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Abstract. Eigenvalue problems of the form x′′ = −λf(x+) + µg(x−), x(0) =
0, x(1) = 0 are considered, where x+ and x− are respectively the positive and the
negative parts of x. We are looking for (λ, µ) such that the problem has a nontrivial
solution. This problem generalizes the famous Fučik problem for piece-wise linear
equations. In order to show that nonlinear Fučik spectra may differ essentially from
the classical ones, we consider piece-wise linear functions f(x) and g(x). We show
that the first branches of the Fučik spectrum may contain bounded components.
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1 Introduction

In [3] we have considered the two-parameter eigenvalue problem

x′′ = −λf(x+) + µg(x−), (1.1)

x(0) = 0, x(1) = 0, (1.2)

under the assumptions that f and g are continuous positive valued functions
such that f(0) = g(0) = 0.

The same problem written in a usual form is given by

x′′ =

{

−λf(x), if x ≥ 0

µg(−x), if x < 0.

Obviously λ and µ must be non-negative in order the problem to have nontrivial
solutions. If f and g are linear then (1.1) becomes the famous Fučik equation

x′′ = −λx+ + µx−, (1.3)

where x+ = max{x, 0}, x− = max{−x, 0}.
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This equation may be written also as

x′′ =

{

−λx, if x ≥ 0

−µx, if x < 0.

The Fuchik spectrum for the problem (1.3), (1.2) is defined as a set of all pairs
(λ, µ) such that the problem has a nontrivial solution. This spectrum is well
known ([2, § 35 ]) and consist of a set of a hyperbola looking curves located in
the first quadrant and possessing vertical and horizontal asymptotes.
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Figure 1. The classical Fučik spectrum.

We show that the Fučik type spectrum for the problem (1.1), (1.2) may
differ essentially from the classical one. Namely, “branches” of the spectrum
may be multicomponent, and the components may be infinite and even finite.

2 Description of the Spectrum

We consider the problem (1.1), (1.2) under the normalization condition

|x′(0)| = 1.

This condition must be imposed in order to avoid continuous spectra. For
discussion see [3] and [1].

We assume that f(x) satisfies the following condition:
(A1) A first zero t1(α) of a solution to the Cauchy problem

u′′ = −f(u), u(0) = 0, u′(0) = α

exists for any α > 0.

A similar property can be assigned to g(x). We assume that g(x) satisfies
the condition:
(A2) A first zero τ1(β) of a solution to the Cauchy problem

v′′ = g(−v), v(0) = 0, v′(0) = −β
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exists for any β > 0.

Let us recall (for the reader’s convenience) the main result in [3]. Consider
the problem

x′′ =

{

−λf(x), if x ≥ 0

µg(−x), if x < 0,
(2.1)

x(0) = x(1) = 0, |x′(0)| = 1.

Theorem 1. Let the conditions (A1) and (A2) hold with respect to the func-
tions t1(γ) and τ1(δ). The Fuchik spectrum for the problem (2.1) is given by
the relations (i = 1, 2, . . .):

F+
0 =

{

(

λ, µ
)

: λ is a solution of
1√
λ

t1

( 1√
λ

)

= 1, µ ≥ 0
}

,

F−
0 =

{

(

λ, µ
)

: λ ≥ 0, µ is a solution of
1√
µ

τ1

( 1√
µ

)

= 1
}

,

F+

2i−1 =

{

(λ; µ) : i
1√
λ

t1

( 1√
λ

)

+ i
1√
µ

τ1

( 1√
µ

)

= 1

}

,

F−
2i−1

=

{

(λ; µ) : i
1√
µ

τ1

( 1√
µ

)

+ i
1√
λ

t1

( 1√
λ

)

= 1

}

,

F+

2i =

{

(λ; µ) : (i + 1)
1√
λ

t1

( 1√
λ

)

+ i
1√
µ

τ1

( 1√
µ

)

= 1

}

,

F−
2i =

{

(λ; µ) : (i + 1)
1√
µ

τ1

( 1√
µ

)

+ i
1√
λ

t1

( 1√
λ

)

= 1

}

.

