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Abstract. A new framework of genetic sequence statistical analysis based on ge-
neralized logit model is introduced. Logit analysis is applied to assess the depen-
dence structure (interactions) between DNA nucleotides and to test hypothesis about
Markov order of these dependencies. The procedure proposed seeks the non-coding
subsequences which are homogeneous but yet non-Markov. It has been shown, that
even homogeneous DNA regions can not be treated as the first order Markov se-
quences.
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1 Introduction

Categorical data arise from different sampling frameworks. The goal of sta-
tistical analysis is to find a dependence structure between a set of categorical
variables. There are various models available for describing the nature of the
association between these variables. In this study the logit analysis is applied
to assess the dependence structure (interactions) between DNA nucleotides
and to test hypothesis about Markov order of these dependencies.

The problem is closely related to the context-dependent evolutionary model
of DNA sequences. It is known [13] that for the time-reversible evolution,
the stationary distribution of nucleotides in DNA sequences inherits its finite
order Markov dependence structure from local interactions of the nearest nu-
cleotides in evolutionary process. If only the first nearest neighbours of a
nucleotide are involved in its mutation process (this is a quite natural assump-
tion for non-coding DNA sequences) the stationary distribution of nucleotides
of time-reversible evolution is the first order Markov chain. Thus, the higher
order Markov dependencies in non-coding DNA sequences indicates that the
evolution is probably not time-reversible.

Many investigations of DNA sequences are devoted to so-called long-range
dependence phenomena (see, for instance [18]). The term came from the the-
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ory of stationary time series. It is known that it can be a consequence of
different patterns of (probabilistic) inhomogeneity of a observed sequences.
Thus, another issue addressed in the paper is the question if the higher order
of Markov property is related to inhomogenity of DNA sequences.

The basics of DNA sequences and a brief survey of relevant literature are
presented in Section 2. In Section 3 a representation of Markov chain (field)
by conditional odds is given and appropriate structure of genetic data is in-
troduced. This ensures that the classical assumptions of the generalized logit
model are fulfilled. The hypotheses of Markov property and equivalence of
DNA strands are formulated as submodels of the basic model. Section 4 con-
tains results of statistical analysis of bacterial genome taken from the Genbank
database.

2 Markov Chain Modeling of Genetic Sequences

2.1 Basics of DNA sequences

DNA sequences are long sequences of nucleotides (nitrogenous bases). At each
position it has one of the nucleotides: adenine (A), thymine (T), cytosine (C),
and guanine (G). Thus, a DNA (or nucleotide) sequence can be viewed as
a sequence of categorical random variables taking their values from a finite
alphabet A with four letters {A, T, C, G}.

It is convenient to transform a DNA sequence to a two dimensional bi-
nary sequence according to two physical properties of nucleotides: purine-
pyrimidine and the number of bounds, either two or three.

A gene is a protein coding nucleotide sequence, and DNA sequences located
between genes are called non-coding genome sequences. In our study we use
non-coding regions of DNA sequences as being more likely to be homogeneous.

Typical models for DNA sequences are homogeneous m-order Markov chains
(models Mm) on a finite alphabet (state space) A. These models represent the
local dependencies in the sequence: the probability of occurrence of a letter at
a given position depends only on the m previous letters in the sequence (and
not on the position).

The first stochastic models of DNA sequence evolution in time assume that
it is a homogeneous Markov process and nucleotides in the DNA sequence
evolve independently from each another. Recently context-dependent evolu-
tion models have been proposed (see [13] and references therein). In these
models mutations of each nucleotide depend on m its nearest-neighbouring
nucleotides from the each side (context). Usually m = 1, 2, 3.

If evolution of DNA sequence in time is reversible and mutation of nu-
cleotides depends on their nearest neighbours, say m from the each side, then
the stationary distribution of nucleotides in the sequence is mth order Markov
chain. Thus, a topical problem is to estimate the order of Markov chain model
in DNA sequences.
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2.2 Estimating of Markov model

Estimating of Markov model means to choose the Markov order m and to
estimate transition probabilities

Π :=
{

π(a, am+1), a = (a1, . . . , am) ∈ Am, am+1 ∈ A
}

.

