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Abstract. We provide conditions on the functions f(x) and g(x), which ensure
the existence of solutions to the Neumann boundary value problem for the equation
x′′ + f(x)x′2 + g(x) = 0.
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1 Introduction

Intensive literature is devoted to investigation of the Liénard equation

x′′ + f(x)x′ + g(x) = 0 (1.1)

due to its importance in applications. This type equations were intensely stud-
ied as they can be used to model oscillating circuits. Of applications of the
Liénard equation see the book [[7],Ch. XII, §3] and references therein.

Existence (also nonexistence) of periodic solutions is the main subject of
investigations. This depends of course on properties of functions f and g.

Burton points out that phase portraits for (1.1) are well known if the function
f(x) is supposed to be positive and g(x) is assumed to be odd, that is, xg(x) > 0
([2], [3]). Let F (x) =

∫

x

0 f(s) ds. The existence of periodic solutions of (1.1)
was studied in [6] provided that F (x) can change sign and the amplitudes of
F (x) are decreasing. The function g(x) was supposed to be of odd type.

On the other hand, it is known that conservative equation

x′′ + g(x) = 0 (1.2)
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always has periodic solutions if function g(x) has simple zeros where g′(x) > 0.

The equivalent system
{

x′ = y,

y′ = −g(x)
(1.3)

then has critical points of the type “center” and “small”-amplitude periodic
solutions appear. In the case of xg(x) > 0 the only critical point is (0; 0) and a
set (continuum) of closed curves exist in a neighborhood of the critical point.

If function g(x) satisfies the condition

xg(x) > 0 for x ∈ (−∞, p1) ∪ (pi+1, +∞),

where p1 < pi+1 and there exist (i− 1) simple (g′ 6= 0) zeros in (p1, pi+1), then
equation (1.2) may have “large”-amplitude periodic solutions. The respective
closed orbits go around several critical points. For details one may consult [4].

From the point of view of the boundary value problems (BVP) periodic
solutions may give rise to solutions which satisfy some boundary conditions.
We have considered the Neumann BVP for conservative equation (1.2) in t
[1]. In this paper we obtain a similar result for equation (1.1) subjected to the
Neumann boundary conditions

x′(0) = 0, x′(1) = 0. (1.4)

Recently an article by Sabatini was published [5], where the equation

x′′ + f(x)x′2 + g(x) = 0 (1.5)

was studied. Among other things the transformation was presented which turns
equation (1.5) to the conservative form

u′′ + h(u) = 0. (1.6)

In this paper we use this transformation to get the results on the existence
and multiplicity of solutions to the Neumann BVP using previously obtained
related results for conservative equation. In Section 2 we recall the results for
conservative equation (1.2). In Section 3 reduction of equation (1.5) to (1.6) is
considered. Results for equation (1.5) are established in Section 4. Examples
illustrating the results are given in Section 5.

2 Analysis of Equation x′′ + g(x) = 0

Let g(x) be a continuously differentiable function like in Fig. 1. Zeros of g(x)
are p1 < p2 < p3 < p4 < p5. The equivalent system has three saddle points at
(p1, 0), (p3, 0), (p5, 0) and centers at (p2, 0) and (p4, 0).

The typical phase portrait is given in Fig. 2. There are two sets of “small”
amplitude periodic solutions located in neighborhoods of (p2, 0) and (p4, 0).

No other nontrivial periodic solutions exist if three local maxima of the
primitive G(x) are such that either G(p1) > G(p3) > G(p5) or G(p1) < G(p3) <

G(p5) or G(p5) < G(p1) < G(p3) or G(p1) < G(p5) < G(p3).
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Figure 1. Functions g(x) and G(x) (the
primitive).

Figure 2. The phase plane.

Theorem 1. Let the conditions

m2
1π

2 < |gx(p2)| < (m1 + 1)2π2, m2
2π

2 < |gx(p4)| < (m2 + 1)2π2

hold. Then the Neumann BVP (1.2), (1.4) has at least 2m1 +2m2 nonconstant
“small”-amplitude periodic solutions.

