operators such that B−1
1

and (B1 + B2)
−1 exist and possess the properties

B−1
1 (K2) ⊂ K1, (B1 + B2)

−1(K2) ⊂ K1, (5.2)

and, furthermore, the relation

{Fx − Fy − B1(x − y), B2(x − y) − Fx + Fy} ⊂ K2 (5.3)

is satisfied for any pair (x, y) ∈ E2
1 such that x − y ∈ K1. Then equation (5.1)

has a unique solution u ∈ E1 for an arbitrary element z ∈ E2.

Let us recall that a cone K ⊂ E in a Banach space 〈E, ‖·‖E〉 is normal if
and only if the relation

inf {γ ∈ (0, +∞) | ‖x‖E ≤ γ‖y‖E ∀{x, y} ⊂ E : y − x ∈ K} < +∞

is true. By definition, the cone K is reproducing in E if and only if an arbitrary
element x from E can be represented in the form x = u − v, where u and v

belong to K (see, e. g., [3, 5]).

Lemma 1. 1. Dh([a, b], Rn) is a normed space with the norm

Dh([a, b], Rn) ∋ u 7−→

∫ b

a

‖u′(ξ)‖ dξ + ‖u(a)‖.

Math. Model. Anal., 13(2):241–250, 2008.
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2. The set Dh,1([a, b], Rn) is a cone in the space Dh([a, b], Rn).

3. The set D0,2([a, b], Rn) is a normal and reproducing cone in the space

D0([a, b], Rn).

Proof. The assertions of Lemma 1 follow immediately from the definitions of
the sets Dh([a, b], Rn) and Dh,1([a, b], Rn) (see notation 6 and formulae (2.1)
and (2.2) in Section 2). ⊓⊔

The next lemma establishes the relation between the property described by
Definition 1 and the positive invertability of a certain operator.

Lemma 2. If l = (lk)n
k=1 : D([a, b], Rn) → L1([a, b], Rn) is a linear operator

such that

l ∈ Sa,h([a, b], Rn) (5.4)

then the operator Vl : Dh([a, b], Rn) → D0([a, b], Rn) given by the formula

Dh([a, b], Rn) ∋ u 7−→ Vlu := u −

∫ ·

a

(lu)(ξ) dξ − h(u) (5.5)

is invertible and, moreover, its inverse V −1
l satisfies the inclusion

V −1
l (D0,2([a, b], Rn)) ⊂ Dh,1([a, b], Rn).

Proof. Let the mapping l belong to the set Sa,h([a, b], Rn). Given an arbitrary
function y = (yk)n

k=1 ∈ D0([a, b], Rn), consider the equation

Vlu = y. (5.6)

In view of notation 6, Sec. 2, we have

yk(a) = 0, k = 1, 2, . . . , n. (5.7)

By virtue of assumption (5.4), there exists a unique absolutely continuous u =
(uk)n

k=1 such that

u′
k(t) = (lku)(t) + y′

k(t), t ∈ [a, b], k = 1, 2, . . . , n, (5.8)

uk(a) = hk(u), k = 1, 2, . . . , n. (5.9)

Moreover, if the functions yk, k = 1, 2, . . . , n, are non-negative and non-decrea-
sing, the components of u possess property (1.3). Integrating both parts of
(5.8) and taking (5.7) and (5.9) into account, we find that u = (uk)n

k=1 is the
unique solution of equation (5.6). ⊓⊔

The following statement is an obvious consequence of formula (5.5).