The conventional model for a mth order Markov chain has (n−1)nm model
parameters with n = |A| being the number of elements in A. The major
problem in statistical analysis of such models is that the number of parameters
(the transition probabilities) increases exponentially fast with respect to the
order m of the model. This large number of parameters discourages researches
from using a higher-order Markov chain directly.

A. Raftery [16] have proposed a higher-order Markov chain model which
involves only one additional parameter for each extra lag after the first one and
proved that the autocorrelations satisfy a system of linear equations similar to
the Yule-Walker equations. His model have been extended and refined in [7]
and [6].

A more sophisticated approach to decreasing of the number of model pa-
rameters has been presented in [5]. The idea of variable length Markov chain
(VLMC) model is that the memory length (depth) of the sequence at any point
in time is allowed to depend on the preceding history which is represented via
context tree. In this case order selection problem is stated as estimating prob-
lem of the context tree (or the interaction structure) of the sequence.

Eggar [12] have proposed a procedure of testing whether, given a sequence
data, there is a Markov chain of the first order that is a likely model to fit it.
The test is suggested by geometric arguments (graph theory).

The problem of estimating the Markov order or, more generally, the context
tree has been addressed in many papers, see [8, 9, 14, 15, 17, 19] and references
therein. In [8] and [9] the strong consistency of the BIC estimator, without
any prior bound on memory length,of the Markov order and the context tree,
respectively, is demonstrated.

The problem is really difficult: the Bayesian estimator or minimum descrip-
tion length (MDL) estimator, of which the BIC estimator is an approximation,
is shown [8] to be inconsistent for the uniformly distributed i.i.d. sequence.
DNA sequence order estimators for fixed and variable length Markov models
and its practical performance have been studied in [11]. However, the gain
in using VLMC models compared to fixed order Markov chains for DNA se-
quences, at least for their classification, is small [10].

Usually, it is supposed (and this applies to all earlier cited references) that
the Markov chain is homogeneous. It seems that for DNA sequences this
assumption does not hold in general.

In a sense, this paper is inspired by investigations of Avery and Henderson
[3] (see also [2]). Supposing that DNA sequences are generated by a homoge-
neous Markov chain of the order m, they have used log-linear model to estimate
m. Their study shows that m = 1 does not provide a good fit to the data while
the null hypothesis of the second-order Markov chain is not rejected.

Math. Model. Anal., 13(1):135–144, 2008.
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3 Markov Property and Generalized Logit

We start with basic notions of discrete finite-state Markov fields (chains). Then
a special structure of genetic data is introduced which is convenient for logit
analysis and testing of the probabilistic equivalence of the two complementary
strands in DNA helix.

3.1 Markov property and conditional odds

Let A be a finite alphabet with |A| = cardA elements and N := {1, . . . , n}. Fix
some positive integer m < n/2 and define the "interior" N◦ and "boundary"
∂N of N ,

N◦ := (m + 1, . . . , n − m), ∂N := N \ N◦,

and a collection of neighbourhoods

U(ℓ) = Um(ℓ) := [ℓ − m, ℓ + m] \ {ℓ}, ℓ ∈ N◦.

Here [i, j] := (i, i + 1, . . . , j), i < j, i, j ∈ N, is an interval of integers.
Given x ∈ An and a set of indices I ⊂ N , let xI := (xi, i ∈ I) denote the
corresponding subsequence of x.

Definition 1. A random sequence x ∈ An is a homogeneous Markov random
field (chain) of order m (denoted by Mm) if ∀ℓ ∈ N◦ and a ∈ An

P{xℓ = aℓ|xj = aj , j 6= l} = P{xℓ = aℓ|xUm(ℓ) = aUm(ℓ)} =: p(aℓ|aUm(ℓ)).
(3.1)

Definition 2. Conditional odds Oy|b(z) of y versus b given the values z =
xUm(ℓ) of the m nearest neighbours Um(ℓ) of ℓ ∈ N◦, for some reference value
b ∈ A with p(b|z) > 0, is the ratio

Oy|b = Qy|b(z) :=
p(y|z)

p(b|z)
, y ∈ A, z ∈ A2m, (3.2)

where the probabilities p(y|z) are introduced in (3.1). Suppose that values
of the Markov chain x are fixed on the boundary ∂N , x∂N = c∂N for some
c ∈ An, and set

X+ := {a ∈ An : a∂N = c∂N}.