Situation is quite different if G(p3) is less than G(p1) and G(p5). Then
appear “large” amplitude periodic solutions like given in Fig. 4.

x

GHxL

p1 p2 p3 p4 p5

Figure 3. The primitive G(x). Figure 4. The phase plane for the case
G(p3) < G(p1) < G(p5).

Theorem 2. If G(p3) is less (strictly) than G(p1) and G(p5), then equation
(1.2) has “large”-amplitude periodic solutions, that is, solutions with trajectories
going around the critical points (p2; 0) and (p4; 0).

Consider the function

T (x0) =
1√
2

∫ x1(x0)

x0

ds
√

G(s) − G(x0)
,

which is defined in the interval (x∗

0; x
∗∗

0 ), where x1(x0) is the first zero to the
right of x0 of the function G(s) − G(x0) and x∗

0, x∗∗

0 are the minimal values of
the respective homoclinic solutions.
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Theorem 3. Suppose that an integer k is such that

nTmin < 1 < (n + 1)Tmin.

Then the Neumann BVP (1.2), (1.4) has at least 4n nonconstant “large”-
amplitude periodic solutions.

Theorems 1, 2 and 3 were proved in [1].

3 Reduction of x′′ + f(x)x′2 + g(x) = 0 to u′′ + h(u) = 0

Let F (x) =
∫ x

0 f(s) ds and G(x) =
∫ x

0 g(s) ds. The function Φ(x) was intro-
duced in [5] by the formula

Φ(x) =

∫ x

0

eF (s) ds. (3.1)

It is evident that Φ(x) satisfies the condition xΦ(x) > 0 for x 6= 0. The growth
rate of Φ(x) depends on properties of the primitive F (x). It is important that
Φ(x) is strictly monotone function for any F since Φ′(x) = eF (x) > 0 ∀x ∈ R.

Then the relation
Φ(x) = u (3.2)

defines u = u(x) and the inverse function x = x(u) exists. We will use these
functions defined for various F throughout in our considerations. Our further
study employs the following basic result from [5].

Lemma 1 [[5], Lemma 1]. The function x(t) is a solution to (1.5) if and
only if u(t) = Φ(x(t)) is a solution to

u′′ + g(x(u))eF (x(u)) = 0. (3.3)

Denote h(u) = g(x(u))eF (x(u)). Therefore, H(u) =
∫

u

0
g(x(s))eF (x(s)) ds.

The existence of periodic solutions and the existence of solutions to the Neu-
mann BVP depends entirely on properties of the primitive H.

Let us state some easy assertions about equation (1.5) and the equivalent
system

{

x′ = y,

y′ = −f(x)y2 − g(x).
(3.4)

Proposition 1. Critical points and their character are the same for systems
(1.3) and (3.4).

Proof. Critical points of both systems are the points (xi, 0), where xi are zeros
of g(x). Points (p1, 0), (p3, 0), (p5, 0) are saddle points and (p2, 0) and (p4, 0)
are the centers. Consider linearized at a point (pi, 0) system (1.3)

{

ξ′ = η,

η′ = −gx(pi)ξ,
(3.5)
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where pi is a zero of g(x). Consider also linearized at a point (pi, 0) system
(3.4)











α′ = β,

β′ = −[fx(x)y + gx(x)]α + [2f(x)y]β

= −gx(x)α, at (x, y) = (pi, 0),

i.e. we have the system

{

α′ = β,

β′ = −gx(pi)α.
(3.6)

Systems (3.5) and (3.6) up to notation are the same. ⊓⊔

Consider a system
{

u′ = v,

v′ = −g(x(u))eF (x(u)),
(3.7)

which is equivalent to equation (3.3).

Proposition 2. Critical points (x, 0) and (u(x), 0) of systems (1.3) and (3.7)
are in 1-to-1 correspondence and their characters are the same.