3 Equation x′′ = −λf(x+) + µf(x−)

Consider equation
x′′ = −λf(x+) + µf(x−), (3.1)

together with the boundary conditions

x(0) = x(1) = 0, |x′(0)| = 1, (3.2)

Then
t1(γ) = τ1(γ), γ > 0. (3.3)

Let

U(λ) :=
1√
λ

t1

( 1√
λ

)

, V (µ) :
1√
µ

τ1

( 1√
µ

)

.

In view of (3.3) the spectrum of the problem (3.1), (3.2) is a union of the sets
defined by the relations

F±
1 : U(λ) + U(µ) = 1, F+

2 : 2U(λ) + U(µ) = 1,

F−
2 : U(λ) + 2U(µ) = 1, F±

3 : 2U(λ) + 2U(µ) = 1,

F+

4 : 3U(λ) + 2U(µ) = 1, F−
4 : 2U(λ) + 3U(µ) = 1, . . .

Math. Model. Anal., 13(2):203–210, 2008.
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The coefficients at the first and second addends refer to the numbers of “posi-
tive” and “negative” humps of the respective eigenfunctions.

It is possible that the functions U(λ) and V (µ) are non-monotone. Then
spectra may differ essentially from those in the monotone case.

Remark 1. Suppose that for some positive integer p the functions p U(λ) and
p V (µ) are monotonically decreasing starting with some λ∗ and µ∗, p U(λ∗) = 1,

p V (µ∗) = 1. Then branches F±
2p−1 and higher behave like those in the monotone

case. Generally U(λ) and V (µ) are functions that tend to +∞ as λ, µ → 0+ and
U, V → 0+ as λ, µ → +∞. It easily can be shown that the respective spectra
are structurally the same as the classical Fučik spectrum if U(λ) and V (µ)
are monotonically decreasing functions. Suppose that U is a function which is
non-monotone and has exactly three successive intervals of monotonicity like
shown in Fig. 2.
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Figure 2. Function U(λ), A and B are respectively the local minimum and maximum
marked with dashed lines.

Let us analyze the subset F±
1 of the spectrum. This subset is defined by

the relation U(λ) + U(µ) = 1. Denote the local minimum and local maximum
of U(λ) by A and B respectively.

Theorem 2. Suppose that U(λ) is a continuous positive valued function which
satisfies the following conditions:

• U(λ) → +∞ as λ → 0+;

• U(λ) → 0+ as λ → +∞;

• U(λ) has three intervals of strict monotonicity, as shown in Fig. 2;

• the local minimum A and the local maximum B of U(λ) are such that
A + B > 1 and A < 0.5 < B < 1.

Then the subset F±
1 of the Fučik spectrum consists of two disjoint sets (com-

ponents), one of them being bounded.
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Figure 3. Subdivision of the λ-axis.

Proof. Consider the function U and introduce subdivision of λ-axis, as shown
in Fig. 3. There are two local extrema at the points λ3 and λ5. The intervals
of monotonicity and the respective ranges of values of the function are: the
interval of decrease I1 = (0; λ3], U(I1) = [A; +∞); the interval of increase I2 =
[λ3; λ5], U(I2) = [A; B]; the interval of decrease I3 = [λ5; +∞), U(I3) = (0; B].

Notice also that 0 < 1 − B < A < 0.5 < 1 − A < B < 1. By definition

U(λ0) = 1, U(λ1) = B, U(λ2) = 1 − A,

U(λ4) = 1 − A, U(λ6) = 1 − A, U(λ7) = A, U(λ7) = 1 − B.

Consider the monotone restrictions Ui(λ) (λ = −1, 0, 1 . . . , 8) of the function
U(λ) :

Table 1.

Restriction Interval Range of values Description

U−1 D−1 = (0; λ0] E−1 = [1;+∞) decreasing
U0 D0 = (λ0; λ1] E0 = [B; 1) decreasing
U1 D1 = [λ1; λ2] E1 = [1 − A;B] decreasing
U2 D2 = [λ2; λ3] E2 = [A; 1 − A] decreasing
U3 D3 = [λ3; λ4] E3 = [A; 1 − A] increasing

U4 D4 = [λ3; λ4] E4 = [1 − A;B] increasing
U5 D5 = [λ5; λ6] E5 = [1 − A;B] decreasing
U6 D6 = [λ6; λ7] E6 = [A; 1 − A] decreasing
U7 D7 = [λ7; λ8] E7 = [1 − B; A] decreasing
U8 D8 = [λ8; +∞) E8 = (0; 1 − B] decreasing

Let us construct the set F1 := F+
1 = F−

1 of values (λ; µ) such that

U(λ) + U(µ) = 1.

