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Abstract. Some gap Tauberian remainder theorems are proved for generalized lin-
ear methods A = (Ank) , where Ank are bounded linear operators from Banach space
X into X. In these theorems the investigated sequences have infinitely many constant
pieces.
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1 Introduction

Already in 1704 N. Fatzius (see [7]) used linear transformation to accelerate the
convergence to compute π. The first convergence acceleration methods derived
and used were linear methods. In recent years the main results in convergence
acceleration are proved for nonlinear methods (see [2]). Though nonlinear
sequence transformations usually give better results, they use substantially
bigger volume of computation. In some occasions the precision of intermediate
computing is not so important and we can successfully use linear methods (see
[20]).

Let X be a Banach space. A sequence x = (ξk) (ξk ∈ X) is called λ-bounded
if

∃ lim ξk = ξ ∧ λk (ξk − ξ) = O (1) ,

where 0 < λk ր . Let mλ
X be the set of all λ−bounded sequences. Let L (X, X)

be the space of all bounded linear operators from X into X. A sequence x =
(ξk) is called summable (see [5, 9, 12, 26] and [15]) by a generalized method
A = (Ank) if y = (ηn) with

ηn =

∞
∑

k=0

Ankξk
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and Ank ∈ L(X, X) is convergent. The transformation A is called preserving
λ−boundedness (see [23]) if

Amλ
X ⊂ mλ

X .

Let µ = (µk) with 0 < µk ր . The transformation A is called accelerating
λ−boundedness if

Amλ
X ⊂ mµ

X

with limµk�λk = ∞.
There is a problem to determine certain sets T of sequences with the fol-

lowing property
(

Ax ∈ mλ
X

)

∧ (x ∈ T ) ⇒
(

x ∈ mλ
X

)

.

In the "usual" Tauberian remainder theorems (see [20, 21, 22, 23, 24], [16] and
[10, 11]) the Tauberian condition x ∈ T is connected with the certain regularity
of the oscillation of a sequence x. Besides the "usual" Tauberian remainder
theorems, there are important Tauberian remainder theorems in which the
sequence (ξn) has infinitely many constant pieces. In the case λn = O (1)
these theorems are named gap Tauberian theorems (see [1, 27]) and in the
case λn 6= O (1) gap Tauberian remainder theorems (see [18, 19]). The first
Tauberian theorem for gap series was proved (see [4]) by G. H. Hardy and J.
E. Littlewood. In [1] and [27] (see also [3, 8, 13, 14, 25]) are presented several
classical gap Tauberian theorems for certain classic methods of summability.

In this paper we present several more gap Tauberian remainder theorems.

2 Generalized Riesz Method and Gap Tauberian Remain-

der Theorems

Let us denote by (R, Pn) or shortly by R the generalized Riesz method (see
[12]), defined by

Rnk =

{

RnPk (k = 0, 1, . . . , n) ,
θ (k > n) ,

where R = (Rnk) and Pk, Rn ∈ L (X, X) , while Rn is determined by

Rn

n
∑

k=0

Pkζ = ζ (ζ ∈ X, n ∈ N0) . (2.1)

Let (Bn) be a sequence of operators Bn ∈ L (X, X) satisfying the conditions

(n + 1) ‖Bn+1 − Bn‖ = O (‖Bn‖) (2.2)

and
B0 = θ, Bn 6= θ (n ∈ N) . (2.3)

Let us denote by (Z, Bn) or shortly by Z the generalized Zygmund method
(see [24]) as a generalized Riesz method (R, Pn) with Pn = Bn+1 − Bn. Let
(kν) be a sequence of positive integers with

kν+1 − kν > ϑkν (ϑ > 0) . (2.4)

Let Q (n, kν) =
∑n

k=kν
Pk.
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Proposition 1. (see also [6], [17]–[19]). Let

R−1
n , Q−1 (n, kν) ∈ L (X, X) , (2.5)

n = [(1 + ϑ) kν ] , (2.6)
∥

∥Q−1 (n, kν)R−1
n

∥

∥ = O (1) , (2.7)
∥

∥Q−1 (n, kν)R−1
kν−1

∥

∥ = O (1) , (2.8)

If the conditions (2.4),

ξk − ξk−1 = θ (k 6= kν) , (2.9)

λkν+1
= O (λkν

) (2.10)

Rx ∈ mλ
X (2.11)

are satisfied, then

x ∈ mλ
X . (2.12)

Proof. Using

ηn = Rn

n
∑

k=0

Pkξk,

(2.1), (2.6) and (2.9) we get

R−1
n ηn =

n
∑

k=0

Pkξk =

kν−1
∑

k=0

Pkξk +

n
∑

k=kν

Pkξk

=

kν−1
∑

k=0

Pkξk +
(

n
∑

k=kν

Pk

)

ξkν
=

kν−1
∑

k=0

Pkξk + Q (n, kν) ξkν
.