Lemma 3. For arbitrary linear operators pi : D([a, b], Rn) → L1([a, b], Rn),
i = 1, 2, the identity

Vp1
+ Vp2

= 2V 1

2
(p1+p2)

is true.
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Let us now turn to the proof of Theorem 1. Consider the initial value
problem (1.1), (1.2). An absolutely continuous vector function u = (uk)n

k=1 :
[a, b] → R

n is a solution of (1.1), (1.2) if, and only if it satisfies the equation

u(t) =

∫ t

a

(lu)(s)ds +

∫ t

a

q(s)ds + h(u), t ∈ [a, b]. (5.10)

Let us put E1 = Dh([a, b], Rn), E2 = D0([a, b], Rn) and define the mapping
F : E1 → E2 by setting

(Fu)(t) := u(t) −

∫ t

a

(lu)(s)ds − h(u), t ∈ [a, b], (5.11)

for any u from Dh([a, b], Rn). Then equation (5.10) takes form (5.1) with

z(t) :=

∫ t

a

q(s)ds, t ∈ [a, b].

Assumption (3.2) means that the estimate

−(p0ku)(t) + (p1ku)(t) ≤ (lku)(t) ≤ (p0ku)(t) + (p1ku)(t), t ∈ [a, b],

is true for any u from Dh,1([a, b], Rn) and all k = 1, 2, . . . , n. Therefore, for all
such u, the relation

u′
k(t) − (p0ku)(t) − (p1ku)(t) ≤ u′

k(t) − (lku)(t)

≤ u′
k(t) + (p0ku)(t) − (p1ku)(t), k = 1, 2, . . . , n, (5.12)

holds for almost every t ∈ [a, b]. Integrating (5.12) and taking property (1.2)
into account, we obtain that the inequality

uk(t)−hk(u)−

∫ t

a

[(p0ku)(ξ) + (p1ku)(ξ)] dξ ≤ uk(t)−hk(u)−

∫ t

a

(lku)(ξ)dξ

≤ uk(t) − hk(u) +

∫ t

a

[(p0ku)(ξ) − (p1ku)(ξ)] dξ, t ∈ [a, b], (5.13)

holds for any (uk)n
k=1 from Dh,1([a, b], Rn), and all k = 1, 2, . . . , n. Let us define

the linear mappings Bik : Dh([a, b], Rn) → D0([a, b], R), i = 1, 2, k = 1, 2, . . . , n,
by putting

Biku := uk(·) − hk(u) + (−1)i

∫ ·

a

[

(p0ku)(ξ) − (−1)i(p1ku)(ξ)
]

dξ (5.14)

for an arbitrary u from Dh([a, b], Rn) and construct the corresponding mappings
Bi : Dh([a, b], Rn) → D0([a, b], Rn), i = 1, 2, according to the formula

Dh([a, b], Rn) ∋ u 7−→ Biu :=











Bi1u

Bi2u
...

Binu











, i = 1, 2.

Math. Model. Anal., 13(2):241–250, 2008.
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Then estimates (5.12) and (5.13), formula (5.5), and the definition of the sets
Dh,1([a, b], Rn) and D0,2([a, b], Rn) imply that

{B2u − Vlu, Vlu − B1u} ⊂ D0,2([a, b], Rn) for an arbitrary u

from Dh,1([a, b], Rn).

The last property means that mapping (5.11) satisfies condition (5.3) with K1

and K2 defined by the formulae

K1 = Dh,1([a, b], Rn), K2 = D0,2([a, b], Rn). (5.15)

By virtue of Lemma 1, the set K1 forms a cone in the normed space
Dh([a, b], Rn), whereas the set K2 is a normal and reproducing cone in the
Banach space D0([a, b], Rn).

It follows from Lemma 3 that the identity

1

2
(Vp1−p0

+ Vp1+p0
) = Vp1

is true. However, according to equalities (5.14), we have Bi = Vp1−(−1)ip0
,

i = 1, 2. Therefore, by virtue of assumption (3.1) and Lemma 2, we conclude
that the inverse operators B−1

1 and (B1 + B2)
−1 exist and possess proper-

ties (5.2) with respect to cones (5.15). Applying Theorem 4, we establish
the unique solvability of the initial value problem (1.1), (1.2) for arbitrary
qk ∈ L1([a, b], R), k = 1, 2, . . . , n. Theorem 1 is proved.
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