A couple (i; j) (i, j = −1, 0, 1, . . . , 8) is called full, if intEi + intEj ∋ 1, that
is,

∃λ ∈ Di ∃µ ∈ Dj : Ui(λ) ∈ intEi, Uj(µ) ∈ intEj , Ui(λ) + Uj(µ) = 1.

Otherwise (i; j) is called empty.

Math. Model. Anal., 13(2):203–210, 2008.
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A direct verification shows that there are only 17 full couples (this can be
seen from the above table):

(0; 8), (8; 0), (1; 7), (7; 1), (2; 2), (2; 3), (3; 2), (3; 3), (4; 7),

(7; 4), (5; 7), (7; 5), (6; 6), (2; 6), (6; 2), (3; 6), (6; 3).

The rest 102 − 17 = 83 couples are empty ones. For instance, (−1;−1) is not
a full couple:

{intE−1} + {intE−1} = (2; +∞) 6∋ 1.

On the other hand (2; 3) is a full couple:

{intE2} + {intE3} =
(

2A; 2(1 − A)
)

∋ 1,

since 0 < A < 0.5, then 1 − A > 0.5, and 2A < 1 < 2(1 − A) follows.

Figure 4. Schematical view of subset F±
1

. The union of Di × Dj for full couples (i; j) is
shaded.

Due to the conditions of the theorem and the above constructions, one is
led to the conclusion that if (i; j) is a full couple then

∀λ ∈ Di ∃! µ ∈ Dj : Ui(λ) + Uj(µ) = 1.

Therefore any full couple (i; j) defines the function

µ = Uij(λ) = U−1

i

(

1 − Uj(λ)
)

that has the domain of definition Di and the range of values Dj . It follows from
the properties of the functions µ = Uij(λ) and location of shaded rectangles
(see Fig. 4) that the subset F±

1 of the spectrum consists of two components,
one of them is bounded. ⊓⊔

The cases A+B = 1 and A+B < 1 can be treated similarly. The respective
sets F±

1 for the function U depicted in Fig. 2 are shown in Fig. 5.
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Figure 5. a) A+B = 0.4+0.75 > 1, b) A+B = 0.35+0.65 = 1, c) A+B = 0.35+0.55 < 1.

4 Piece-Wise Linear Functions. Example

Let f(x) be a piece-wise linear function

f(x) =











f1(x), 0 ≤ x ≤ a1,

f2(x), a1 ≤ x ≤ a2,

f3(x), x ≥ a2,

where f1(x) = p1x + q1, f2(x) = p2x + q2, f3(x) = p3x + q3, f1(0) = 0,
f1(a1) = f2(a1), f2(a2) = f3(a2), f3(a3) = b3. Consider equation

x′′ = −λf(x) + µf(−x),

where f(x) is a piece-wise linear function depicted in Fig. 6, parameters of the
piece-wise linear function f(x) are a1 = 0.1, a2 = 0.2, a3 = 0.22, b1 = 0.2,
b2 = 0.1, b3 = 120.
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Figure 6. The graphics of function f .

The explicit formula for t1(γ) is given in [1]. So the graphs below are based
on precise calculations.

5 Conclusions

The above example shows that the structure of a spectrum may be relatively
complicated if the functions f and g in (1.1) are nonlinear. Even for piece-

wise linear function f (g = f) the functions t1

(

1√
λ

)

and 1√
λ
t1

(

1√
λ

)

may be

Math. Model. Anal., 13(2):203–210, 2008.
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Figure 8. a) The subset F±
1

consists of two components, the first one being bounded. b)
The first five branches of the spectrum.

non-monotone (Fig. 7) and as a result the first branch F±
1 of the spectrum

may consist of two disjoint sets. In Fig. 8 the first branches of the spectrum
are depicted. The odd numbered branches coincide F+

1 = F−
1 , F+

3 = F−
3 ,

F+

5 = F−
5 , the branch F±

1 consists of two components. The “positive” and
“negative” even numbered branches F+

2 and F−
2 , F+

4 and F−
4 differ like in the

case of the classical Fučik equation. The branch F+

2 (as well as F−
2 ) consists

of two infinite components.
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