Therefore we have

ξkν
= Q−1 (n, kν)

(

R−1
n ηn −

kν−1
∑

k=0

Pkξk

)

= Q−1 (n, kν)R−1
n ηn − Q−1 (n, kν)R−1

kν−1ηkν−1

and

λkν
(ξkν

− η) = λkν
Q−1 (n, kν)

(

R−1
n ηn − R−1

kν−1ηkν−1 − R−1
n η + R−1

kν−1η
)

= Q−1 (n, kν)λkν

(

R−1
n (ηn − η) − R−1

kν−1 (ηkν−1 − η)
)

= Q−1 (n, kν)
λkν

λn

R−1
n γn − Q−1 (n, kν)

λkν

λkν−1
R−1

kν−1γkν−1,

where γk = λk (ηk − η) and lim ηk = η. Since 0 < λk ր ∞, the conditions (2.6)
and (2.10) are satisfied we get

λkν

λn

= O (1) ,
λkν

λkν−1
= O (1) .
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From (2.11) we get γk = O (1) . Therefore using (2.7) and (2.8) it follows that

λkν
(ξkν

− η) = O (1) . (2.13)

Using (2.9), (2.10) and (2.13) we get that (2.12) is fulfilled. ⊓⊔

Corollary 1. (see also [18] and [19]). If I ∈ L (X, X) is the identity operator,

Pk = pkI (k ∈ N0, pk ∈ R) (2.14)

and the conditions (2.4), (2.6), (2.9), (2.10), (2.11),

k
∑

ν=0

pν 6= 0 (k ∈ N0) ,

n
∑

k=kν

pk 6= 0, (2.15)

∣

∣

∣

n
∑

k=0

pk

∣

∣

∣
= O (1)

∣

∣

∣

n
∑

k=kν

pk

∣

∣

∣
, (2.16)

∣

∣

∣

kν−1
∑

k=0

pk

∣

∣

∣
= O (1)

∣

∣

∣

n
∑

k=kν

pk

∣

∣

∣
(2.17)

are satisfied, then the assertion (2.12) is valid.

Proof. Taking (2.14) we get

R−1
n =

(

n
∑

k=0

pk

)

I ∈ L (X, X) and
∥

∥R−1
n

∥

∥ =
∣

∣

∣

n
∑

k=0

pk

∣

∣

∣
.

As Q (n.kν) =
(

∑n

k=kν
pk

)

I and the condition (2.15) is satisfied, then

Q−1 (n, kν) =
(

n
∑

k=kν

pk

)

−1

I ∈ L (X, X) ,

∥

∥Q−1 (n, kν)
∥

∥ =
∣

∣

∣

n
∑

k=kν

pk

∣

∣

∣

−1

.

Using (2.16) and (2.17) we get that the conditions (2.7) and (2.8) are satisfied.
So the conditions of Proposition 1 are satisfied and the assertion of Corollary
1 follows from the assertion of Proposition 1. ⊓⊔

Corollary 2. If the sequences k = (kν) , x = (ξν) , λ = (λν) and (Bν) satisfy
the conditions (2.2), (2.3), (2.4), (2.6), (2.9), (2.10),

(Bn+1 − Bkν
)
−1

∈ L (X, X) , (2.18)
∥

∥

∥
(Bn+1 − Bkν

)
−1

Bn+1

∥

∥

∥
= O (1) , (2.19)

∥

∥

∥
(Bn+1 − Bkν

)−1 Bkν

∥

∥

∥
= O (1) (2.20)

and the requirement Zx ∈ mλ
X is satisfied, then (2.12) is valid.
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Proof. Let us use Proposition 1, taking Pk = Bk+1 − Bk. We get

Q (n, kν) = Bn+1 − Bkν
, Q−1 (n, kν) = (Bn+1 − Bkν

)
−1

.

As R−1
n = Bn+1 and Bn ∈ L (X, X) , then R−1

n ∈ L (X, X). The conditions
R−1

n ∈ L (X, X) and (2.18) imply that the condition (2.5) is satisfied. From
(2.19) we get (2.7) and from (2.20) we get (2.8). As the conditions (2.4), (2.6),
(2.9), (2.10) and (2.11) are satisfied, then the assertion of Corollary 2 follows
from the assertion of Proposition 1. ⊓⊔

3 Generalized Zygmund Method and Gap Tauberian Re-

mainder Theorem

Let us define the generalized method Z(1) as (Z, Bn) . Using the recurrent
relation Z(m) = Z(1)Z(m−1) we define the method Z(m) for m ∈ N\{1}. If
Bk = kI, then