Hamersley-Clifford theorem [4] implies the following statement.

Proposition 1. If P{x = a} > 0 for all a ∈ X+, the (conditional) dis-
tribution of the homogeneous Markov random field (chain) Mm is uniquely
determined by the conditional odds Oy|b(z), y ∈ A, z ∈ A2m, for some refer-
ence value b ∈ A, and there exists a function λm : Am+1 → R such that for
each a = (a1, . . . , a2m+1) ∈ A2m+1

log
(

Qam+1|b(aUm(m+1))
)

=

m+1
∑

j=1

[

λm

(

a[j,m+j]

)

− λm

(

a
(b)
[j,m+j]

)]

, (3.3)

where a(b) =
(

a1, . . . , am, b, am+2, . . . , a2m+1

)

.
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This means that a way to identify the model Mm is to determine its conditional
odds (3.2).

Let us introduce the following structure of the observed sequence x ∈ An

of the length n = nm(m + 1) + m, the quantity nm being an integer. Set

X := {(yℓ, zℓ), l ∈ S}, S = Sn,m = {m + 1, 2(m + 1), . . . , n − m},

where yℓ := x(m+1)ℓ is a target variable and zℓ = xUm(ℓ) is a vector of explana-
tory variables, ℓ ∈ S.

Let us assume that
(A1) {yℓ, ℓ ∈ S} are conditionally independent given {zj, j ∈ S},
(A2) the conditional probabilities P{yℓ = a|zj , j ∈ S}, a ∈ A, do not

depend on the position ℓ ∈ S.

Remark 1. Note that these assumptions are fulfilled if x is generated by a
homogeneous Markov chain of the order m. The Markov property implies the
additional conditions on odds (3.2). Namely, as (3.3) shows the odds depend
on y = xℓ and z = xUm(ℓ) only through interactions xIj

, j = 0, . . . , m, where
Ij = Um(ℓ) ∩ [ℓ − m + j, ℓ + j]. This gives a basis for testing Markovity and
selection of the Markov order (see next subsection).

Remark 2. Assumptions (A1) and (A2) ensure that common conditions of the
generalized logit model are satisfied [1]. The generalized logit is a regression-
type model, i.e. a conditional model with given values of the explanatory vari-
ables z. This means that the probabilistic model of the explanatory variables
{zℓ, l ∈ S} is not specified and can be treated as a nuisance nonparamet-
ric component of the model. This also means that the conditions of Markov
property mentioned in Remark 1 are necessary but not sufficient.

3.2 Generalized logit

Generalized logit model is in fact a loglinear model for conditional odds (3.2)

log
(

Qy|b(v, w)
)

= λ
(

v, y, w), y ∈ A, v, w ∈ Am. (3.4)

The function λ : A2m+1 → R satisfies λ(·, b, ·) = 0 and in general case (linearly)
depends on K = (|A| − 1)|A|2m parameters. Model (3.4) is referred to as a
saturated generalized logit model.

In view of (3.2), (3.4), and assumptions (A1), (A2), the conditional distri-
bution of {yℓ, ℓ ∈ S}, given values of {zℓ, ℓ ∈ S}, is represented as a product of
multinomial distributions. Counts N(a) of occurrence of "words" a ∈ A2m+1

in the sequence {x[ℓ−m,ℓ+m], ℓ ∈ S},

N(a) := |{j ∈ S : x[j−m,j+m] = a}|, a ∈ A2m+1,

constitute a sufficient statistics for the underlying model. In case of Mm model
the function λ given in (3.3) takes the following form

λ(a) := λ
(

a[1,m], am+1, a[m+1,2m+1]

)

= λMm(a), (3.5)

