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Abstract. The paper describes the iteration method for finding the eigenfunctions
and eigenvalues of the system of two nonlinear Schrödinger equations, which de-
scribes the process of second harmonic generation by femtosecond pulse in media
with the quadratic and cubic nonlinear response. Coefficients, which characterize
the nonlinearities, depend on one of the coordinate. The discussed method allows
to find soliton solutions of new form corresponding to the first and second eigen-
values for the wide range of the nonlinear coefficients values. For determination of
the eigenfunctions of the third and higher order it is necessary to select the initial
approximation in a special way.
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1 Introduction

Investigation of the propagation of femtosecond pulses in different media is
of great practical interest due to their short duration and high intensity. In
particular, soliton regimes of optical pulses propagation present the great sig-
nificance for the information technologies by using the optical fiber. Because of
the unique properties of solitons they are constantly attract the attention in the
literature. As it is well known, soliton is a name for a solitary wave, which does
not change in the direction of propagation of optical pulse in medium. Mod-
ern laser equipments make it possible to realize the so-called colored solitons,
when optical waves at several frequencies exist and propagate simultaneously
along the nonlinear medium [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17].
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The interest to these solitons in literature remains from the moment of their
prediction [12].

Since the process of light propagation in media is described by the nonlin-
ear Schrödinger equation (NSE) or a system of NSEs, developing numerical
and analytical methods for finding the solitons is an important task. As a
rule, many known solitons are found analytically [2, 13]. Nevertheless, the
construction of soliton solutions on the basis of computer simulations is also
widely discussed. One of the possible methods to obtain the eigenfunction (EF)
and eigenvalue (EV) of the NSE (or the system of such equations) consists in
the application of methods described in [7, 8]. This approach is even more
important for the tasks of the transmission of information via optical fibers,
since the obtained EF on the transverse space coordinate are the nonlinear
modes of optical waveguide [1].

In the present paper the method of finding EFs and EVs for the system
of two NSEs, that was proposed in [18], is generalized to the case of variable
coefficients, which characterize the nonlinear response of medium in time. The
main feature of the considered method is the special iterative process. In the
case of the first EF, it is shown experimentally that this iterative algorithm
converges for all values of examined coefficients characterizing the nonlinearity
of propagation. It is tested that these EFs are soliton solutions of the discussed
problem. The obtained solitons are in agreement with the analytical represen-
tation of the well-known solitary solutions. It should also be emphasized that
the constructed method allows us to find another class of soliton solutions,
which possess two local maximums. Such solitons exist for a wide range of
coefficients of quadratic and cubic nonlinearity as well. The reported method
can be used to obtain EFs of higher, than second order. However, in that case
a convergence of the iterative process strongly depends on the choice of the
initial approximation.

2 Basic Equations

The dimensionless equations that describe SHG process by femtosecond pulse
in optical fiber (or for a medium which length is many times smaller than the
diffraction length), taking into account the pulse self-action due to a cubic
nonlinear response, are the following:

∂A1

∂z
+ iD1

∂2A1

∂t2
+ iγ(t) A∗

1A2e
−i∆kz + iα(t)A1

(

|A1|2 + 2 |A2|2
)

= 0, (2.1)
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γ(t) = γ0
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1 + δγ sin(πnγt/Lt)
)

, α(t) = α0

(

1 + δα sin(πnαt/Lt)
)

.

The problem is solved in the domain {0 < z ≤ Lz, 0 < t < L t}. Here Aj

are complex amplitudes of harmonics (j = 1, 2), normalized to the square
root of the maximal intensity of optical wave in the input section of medium
(z = 0), t is the dimensionless time in the system of coordinates that accom-
panies the pulse on the fundamental frequency or the transverse coordinate
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that is normalized to a radius of input laser beam, Lt is dimensionless time
interval during which the process is analyzed, z is the normalized longitudinal
coordinate, Lz is its maximum, Dj (j = 1, 2) are coefficients that characterize
the second order dispersion or diffraction of laser beams, γ(t) is the coefficient
of nonlinear coupling of interacting waves, ∆k = k2−2k1 describes the dimen-
sionless mismatching of their wave numbers, α(t) characterizes the self-action
of waves due to a cubic nonlinear response. Parameter ν is proportional to the
difference of the inverse values of group velocities of the second harmonic wave
and the basic one if we analyze the laser pulse propagation or it characterizes
birefringence of laser beams (difference between propagation directions of laser
waves with different frequencies). For simplicity, we will discuss only the case
of laser pulse propagation and consider the case of group velocity matching,
i.e. ν = 0.