Z(m) = H(m) (m ∈ N) ,

where H(m) is the generalized Hölder method of order m. Let η
(0)
ν = ξν for

ν ∈ N0. So we have

η(m)
n = B−1

n+1

n
∑

ν=0

(Bν+1 − Bν) η(m−1)
ν (m ∈ N) . (3.1)

Lemma 1. If the sequences k = (kν) , x = (ξi) and (Bν) satisfy the conditions

(2.2), (2.3), (2.4) and (2.9), then for kν ≤ kν + p < kν+1 we have

η
(1)
kν+p = B−1

kν+p+1

[

ν
∑

i=1

(

Bki
− Bki−1

)

ξki−1
+ (Bkν+p+1 − Bkν

) ξkν

]

, (3.2)

∆η
(1)
kν+p =

(

B−1
kν+p − B−1

kν+p+1

)

ν
∑

i=1

Bki

(

ξki
− ξki−1

)

. (3.3)

Proof. Let k0 = 0 and p 6= 0. Using (3.1), (2.4) and (2.9) we get

η
(1)
kν+p = B−1

kν+p+1

(

ν−1
∑

j=0

kj+1−1
∑

i=kj

(Bi+1 − Bi) ξkj
+

kν+p
∑

i=kν

(Bi+1 − Bi) ξkν

)

= B−1
kν+p+1

(

ν
∑

i=1

(

Bki
− Bki−1

)

ξki−1
+ (Bkν+p+1 − Bkν

) ξkν

)

.

So the assertion (3.2) is valid. Using (3.2) we for kν < kν + p < kν+1 conclude

∆η
(1)
kν+p=η

(1)
kν+p − η

(1)
kν+p−1

=
(

B−1
kν+p+1−B−1

kν+p

)

ν
∑

i=1

(

Bki
−Bki−1

)

ξki−1
+(Bkν+p−Bkν+p+1)Bkν

ξkν
.
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That is why using Abel’s identity for p 6= 0 we get that the assertion (3.3) is
true. Analogously can be proved that the assertions (3.2) and (3.3) are valid
for p = 0. ⊓⊔

Lemma 2. If kν ≤ kν + p < kν+1, p ∈ N0 and the sequences k = (kν),
x = (ξν) , λ = (λν) and (Bν) satisfy the conditions (2.2), (2.3), (2.4) and

(2.9),

νλkν+p ‖Bkν+p‖
∥

∥

∥
B−1

kν+p − B−1
kν+p+1

∥

∥

∥
= O (1) , (3.4)

‖Bkν
‖

∥

∥ξkν
− ξkν−1

∥

∥ = O (1) , (3.5)

then we have that

λk ‖Bk‖
∥

∥

∥
∆η

(1)
k

∥

∥

∥
= O (1) . (3.6)

Proof. If kν ≤ kν + p < kν+1, then using (3.3) we get

λkν+p ‖Bkν+p‖
∥

∥

∥
∆η

(1)
kν+p

∥

∥

∥

≤ λkν+p ‖Bkν+p‖
∥

∥

∥
B−1

kν+p − B−1
kν+p+1

∥

∥

∥

ν
∑

i=1

‖Bki
‖
∥

∥ξki
− ξki−1

∥

∥ .

Applying (3.4) and (3.5) we get

λkν+p ‖Bkν+p‖
∥

∥

∥
∆η

(1)
kν+p

∥

∥

∥
= O (1) .

That means the assertion (3.6) is valid. ⊓⊔

Lemma 3. If m ∈ N and the sequences k = (kν) , x = (ξν) , λ = (λν) and

(Bν) satisfy the conditions (2.2), (2.3),

λn ‖Bn‖
∥

∥

∥
∆η(m)

n

∥

∥

∥
= O (1) , (3.7)

λn ‖Bn‖
∥

∥B−1
n − B−1

n+1

∥

∥

n
∑

k=1

1/λk = O (1) , (3.8)

then we get that

λn ‖Bn‖
∥

∥

∥
∆η(m+1)

n

∥

∥

∥
= O (1) . (3.9)

Proof. As

η(m+1)
n = B−1

n+1

n
∑

k=0

(Bk+1 − Bk) η
(m)
k ,
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then

∆η(m+1)
n = η(m+1)

n − η
(m+1)
n−1

= B−1
n+1

n
∑

k=0

(Bk+1 − Bk) η
(m)
k − B−1

n

n−1
∑

k=0

(Bk+1 − Bk) η
(m)
k

=
(

B−1
n+1−B−1

n

)

n
∑

k=1

(Bk−Bk−1) η
(m)
k−1 + B−1

n+1 (Bn+1−Bn) η(m)
n .