Math. Model. Anal., 13(1):135–144, 2008.
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λMm(a) :=

m+1
∑

j=1

[

λm

(

a[j,m+j]

)

− λm

(

a
(b)
[j,m+j]

)]

, a ∈ A2m+1, (3.6)

and depends on k = (|A|−1)|A|m parameters. Let us consider the case m = 1.
Then generalized logit (3.4) in general case (saturated model) and in case of
Markov model Mm (3.5), (3.6) takes the following simple forms

log
(

Qy|b(v, w)
)

= λ0(y) + λL(v, y) + λR(y, w) + λLR(v, y, w), (3.7)

log
(

Qy|b(v, w)
)

= λ0(y) + λ1(v, y) + λ1(y, w), v, y, w ∈ A,

respectively, where all these functions λ vanish provided any of their arguments
take the reference value b.

Thus, the null hypothesis for the first order homogeneous Markov chain
M1 is given by

H0 : λLR(v, y, w) = 0, λL(v, w) = λR(v, w) ∀ v, y, w ∈ A. (3.8)

Generalized logit model (3.7) is convenient for characterization of the pro-
babilistic equivalence of the two complementary strands in the DNA helix.
Taking into account the two basic properties of nucleotides mentioned in sub-
section 2.1, it is natural to define the one-to-one mapping h : A → A1 ×
A1, A1 := {0, 1}, by equality

{h(A), h(C), h(G), h(T )} = {(0, 0), (1, 1), (0, 1), (1, 0)}.

Let h(a) = (h(a1), . . . , h(ak)), a ∈ Ak, k = 2, 3, . . . , and let

h∗(a) = (h∗(ak), . . . , h∗(a1))

denote a complementary mapping for a ∈ Ak, k = 1, 2, . . . , where h∗(a) =
(1− z1, z2) provided h(a) = (z1, z2), a ∈ A. Since the code of the complemen-
tary DNA strand is running in a opposite direction, the stated probabilistic
equivalence of the DNA strands means that

P{h(x) = h(a)} = P{h(x) = h∗(a)} ∀a ∈ An.

In our framework this implies that

λ
(

v, y, w
)

= λ
(

w∗, y∗, v∗
)

(3.9)

for all y, y∗ ∈ A and v, w, v∗, w∗ ∈ Am satisfying h(y) = h∗
(

y∗
)

, h(v) =

h∗
(

v∗
)

, and h(w) = h∗
(

w∗
)

. Equality (3.9) determines equations of the null
hypothesis about the equivalence of the DNA strands in the setting of saturated
generalized logit model (3.9). For mth order Markov models with λ given
by (3.5) and (3.6), the null hypothesis of the equivalence can be expressed
similarly in terms of the function λm.
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4 Statistical Analysis

We apply the logit analysis to assess the Markov property of genetic sequences
of bacterial genome. DNA sequences of three bacteria, Esherichia coli (ID=5),
Bordetella bronchiseptica(ID=1) and Coxiella burnetti(ID=4), from the Gen-
Bank database are used in the analysis. SAS software (procedures CATMOD,
LOGISTIC, NLMIXED) is used for statistical analysis of the data.

Figure 1. p-value for hypothesis about first order Markov chain for each subsequence.

4.1 Inhomogenity of data

The DNA sequences are known to be rather inhomogeneous. Therefore only
non-coding regions of bacterium genome are considered since for primitive or-
ganisms they seem to have no direct impact on their vitality and survival.
Moreover, the requirement of homogeneity of Markov chain is relaxed to some
extent by replacing the loglinear model used by Avery and Henderson (Av-
ery and Henderson (1999)) with more flexible generalized logit model and by
omitting the second equality in the Markov null hypothesis (3.8):

H0 : λLR(v, y, w) = 0 ∀ v, y, w ∈ A. (4.1)

Nevertheless the null hypothesis (4.1) is rejected for whole non-coding DNA
sequence (p < 0.0001) and for some of non-coding subsequences of the each
bacteria (Fig.1). For the whole non-coding sequences the null hypothesis of the
Markov order m = 2 and m = 3 are rejected as well with p-value p < 0.0001.
Notice that Markov model of the order m=3 has 624 parameters.