We emphasize once more, that in this paper we find EFs and EVs when
coefficients of nonlinear response depend on time. This situation was not
discussed in [17, 18].

For equations (2.1) the following initial conditions are necessary:

Aj(t, z = 0) = A0j(t), j = 1, 2, 0 6 t 6 Lt, (2.2)

where A0j are dimensionless amplitudes normalized to max
t,j

|A0j(t)|. Because

of the finiteness of initial distribution and limited length of medium the bound-
ary conditions for equations (2.1) can be written as follows:

Aj |t=0,Lt
= 0 . (2.3)

To find EFs of equations (2.1) the solution is presented as A1 = u(t)e−iλz ,
A2 = v(t)e−iµz . Substituting these functions into equations (2.1), the following
system of boundary value problems is derived:



























D1
d2u

dt2
+ γ(t) u∗vei(2λ−µ−∆k)z + α(t)u

(

|u|2 + 2|v|2
)

= λu,

D2
d2v

dt2
+ γ(t) u2e−i(2λ−µ−∆k)z + 2α(t)v

(

2|u|2 + |v|2
)

= µv

u(0) = u(Lt) = v(0) = v(Lt) = 0.

(2.4)

In order to remove the dependence of the coefficient of quadratic nonlin-
earity on the coordinate z, the parameter µ is set equal to 2λ − ∆k. Then
equations (2.4) can be written in a simpler form:

D1
d2u

dt2
+ γ(t) u∗v + α(t)u

(

|u|2 + 2|v|2
)

= λu,

D2
d2v

dt2
+ γ(t) u2 + 2α(t)v

(

2|u|2 + |v|2
)

+∆kv = 2λv.

(2.5)

It is easy to prove that equations (2.5) possess only real EV. Actually, if the
first equation multiplied by u∗ is added to the second one multiplied by v∗
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and the obtained identity is integrated from 0 to Lt, then using boundary
conditions (2.3) we obtain:

Lt
∫
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0

(
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)
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Taking into account that integrals on the left and right sides of the equality
are real, we derive that λ is real. However, in general case EFs in contrast to
EVs can be real as well as complex. Below only real EFs are assumed.

Thus, we get the system:
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dt2
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(
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= λu,

D2

2
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+
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2
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)

+
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2
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(2.6)

3 Numerical Method

Let us introduce the uniform grid ωt = {tj = jτ, j = 0, Nt, Lt = τNt} and
define the grid functions uh, vh, γh , αh on ωt: uj = u(tj), vj = v(tj),
γj = γ(tj), αj = α(tj). The difference Laplace operator is defined as ft̄t,j =
(fj+1 − 2fj + fj−1)/τ

2.
The difference scheme for equations (2.6), approximating them with the

second order on segment [0,Lt], are written as:
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Since above equations are nonlinear the following iterative process is used for
j = 1, Nt − 1 to solve them:
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The terms, corresponding to the quadratic nonlinearity, are arranged so that,
firstly, the matrix of linear system of equations (3.2) is symmetrical, and sec-
ondly, the first equation in (3.2) on iteration (s+1) takes into the dependence
of the solution on w, and the second equation on u.

Realization of the iterative process requires to specify initial approxima-
tions for u and w on the zero iteration (s = 0). We analyze two kinds of initial
approximations: taking EF of the corresponding linear problem :

s=0
um =

s=0
vm = sin

(

πmt

Lt

)

, m = 1, 2, . . . . (3.3)

and Gaussian distribution:

s=0
um =

s=0
vm = exp

[

−(t− Lt/2)2/τ2
p

]

. (3.4)

Here τp is a positive parameter. The selection of an initial approximation
can influence the form of the obtained EFs for certain numbers of EVs. It
should be stressed that for finding the first EF the selection of the initial
approximation is not important. But for obtaining the second EF the choice
of initial approximation is essential and it defines the form of obtained solitons.
If one takes an initial approximation in the form of the exact second EF of
the linear problem described by (3.3), m = 2, then the solution will be the
composition of two first EFs, located far enough from each other. This case is
trivial one and will not be considered by us. Choosing initial approximation
(3.4) for obtaining second EF gives essentially different solution.