Using Abel’s identity we get

∆η(m+1)
n =

(

B−1
n − B−1

n+1

)

n
∑

k=1

Bk∆η
(m)
k .

So we have

λn ‖Bn‖
∥

∥

∥
∆η(m+1)

n

∥

∥

∥
≤ λn ‖Bn‖

∥

∥B−1
n − B−1

n+1

∥

∥

n
∑

k=1

‖Bk‖
∥

∥

∥
∆η

(m)
k

∥

∥

∥
.

Therefore using the conditions (3.7) and (3.8) we get

λn ‖Bn‖
∥

∥

∥
∆η(m+1)

n

∥

∥

∥
= O (1)λn ‖Bn‖

∥

∥B−1
n − B−1

n+1

∥

∥

n
∑

k=1

1/λk = O (1)

and the assertion (3.9) is valid. ⊓⊔

Lemma 4. If m ∈ N and the conditions (2.2), (2.3), (3.7) and

λn

∥

∥B−1
n+1

∥

∥

n
∑

k=1

1/λk = O (1) (3.10)

are satisfied, then

λn

(

η(m+1)
n − η(m)

n

)

= O (1) . (3.11)

Proof. As

η(m+1)
n − η(m)

n = B−1
n+1

n−1
∑

k=1

(Bk+1 − Bk)
(

η
(m)
k − η(m)

n

)

,

then using Abel’s identity we get

η(m+1)
n − η(m)

n = −B−1
n+1

n
∑

k=1

Bk∆η
(m)
k

This connection and the conditions (3.7) and (3.10) imply

λn

∥

∥

∥
η(m+1)

n − η(m)
n

∥

∥

∥
= O (1)λn

∥

∥B−1
n+1

∥

∥

n
∑

k=1

λk ‖Bk‖
∥

∥

∥
∆η

(m)
k

∥

∥

∥
/λk
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and

λn

∥

∥

∥
η(m+1)

n − η(m)
n

∥

∥

∥
= O (1)λn

∥

∥B−1
n+1

∥

∥

n
∑

k=1

1/λk = O (1) .

So the assertion (3.11) is valid. ⊓⊔

Proposition 2. If m ∈ N\ {1} and the sequences k = (kν) , x = (ξν) , λ = (λν)
and (Bν) satisfy the conditions (2.2), (2.3), (2.4), (2.9), (2.10), (3.4), (3.5),
(3.8), (3.10) and Z(m)x ∈ mλ

X , then Z(1)x ∈ mλ
X .

Proof. The condition Z(m)x ∈ mλ
X means that

λn

(

η(m)
n − η

)

= O (1) ,

where Z(m)x =
(

η
(m)
n

)

and lim η
(m)
n = η. We have

∥

∥

∥
η(m−1)

n − η
∥

∥

∥
≤

∥

∥

∥
η(m−1)

n − η(m)
n

∥

∥

∥
+

∥

∥

∥
η(m)

n − η
∥

∥

∥
. (3.12)

Lemmas 1 and 2 imply, that (3.6) is valid. Therefore using Lemma 3 we get
that the assertion (3.9) is valid for every m ∈ N. Using Lemma 4 we get that
the assertion (3.11) is valid for every m ∈ N. So using (3.12) we get that
Z(m−1)x ∈ mλ

X . Step by step we prove that the assertion Z(1)x ∈ mλ
X is valid.

⊓⊔

Remark 1. Taking in Proposition 2 Bk = kI (k ∈ N0) we get the conditions
under which

H(m)x ∈ mλ
X ⇒ H(1)x ∈ mλ

X ,

where H(m) (m ∈ N \ {1}) is the generalized Hölder method of order m.

Corollary 3. If m ∈ N\ {1} and the sequences k = (kν) , x = (ξν) , λ = (λν)
and (Bν) satisfy the conditions (2.2), (2.3), (2.4), (2.9), (2.10), (2.18), (2.19),
(2.20), (3.4), (3.5), (3.8), (3.10) and Z(m)x ∈ mλ

X , then the assertion (2.12) is
valid.

Proof. If m ∈ N\ {1} , then using Proposition 2 and Corollary 2 we get that
the assertion (2.12) is valid. ⊓⊔

4 Conclusions

• We obtain several new results for the linear methods of summability,
where the elements of the matrix are the linear operators from Banach
space X into X.

• We prove a gap Tauberian remainder theorem for the generalized Riesz
method of summability.

• We prove a gap Tauberian remainder theorem for the generalized Zyg-
mund method of summability.
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• We draw several conclusions from these gap Tauberian remainder theo-
rems.

• Among other conclusions we get a gap Tauberian remainder theorem for
the generalized Hölder method of summability.
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