In order to investigate the level of inhomogenity of the non-coding DNA
sequences in the setting determined by assumptions (A1), (A2) and generalized
logit model (3.7), the logistic regression model with a binary response variable
y, ( y = 1, if nucleotide have 3 bonds and y = 0, if nucleotide have 2 bonds) is
fitted separately for each non-coding sequence of the length greater than 800
of the each bacterium.

Math. Model. Anal., 13(1):135–144, 2008.
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These results demonstrate that the even non-coding sequences of the same
bacteria is rather inhomogeneous (Fig.2). A standard way to deal with inho-

Figure 2. Example of inhomogeneity of the non-coding DNA sequences by using estimates
of two parameters. In the case of homogeneity values of statistic T should be between -3
and 3.

mogenity in data is to apply mixed models. SAS procedure NLMIXED was
applied to fit the logistic model for y with an identifier (the running number)
of the non-coding subsequence as a subject for the random effect. Unfortu-
nately, the procedure NLMIXED failed to fit the model, probably, because of
large number of parameters, great extent and complexity of the problem, and
inhomogeneity of the data which mismatches with the underlying assumptions
of mixed models. Therefore a direct method described in the next subsection
is applied to deal with the data inhomogeneity.

4.2 Markov property of homogeneous DNA sequences

The goal of the study presented in this subsection is to check if the violation of
the assumptions of the model M1 is caused merely by the data inhomogeneity.

The procedure proposed seeks the non-coding subsequences which are ho-
mogeneous but yet non-Markov. More precisely, it seeks subsequences for
which inhomogeneity is less expressed than the non-Markov dependence struc-
ture.

The procedure is described in three steps: I. Several the longest non-
coding sequences (of each bacterial), for which the model M1 is rejected, are
used for analysis. They are divided into subsequences of approximately the
same length ranging from 712 to 848. II. The subsequences for which the
model M1 is rejected are selected for further analysis. III. The elements
of the data set {(yj, zj), j ∈ S} (the triplets) of selected subsequences are
randomly divided into 10 disjoint groups of approximately equal sizes and
the homogenity of the groups is tested within the generalized logit setting
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determined by (A1), (A2), and (3.7). The test of homogenity is based on
resampling.

The subsequences for which the null hypothesis of homogenity of the ran-
dom groups is not rejected are treated as homogeneous. These sequences are
exactly what we are seeking for. The results demonstrate (see Table 1), that
approximately 41.37% of subsequences are inhomogeneous.

Table 1. The results of homogenity of subsequences.

Bacterial COL1 COL2 COL3

Esherichia coli 14 6 (42,8 %) 3 / 6 (50 %)
Coxiella burnetti 35 9 (25,7 %) 3 / 9 (33 %)
Bordetella bronchiseptica 37 14 (37,8 %) 6 / 14 (42,85 %)

Total 86 29 (33,7 %) 12 /29 (41,37 %)

COL1-number of subsequences
COL2-number of subsequences, for which H0 about the model M1 was rejected
COL3-number of subsequences, for which homogenity hypothesis was rejected

5 Concluding Remarks

A new framework of genetic sequence statistical analysis based on assumptions
(A1), (A2), and generalized logit model is introduced. It is directly related
to finite-state Markov field specification and thus convenient for statistical
analysis of Markov dependence structure. Furthermore, the generalized logit
model is more flexible than alternatively used unconditional loglinear models
and allows some extend of inhomogenity in the sequences under investigation.
It is natural to suppose that the inhomogenity of DNA sequences causes the
insufficiency for them of the first order Markov model M1, for example. A
procedure based on resampling is performed to check if insufficiency of the
Markov model M1 is merely a consequence caused by the data inhomogenity.
The results obtained show that, within the generalized logit framework, DNA
sequences are rather inhomogeneous and this can lead to their nonMarkovity.
On the other hand, it is found that a significant part of nonMarkov sequences
(approximately 58.63%) are homogeneous. Thus, even homogeneous DNA
regions can not be treated as the first order Markov sequences.
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