Introducing vector ψ = (u1, w1, u2, w2, . . . , uNt−1, wNt−1) we write equa-
tions (3.2) in the matrix form:

s
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s
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Vector
s

ψ is normalized according to the condition max
j

|
s

ψj | = 1. The iterative

process is completed, if the stopping criterion is reached:
∣
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< ε|
s

λ | + δ, ε, δ > 0. (3.5)
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As it can be seen, the original problem of obtaining the functions u(t), v(t)

is reduced to searching EFs and EVs of the matrix
s

Λ. For this purpose at each
iteration the matrix is reduced to the three-diagonal form by using the method
of plane rotations [7, 8]. EVs of a real symmetrical three-diagonal matrix are
obtained using the QL algorithm. After this, the EF corresponding to EV is
calculated by the method of inverse iterations [7, 8]. The obtained EF is used

to construct the matrix
s+1

Λ in the next iterative step. This process is repeated,
until condition (3.5) is satisfied. We note that choosing of EF corresponding
to EV is made like to [18]. It is very important to notice that for constant
coefficients, which characterize the process of nonlinear propagation, the iter-
ative process mentioned above allows to find EF and EV for any coefficients of
nonlinearity under consideration. The convergence of the presented algorithm
was checked numerically for a wide range of parameters characterizing the
nonlinearity of medium. Only the validity of a unique condition with regard
to dependencies of coefficients in (2.1) is required for the convergence of the
proposed iterative procedure.

4 Soliton Solutions

As the illustration of the presented algorithm we show the EF for the first
EV (see Fig. 1) in the case which is close to the physical experiment [3].
The following values of parameters were used: D1 = 0.04, D2 = 0.14, α0 = 5,
γ0 = 20, ∆k = 0. This set of parameters is used in all experiments presented in
this paper. To make sure that obtained EFs are optical solitons, distributions
of amplitudes, were used as the initial conditions for equations (2.1). To solve
(2.1) we have used a nonlinear conservative finite-difference scheme.

a) b)

Figure 1. Evolution of solitary waves on fundamental (a) and doubled (b)
frequency corresponding to the first eigenvalue for the following set of parameters:
δα = 0, δγ = 1, nγ = 1, Lz = 15.

Since the dimensionless coefficients of the second order dispersion are less
than 1, the soliton propagation was analyzed for a sufficiently large medium
length 0 6 z 6 15. The discrete steps on time and space were chosen equal to
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0.0025 and 0.001 correspondingly. One can easily see from Fig. 1 that the peak
intensity of harmonics does not change along the propagation direction and the
shapes of pulses also remain constant. It is also important to emphasize that
EFs of original problem (2.1), corresponding to the first EV, do not change
with an increase of time domain, thus, they are optical solitons. These solitons
are stable with respect to perturbations of their initial form that can reach 20%
of their amplitudes. Such perturbations lead to the periodic oscillations of the
peak intensity of both harmonics along their propagation. We would also like
to stress that the form of the soliton solutions, which correspond to first EV,
does not depend on the choice of initial approximation for iterative process
(3.2).

a) b)

c) d)

Figure 2. Shape of pulse for solitary wave on fundamental (a,c) and doubled (b,d) frequency
corresponding to the first eigenvalue under the fixed value δα = 0 (a,b) for nγ = 1, δγ =

0(solid line), δγ = 1(dashed line), δγ = 5(dotted line) or under the fixed value δγ = 0 (c, d)
for nα = 1, δα = 0 (solid line), δα = 1 (dashed line), δα = 5 (dotted line).