Proof. The first follows from the fact that if p is a zero of g(x) then u(p) is a
zero of g(x(u)). The second follows from Proposition 1. ⊓⊔

Proposition 3. Periodic solutions x(t) of equation (1.5) turn to periodic so-
lutions u(t) = Φ(x(t)) by transformation (3.2).

Proposition 4. Homoclinic solutions of (1.5) turn to homoclinic solutions of
equation (3.3) by transformation (3.2).

Proposition 5. Let p be a zero of g(x). Then gx(p) = hu(u(p)).

Proof. Let us differentiate h(u). Notice that from (3.1) and (3.2)

du

dx
= eF ,

dx

du
= e−F .

Then

hu =
dg(x(u))

du eF (x(u))
+

g(x(u))deF (x(u))

du
=

dg(x)

dx

dx

du eF (x(u))
+

g(x(u))F (x(u))dx

du eF (x(u))

= gx(x)e−F (x(u))eF (x(u)) + g(x)F (x(u))e−F (x(u))eF (x(u))

= gx(x) + g(x)F (x(u)).

Then
hu(u(p)) = gx(p) + g(p)F (p) = gx(p).

⊓⊔

Math. Model. Anal., 13(2):161–169, 2008.
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4 The Neumann BVP

Consider equation (3.3). This equation is conservative and Theorem 2 applies.
The function H(u) =

∫

u

0 g(x(s))eF (x(s)) ds has the same structure as G(x) thus
it has exactly 3 points of maxima and 2 minimum points. Moreover, H(u) has
three local maxima at the points u(p1), u(p3) and u(p5), where u is as in (3.2),
and two local minima at the points u(p2) and u(p4).

Theorem 4. Let the conditions

m2
1π

2 < |gx(p2)| < (m1 + 1)2π2, m2
2π

2 < |gx(p4)| < (m2 + 1)2π2

hold. Then the Neumann BVP (1.5), (1.4) has at least 2m1 +2m2 nonconstant
“small”-amplitude periodic solutions.

Proof. By application of Theorem 1 to equation (1.6) and using the equalities
gx(p) = hu(u(p)) at the points p2 and p4 we get the required result. ⊓⊔

Theorem 5. Let the inequalities hold:

H(u(p3)) < H(u(p1)), H(u(p3)) < H(u(p5)).

Then equation (1.6) has “large”-amplitude periodic solutions which enclose ex-
actly two critical points u(p2) and u(p4). If there is a “large”-amplitude solution
with the half of minimal period T such that nT < 1 < (n+1)T , then there exist
also at least 4n solutions to the Neumann BVP.

Proof. Consider equation (1.6). Let us parametrize the set of “large”–amplitu-
de solutions by u(0). Assume that u∗ = u(0) for a solution with the period T.
We change u(0) in the opposite direction towards the values corresponding to
homoclinic solutions (like in the proof of Theorem 2 in [1]). Since then period
of solutions tends to +∞, we got at least 2n solutions. In addition we note
that all trajectories are symmetric with respect to the u-axis, therefore there
exist 2n solutions which are monotonically decreasing since their trajectories
(halves of the closed ones) are in the lower half-plane {(u, u′) : u′ < 0}. Thus
there exist at least 4n solutions. The theorem is proved. ⊓⊔

5 Example

In this section we give two examples which illustrate theoretical results pre-
sented above.

Example 1. Consider the second-order nonlinear boundary value problem

{

x′′ − x5 + 3x4 + 13x3 − 27x2 − 36x = 0,

x′(0) = x′(1) = 0.
(5.1)
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Function g(x) = −x5 + 3x4 + 13x3 − 27x2 − 36x has five simple zeros.
The equivalent two–dimensional system has three critical points of the type
“saddle”. There are also two critical points of the type “center”. Respectively
the function

G(x) = −1

6
x6 +

3

5
x5 +

13

4
x4 − 9x3 − 18x2

has three local minima and consequently two local maxima as it is shown in
Fig. 5.

x

gHxL, GHxL

p1 p2 p3 p4 p5

Figure 5. Functions g(x) and G(x) (the
primitive).