We have also investigated how the non-uniformity of nonlinear coefficients
affects the soliton shape. The results shown on Fig. 2 – Fig. 4 were obtained
by using the described above algorithm for various values of δα and δγ . On
the base of these pictures and the other computer simulation results we make
the following conclusions. For even values nγ or nα our iterative algorithm
of finding EVs and EFs does not converge. The reason is absence of the first
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derivative in time for functions in equation (2.4), since the solution in this case
is unsymmetrical and the presence of the first derivative in equation (2.4) is a
necessary condition.

For nγ = 1 and nα = 1 (see Fig. 2) with increasing of δγ or δα the pulse
duration on both frequencies is decreasing. Nevertheless, the increasing of δγ
influences more strongly on pulse duration than increasing of δα.

If modulation of coefficients of nonlinearity takes place with nγ = 3 and
nα = 3 (see Fig.3) then an increase of δα results in broadening of pulses dura-
tion on both frequencies. The influence of perturbation of nonlinear coefficient
γ depends on its amplitude. If the amplitude is less than 2 then the depen-
dence mentioned above takes place. But for an amplitude of perturbation,
which is greater than 2, an increasing in the perturbation amplitude results in
decreasing of pulses duration.

The further increasing of frequency of perturbation of nonlinear coefficients
nγ = 5 and nα = 5 (see Fig.4) gives the same dependencies between pulses
duration and amplitudes of perturbations as for nγ = 1 and nα = 1.

a) b)

c) d)

Figure 3. Shape of pulse for solitary wave on fundamental (a,c) and doubled (b,d)
frequency corresponding to the first eigenvalue under the fixed value δα = 0 (a,b) for nγ = 3,
δγ = 0 (solid line), δγ = 0.5 (dashed line), δγ = 1 (dotted line), δγ = 4.5 (dash-dotted line)
or under the fixed value δγ = 0 (c, d) for nα = 3, δα = 0 (solid line), δα = 1 (dashed line),
δα = 1.5 (dotted line).
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a) b)

c) d)

Figure 4. Shape of pulse for solitary wave on fundamental (a,c) and doubled (b,d)
frequency corresponding to the first eigenvalue under the fixed value δα = 0 (a,b) for nγ = 5,
δγ = 0 (solid line), δγ = 1 (dashed line), δγ = 5 (dotted line) or under the fixed value δγ = 0

(c, d) for nα = 5, δα = 0 (solid line), δα = 1 (dashed line), δα = 5 (dotted line).

It should be noticed that proposed algorithm allows to obtain EFs, corre-
sponding to the second EV as well. In contrast to the first EV, their form
depends on initial approximation. When initial approximation is taken in the
form (3.3), the solution is the composition of the already obtained solitons for
first EV, located on a big enough distance from each other. It is obvious that
solutions of such type will also be solitons. This case is trivial one. EFs with
essential another shape were obtained with the choice of initial approximation
in the form of Gaussian distributions (3.4) with τp = 1. In this case the soli-
ton has a shape with a local minimum at its center [18]. The form of EFs for
second EV is shown on Fig. 5.

If these EFs are used as initial conditions for system (2.1), optical waves
propagate without any changes. Increasing of the time domain by adding
zeros to EF at the ends of the time interval does not affect the evolution of
intensities of both harmonics. This fact proves that obtained EFs are also
optical solitons. However, in contrast to the solitons, which correspond to the
first EV, this soliton is unstable to small perturbations, which are greater than
5% of its value.
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Figure 5. Shape of pulse for solitary wave on fundamental (solid line) and doubled (dashed
line) frequency corresponding to the second eigenvalue for the following set of parameters:
δα = 0, nα = 0, δγ = 0, nγ = 0.

5 Conclusion

The iterative method for finding solitons, that was proposed in [18], can be
generalized as well under the condition of dependence of coefficients of non-
linearity on time or transverse coordinate for the system of two Schrödinger
equations with the combined nonlinearity. These solitons, corresponding to the
first EV, are stable with respect to initial perturbations of their forms. The
developed method is also applicable for finding EFs of higher order. However,
its convergence (just as in [18]) depends on the choice of initial approximation
of EF. At the same time, the coefficient of cubic nonlinearity plays special
role. It should be noticed that with an increase of time interval the EVs tend
to approach the value α/2. To find a soliton in this case it is necessary either
to decrease the time interval or to use a grid with the more coarse step to
separate EVs from each other.
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