Figure 6. The phase plane.

We notice that if gx(p2) = gx(−1) = −40, then it follows that inequalities
22π2 < 40 < 32π2 hold, and therefore boundary value problem (5.1) has at
least 4 nonconstant solutions. Similarly, if gx(p4) = gx(3) = −72, then the
condition 22π2 < 72 < 32π2 holds. So boundary value problem (5.1) has at
least 4 nonconstant solutions (see Fig. 7). Hence the BVP(5.1) has at least 8

0.2 0.4 0.6 0.8 1 1.2

-4

-2

2

4

Figure 7. Solutions in neighborhoods of the p2 and p4.

nonconstant solutions.

Example 2. Consider the second-order nonlinear boundary value problem
{

x′′ + 0.5xx′2 − x5 + 3x4 + 13x3 − 27x2 − 36x = 0,

x′(0) = x′(1) = 0
(5.2)

with f(x) = 0.5x and g(x) = −x5 + 3x4 + 13x3 − 27x2 − 36x. Then we get

F (x) =

∫

x

0

s

2
ds =

x2

4
, G(x) =

∫

x

0

g(s) ds = −1

6
x6 +

3

5
x5 +

13

4
x4 −9x3−18x2.

Math. Model. Anal., 13(2):161–169, 2008.
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Figure 8. Phase plane.
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Figure 9. Solutions of (5.2) in neigh-
bourhoods of the p2 and p4.

The phase plane is presented in Fig. 8. The transformation turns equation
(5.2) to the conservative form

u′′ + h(u) = 0, where h(u) = g
(

x(u)
)

e0.25(x(u))2 .

It follows from gx(p2) = gx(−1) = −40, gx(p4) = gx(3) = −72 that the condi-
tions

22π2 < 40 < 32π2, 22π2 < 72 < 32π2

hold. Then by Theorem 4 BVP (5.2) has at least 8 solutions (see Fig. 9).

A respective two-dimensional system has exactly 5 critical points:

u1 = u(−3) = −8.12623, u2 = u(−1) = −1.08997, u3 = u(0) = 0,

u4 = u(3) = 8.12623, u5 = u(4) = 32.9053.

After simple computations we get that

H(u1) = 1406.39, H(u3) = 0, H(u5) = 11201.7.

Suppose that H(u) is such that

H(u(p3)) < H(u(p1)), H(u(p3)) < H(u(p5)).

Then by Theorem 5 equation (5.2) has “large”-amplitude periodic solutions
which enclose exactly two critical points u(p2) and u(p4). Numerical experiment
shows that there exists T such that T < 1 < 2T . So the boundary value
problem (5.2) has at least 4 “large” solutions due to Theorem 5 (see Fig. 10).

Hence the BVP (5.2) has at least 12 solutions.

6 Conclusions

Conservative equations x′′+g(x) = 0 have families of “large” amplitude periodic
solutions if profile of the primitive G(x) is such that there are local maxima
which are bigger than the intermediate maxima. These periodic solutions may
satisfy the Neumann boundary conditions if the rotation speed along closed
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Figure 10. Solutions of problem (5.2) in neighbourhoods of the p2 and p4.

phase trajectories is relatively high. The Liénard type equation x′′ + f(x)x′2 +
g(x) = 0 can be reduced to a conservative equation u′′+h(u) = 0. The primitive
H(u) =

∫ u

0 h(s) ds can be expressed in terms of functions f(x) and g(x). It
is possible therefore that for some appropriate f and g the behavior of this
primitive ensures the existence of families of “large” amplitude solutions. If
the rotation speed along the trajectories is “high” (or the time period is “small”
enough) then the Liénard type equation has multiple solutions of the Neumann
boundary value problem.
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